On a Decidable Fragment of $d\mathcal{L}$ or, The Next 700 (Un)decidable Fragments of $d\mathcal{L}$

David M Kahn Siva Somayyajula

Carnegie Mellon University

December 11, 2018

If you or a loved one has been frustrated trying to formally verify systems,

If you or a loved one has been frustrated trying to formally verify systems,

you may be entitled to righteous indignation.

Why is formal verification so frustrating?

- complicated and tedious proofs
- lots of work for no product change
- people only care it looks like it works

Why is formal verification so frustrating?

- complicated and tedious proofs
- lots of work for no user-facing change
- people only care it looks like it works Cyberphysical systems are life-critical!

ingilpeen

David M Kahn, Siva Somayyajula (CMU)

Results

- \bullet Found and implemented decidable fragments of d ${\cal L}$ to ease verifying cyberphysical systems
- Found undecidable/inter-decidable fragments of d $\mathcal L$ to ease future decidability research

(Un)decidability Results

Arithmetical Approaches

	Integer Arithmetic	$d\mathcal{L}$
positive ∃	MRDP's Diophantine	Post Correspondence
positive \forall	polynomial ID testing	extended Platzer-Tan
bounded	finitary checking	Post Correspondence
single variable	trivial	Post Correspondence
purely $+$	Presburger	Post Correspondence
purely $ imes$	Skolem	Post Correspondence

(Un)decidability Results

	d ${\cal L}$
without \cup	MRDP's Diophantine
without ;	piecewise constant derivative reachability
without *	(exponential) polynomial star-free
only :=	Post Correspondence
only $?(-)$	reduction to $FOL_\mathbb{R}$
only $x' = f(x) \& Q$	piecewise constant derivative reachability
simultaneously $[lpha] P \wedge \langle lpha angle P$	when $[\alpha]P$ is

How can this be used for theorem proving?

- Work with simple ODEs
- Human identifies loop invariant
- That's it! Everything else is free.

 \bullet Idea: sound translation to $\mathsf{FOL}_\mathbb{R}$

 \bullet Idea: sound translation to $\mathsf{FOL}_\mathbb{R}$

•
$$[x := e]P(x) \leftrightarrow P(e)$$

• $[\alpha; \beta] P \leftrightarrow [\alpha] [\beta] P$

 $\bullet~$ Idea: sound translation to $FOL_{\mathbb{R}}$

$$\begin{array}{l} \bullet \quad [x := e] P(x) \leftrightarrow P(e) \\ \bullet \quad [\alpha; \beta] P \leftrightarrow [\alpha] [\beta] P \\ \bullet \quad [x' = f(x)] P(x) \leftrightarrow \forall t \geq 0 \ P(x(t)) \ \text{where} \ x'(t) = f(x(t)) \end{array}$$

 $\bullet~$ Idea: sound translation to $FOL_{\mathbb{R}}$

$$\blacktriangleright [x := e] P(x) \leftrightarrow P(e)$$

•
$$[\alpha; \beta] P \leftrightarrow [\alpha] [\beta] P$$

•
$$[x' = f(x)]P(x) \leftrightarrow \forall t \ge 0 \ P(x(t)) \text{ where } x'(t) = f(x(t))$$

• Remove iteration (star/asterate)

 $\bullet~$ Idea: sound translation to $FOL_{\mathbb{R}}$

$$\blacktriangleright [x := e] P(x) \leftrightarrow P(e)$$

•
$$[\alpha; \beta] P \leftrightarrow [\alpha] [\beta] P$$

•
$$[x' = f(x)]P(x) \leftrightarrow \forall t \ge 0 \ P(x(t)) \text{ where } x'(t) = f(x(t))$$

• Remove iteration (star/asterate)

•
$$\alpha^* =$$
?true $\cup \alpha; \alpha^*$

 $\bullet~$ Idea: sound translation to $FOL_{\mathbb{R}}$

$$\blacktriangleright [x := e] P(x) \leftrightarrow P(e)$$

•
$$[\alpha; \beta] P \leftrightarrow [\alpha] [\beta] P$$

•
$$[x' = f(x)]P(x) \leftrightarrow \forall t \ge 0 \ P(x(t)) \text{ where } x'(t) = f(x(t))$$

• Remove iteration (star/asterate)

•
$$\alpha^* =$$
?**true** $\cup \alpha$; α^*

Loop invariants?

 $\bullet~$ Idea: sound translation to $FOL_{\mathbb{R}}$

$$\blacktriangleright [x := e] P(x) \leftrightarrow P(e)$$

- $\blacktriangleright \ [\alpha;\beta]P \leftrightarrow [\alpha][\beta]P$
- $[x' = f(x)]P(x) \leftrightarrow \forall t \ge 0 \ P(x(t)) \text{ where } x'(t) = f(x(t))$
- Remove iteration (star/asterate)
 - $\alpha^* =$?**true** $\cup \alpha$; α^*
 - Loop invariants?
 - Encode integer arithmetic: undecidable

 $\bullet~$ Idea: sound translation to $FOL_{\mathbb{R}}$

$$\blacktriangleright [x := e] P(x) \leftrightarrow P(e)$$

- $[\alpha; \beta] P \leftrightarrow [\alpha] [\beta] P$
- $[x' = f(x)]P(x) \leftrightarrow \forall t \ge 0 \ P(x(t)) \text{ where } x'(t) = f(x(t))$
- Remove iteration (star/asterate)
 - $\alpha^* =$?**true** $\cup \alpha$; α^*
 - Loop invariants?
 - Encode integer arithmetic: undecidable
- Restrict to polynomial solutions of ODEs

Theorem (DAG condition) Given $S \equiv x'_i = e_1, \dots, x'_n = e_n$, let G be a digraph s.t. edge from $x'_i = e_i$ to $x'_j = e_j \iff x_i$ occurs in e_j Then, S has a polynomial solution \iff G is acyclic.

Theorem (DAG condition) Given $S \equiv x'_i = e_1, \dots, x'_n = e_n$, let G be a digraph s.t. edge from $x'_i = e_i$ to $x'_j = e_j \iff x_i$ occurs in e_j Then, S has a polynomial solution \iff G is acyclic.

Proof sketch.

Back-sub in the topological order of G.

 $\bullet\,\sim$ 500 lines in OCaml

- $m \bullet \sim 500$ lines in OCaml
- \bullet Shallow embedding of d ${\cal L}$ using weak higher-order abstract syntax

- $m \bullet \sim 500$ lines in OCaml
- \bullet Shallow embedding of d ${\cal L}$ using weak higher-order abstract syntax
- Polynomial manipulation and ODE solver

- ullet \sim 500 lines in OCaml
- \bullet Shallow embedding of d ${\cal L}$ using weak higher-order abstract syntax
- Polynomial manipulation and ODE solver
- Z3 for quantifier elimination

Polynomial Star-Free: Demo

Verifying
$$x \ge 0 \land v \ge 0 \land a \ge 0 \rightarrow [x' = v, v' = a] \ x \ge 0$$

Common.Valid "unsat\n((declare-fun _x0!0 () Real)\n(proof\n ((?x254 (* a _x0!0 _x0!0))\n (let ((?x257 (* (251 ?x257)))\n (let ((\$x287 (>= ?x260 0.0)))\n (

Conclusion and Future Work

• Survey of restrictions for (un)decidability

Conclusion and Future Work

- Survey of restrictions for (un)decidability
- Decision procedures for theorem proving

Ingilpeen