14: Verified Models & Verified Runtime Validation 15-424: Foundations of Cyber-Physical Systems

Stefan Mitsch André Platzer

Computer Science Department Carnegie Mellon University, Pittsburgh, PA

Simplex for Hybrid System Models (FMSD'16)

Outline

- Motivation
- 2 Learning Objectives
- ModelPlex Runtime
 - ModelPlex Runtime Monitors
 - ModelPlex Compliance
- ModelPlex
 - Logical State Relations
 - Model Monitors
 - Correct-by-Construction Synthesis
 - Example: Water Tank
 - Controller Monitors
 - Prediction Monitors
- Evaluation
- **6** Summary

Outline

- Motivation
- 2 Learning Objectives
- ModelPlex Runtime
 - ModelPlex Runtime Monitors
 - ModelPlex Compliance
- ModelPlex
 - Logical State Relations
 - Model Monitors
 - Correct-by-Construction Synthesis
 - Example: Water Tank
 - Controller Monitors
 - Prediction Monitors
- Evaluation
- 6 Summary

Correctness Questions in Complex System Design

Safety The system must be safe under all circumstances Liveness The system must reach a given goal

How do we make cyber-physical systems safe?

Extensive testing? Code reviews?

When are we done? How many test cases are enough? Did we cover all relevant tests?

Benefits of Logical Foundations for CPS V & V

Proofs	LICS'12, JAR'16			
Safety	Formalize system properties: What is "Safe"? "Reach goal"?			
Models	Formalize system models, clarify behavior			
Assumptions	umptions Make assumptions explicit rather than silently			
Predictions	redictions Safety analysis predicts behavior for infinitely many cases			
Constraints	ts Reveal invariants, switching conditions, operating conditions			
Design	Invariants/proofs guide safe controller design			
Byproducts				
Analysis	Determine design trade-offs & feasibility early arXiv			
Synthesis	Turn models into code & safety monitors ModelPlex			

Tools

KeYmaera X aXiomatic Tactical Theorem Prover for CPS CADE'15

Certificate Proofs as evidence for certification

CPP'16

An aXiomatic Tactical Theorem Prover for CPS

http://keymaeraX.org/

An aXiomatic Tactical Theorem Prover for CPS

http://keymaeraX.org/

```
Small Core Increases trust, modularity, enables experimentation
                                                                   (1677)
    Tactics Bridging between small core and
                                                                 (Hilbert)
                                                            (Sequent++)
            powerful reasoning steps
Separation Tactics can make courageous inferences
            Core establishes soundness
Search&Do Search-based tactics that follow proof search strategies
            Constructive tactics that directly build a proof
Interaction Interactive proofs mixed with tactical proofs and proof search
 Extensible Flexible for new algorithms, new tactics, new logics, new
            proof rules, new axioms, ...
```

Customize Modular user interface. API

KeYmaera X Microkernel for Soundness

	≈LOC		
KeYmaera X	1 652		\ hybrid
KeYmaera	65 989		prover
KeY	51 328		} Java
Nuprl	15 000	+ 50000)
MetaPRL	8 196		l .
Isabelle/Pure	8 9 1 3		general
Coq	16 538		math
HOL Light	396		J
PHAVer	30 000)
HSolver	20 000		
SpaceEx	100 000		hybrid
Flow*	25 000		verifier
dReal	50 000	+ millions	
HyCreate2	6 081	+ user model analysis	J

Disclaimer: Self-reported estimates of the soundness-critical lines of code + rules

Outline

- Motivation
- 2 Learning Objectives
- ModelPlex Runtime
 - ModelPlex Runtime Monitors
 - ModelPlex Compliance
- ModelPlex
 - Logical State Relations
 - Model Monitors
 - Correct-by-Construction Synthesis
 - Example: Water Tank
 - Controller Monitors
 - Prediction Monitors
- Evaluation
- 6 Summary

Learning Objectives

Verified Models & Verified Runtime Validation

proof in a model vs. truth in reality tracing assumptions turning provers upside down correct-by-construction dynamic contracts proofs for CPS implementations

models vs. reality inevitable differences model compliance architectural design tame CPS complexity prediction vs. run runtime validation online monitor

Contribution

ModelPlex ensures that verification results about models apply to CPS implementations

Outline

- Motivation
- 2 Learning Objectives
- ModelPlex Runtime
 - ModelPlex Runtime Monitors
 - ModelPlex Compliance
- ModelPlex
 - Logical State Relations
 - Model Monitors
 - Correct-by-Construction Synthesis
 - Example: Water Tank
 - Controller Monitors
 - Prediction Monitors
- Evaluation
- 6 Summary

ModelPlex Runtime Model Validation

ModelPlex ensures that verification results about models apply to CPS implementations

ModelPlex Runtime Model Validation

ModelPlex ensures that verification results about models apply to CPS implementations

Contributions

- Verification results about models transfer to CPS when validating model compliance
- Compliance with model is characterizable in logic
- Compliance formula transformed by proof to executable monitor
- Correct-by-construction provably correct runtime model validation

model adequate?

control safe?

until next cycle?

ModelPlex at Runtime

ModelPlex at Runtime

Compliance Monitor Checks CPS for compliance with model at runtime

- Model Monitor: model adequate?
- Controller Monitor: control safe?
- Prediction Monitor: until next cycle?

Fallback Safe action, executed when monitor is not satisfied (veto)

Challenge What conditions do the monitors need to check to be safe?

ModelPlex Compliance

Is current CPS behavior included in the behavior of the model?

- CPS observed through sensors
- Model describes behavior of CPS between states

Detect non-compliance ASAP to initiate fallback actions while still safe

ModelPlex Compliance

Is current CPS behavior included in the behavior of the model?

- CPS observed through sensors
- Model describes behavior of CPS between states

Detect non-compliance ASAP to initiate fallback actions while still safe

ModelPlex Compliance

Is current CPS behavior included in the behavior of the model?

- CPS observed through sensors
- Model describes behavior of CPS between states

Detect non-compliance ASAP to initiate fallback actions while still safe

Outline

- Motivation
- 2 Learning Objectives
- ModelPlex Runtime
 - ModelPlex Runtime Monitors
 - ModelPlex Compliance
- ModelPlex
 - Logical State Relations
 - Model Monitors
 - Correct-by-Construction Synthesis
 - Example: Water Tank
 - Controller Monitors
 - Prediction Monitors
- 5 Evaluatio
- **6** Summary

Outline

When are two states linked through a run of model α ?

Semantical:

$$(\omega,\nu)\in \llbracket\alpha\rrbracket$$

reachability relation of $\boldsymbol{\alpha}$

Logic reduces CPS safety to runtime monitor with offline proof

Offline

Semantical:
$$(\omega, \nu) \in \llbracket \alpha \rrbracket$$

↓ Lemma

Logical d
$$\mathcal{L}$$
: $(\omega, \nu) \models \langle \alpha \rangle (x = x^+)$

 \Uparrow d $\mathcal L$ proof

Arithmetical:
$$(\omega, \nu) \models F(x, x^+)$$

check at runtime (efficient)

$$d\mathcal{L}$$
 proof $A \to [\alpha^*]S$

Theorem (Model Monitor Correctness)

(FMSD'16)

"System safe as long as monitor satisfied."

• Proof calculus of $d\mathcal{L}$ executes models symbolically

ullet Proof calculus of d ${\mathcal L}$ executes models symbolically

ullet Proof calculus of d ${\cal L}$ executes models symbolically

ullet Proof calculus of d ${\cal L}$ executes models symbolically

• Proof calculus of $d\mathcal{L}$ executes models symbolically

Monitor: $F_1(x, x^+) \vee F_2(x, x^+)$

• Proof calculus of $d\mathcal{L}$ executes models symbolically

 The subgoals that cannot be proved express all the conditions on the relations of variables imposed by the model → close at runtime

ullet Proof calculus of d $\mathcal L$ executes models symbolically

 The subgoals that cannot be proved express all the conditions on the relations of variables imposed by the model → close at runtime

Water Tank Example: Monitor Conjecture

Variables

x current level

 ε control cycle

m maximum level

f flow

Model and Safety Property

$$\underbrace{0 \leq x \leq m \wedge \varepsilon > 0}_{A} \rightarrow \left[\left(\begin{array}{c} f := *; ? \left(-1 \leq f \leq \frac{m - x}{\varepsilon} \right); \\ t := 0; \left(x' = f, \ t' = 1 \ \& \ x \geq 0 \wedge t \leq \varepsilon \right) \right)^{*} \right] \\ \underbrace{\left(0 \leq x \leq m \right)}_{S}$$

Model Monitor Specification Conjecture

$$\underbrace{\varepsilon > 0}_{A|_{\text{const}}} \rightarrow \left\langle \begin{array}{l} f := *;? \left(-1 \leq f \leq \frac{m-x}{\varepsilon} \right); \\ t := 0; \left(x' = f, t' = 1 \ \& \ x \geq 0 \land t \leq \varepsilon \right) \right\rangle \underbrace{\left(x = x^+ \land f = f^+ \land t = t^+ \right)}_{V_m}$$

Water Tank Example: Nondeterministic Assignment

Proof Rules

Sequent Deduction

$$\frac{A \vdash \langle f := F \rangle \langle ? - 1 \leq f \leq \frac{m - x}{\varepsilon} \rangle \langle \mathsf{plant} \rangle \Upsilon^{+} \mathsf{w} \langle \mathsf{o} \ \mathsf{Opt.} \ 1}{A \vdash \langle f := F \rangle \langle ? - 1 \leq f \leq \frac{m - x}{\varepsilon} \rangle \langle \mathsf{plant} \rangle \Upsilon^{+}}) \underbrace{ \langle ? - 1 \leq f \leq \frac{m - x}{\varepsilon} \rangle \langle \mathsf{plant} \rangle \Upsilon^{+}}_{\exists \mathsf{R}, \mathsf{WR}} \underbrace{ \langle ? - 1 \leq f \leq \frac{m - x}{\varepsilon} \rangle \langle \mathsf{plant} \rangle \Upsilon^{+}}_{\exists \mathsf{R}, \mathsf{WR}} \underbrace{ \langle ? - 1 \leq f \leq \frac{m - x}{\varepsilon} \rangle \langle \mathsf{plant} \rangle \Upsilon^{+}}_{\exists \mathsf{R}, \mathsf{WR}} \underbrace{ \langle ? - 1 \leq f \leq \frac{m - x}{\varepsilon} \rangle \langle \mathsf{plant} \rangle \Upsilon^{+}}_{\exists \mathsf{R}, \mathsf{WR}} \underbrace{ \langle ? - 1 \leq f \leq \frac{m - x}{\varepsilon} \rangle \langle \mathsf{plant} \rangle \Upsilon^{+}}_{\exists \mathsf{R}, \mathsf{WR}} \underbrace{ \langle ? - 1 \leq f \leq \frac{m - x}{\varepsilon} \rangle \langle \mathsf{plant} \rangle \Upsilon^{+}}_{\exists \mathsf{R}, \mathsf{WR}} \underbrace{ \langle ? - 1 \leq f \leq \frac{m - x}{\varepsilon} \rangle \langle \mathsf{plant} \rangle \Upsilon^{+}}_{\exists \mathsf{R}, \mathsf{WR}} \underbrace{ \langle ? - 1 \leq f \leq \frac{m - x}{\varepsilon} \rangle \langle \mathsf{plant} \rangle \Upsilon^{+}}_{\exists \mathsf{R}, \mathsf{WR}} \underbrace{ \langle ? - 1 \leq f \leq \frac{m - x}{\varepsilon} \rangle \langle \mathsf{plant} \rangle \Upsilon^{+}}_{\exists \mathsf{R}, \mathsf{WR}} \underbrace{ \langle ? - 1 \leq f \leq \frac{m - x}{\varepsilon} \rangle \langle \mathsf{plant} \rangle \Upsilon^{+}}_{\exists \mathsf{R}, \mathsf{WR}} \underbrace{ \langle ? - 1 \leq f \leq \frac{m - x}{\varepsilon} \rangle \langle \mathsf{plant} \rangle \Upsilon^{+}}_{\exists \mathsf{R}, \mathsf{WR}} \underbrace{ \langle ? - 1 \leq f \leq \frac{m - x}{\varepsilon} \rangle \langle \mathsf{plant} \rangle \Upsilon^{+}}_{\exists \mathsf{R}, \mathsf{WR}} \underbrace{ \langle ? - 1 \leq f \leq \frac{m - x}{\varepsilon} \rangle \langle \mathsf{plant} \rangle \Upsilon^{+}}_{\exists \mathsf{R}, \mathsf{WR}} \underbrace{ \langle ? - 1 \leq f \leq \frac{m - x}{\varepsilon} \rangle \langle \mathsf{plant} \rangle \Upsilon^{+}}_{\exists \mathsf{R}, \mathsf{WR}} \underbrace{ \langle ? - 1 \leq f \leq \frac{m - x}{\varepsilon} \rangle \langle \mathsf{plant} \rangle \Upsilon^{+}}_{\exists \mathsf{R}, \mathsf{WR}} \underbrace{ \langle ? - 1 \leq f \leq \frac{m - x}{\varepsilon} \rangle \langle \mathsf{plant} \rangle \Upsilon^{+}}_{\exists \mathsf{R}, \mathsf{WR}} \underbrace{ \langle ? - 1 \leq f \leq \frac{m - x}{\varepsilon} \rangle \langle \mathsf{plant} \rangle \Upsilon^{+}}_{\exists \mathsf{R}, \mathsf{WR}} \underbrace{ \langle ? - 1 \leq f \leq \frac{m - x}{\varepsilon} \rangle \langle \mathsf{plant} \rangle \Upsilon^{+}}_{\exists \mathsf{R}, \mathsf{WR}} \underbrace{ \langle ? - 1 \leq f \leq \frac{m - x}{\varepsilon} \rangle \langle \mathsf{plant} \rangle \Upsilon^{+}}_{\exists \mathsf{R}, \mathsf{WR}} \underbrace{ \langle ? - 1 \leq f \leq \frac{m - x}{\varepsilon} \rangle \langle \mathsf{plant} \rangle \Upsilon^{+}}_{\exists \mathsf{R}, \mathsf{WR}} \underbrace{ \langle ? - 1 \leq f \leq \frac{m - x}{\varepsilon} \rangle \langle \mathsf{plant} \rangle \Upsilon^{+}}_{\exists \mathsf{R}, \mathsf{WR}} \underbrace{ \langle ? - 1 \leq f \leq \frac{m - x}{\varepsilon} \rangle \langle \mathsf{plant} \rangle \Upsilon^{+}}_{\exists \mathsf{R}, \mathsf{WR}} \underbrace{ \langle ? - 1 \leq f \leq \frac{m - x}{\varepsilon} \rangle \langle \mathsf{plant} \rangle \Upsilon^{+}}_{\exists \mathsf{R}, \mathsf{R}, \mathsf{R}}_{\exists \mathsf{R}, \mathsf{R}}_{\exists \mathsf{R}, \mathsf{R}}_{\exists \mathsf{R}, \mathsf{R}, \mathsf{R}}_{\exists \mathsf{$$

Water Tank Example: Differential Equations

Proof Rules

$$\langle'\rangle \ \frac{\exists T \ge 0 \ ((\forall 0 \le t \le T \ \langle x := y(t) \rangle Q) \land \langle x := y(T) \rangle P)}{\langle x' = f(x) \& Q \rangle P} (y(t) \ \text{solution} \ T, t \ \text{new})$$

$$QE \xrightarrow{P} (iff P \leftrightarrow QE(P) \text{ in first-order real arithmetic})$$

Sequent Deduction

$$A \vdash F = f^+ \land x^+ = x + Ft^+ \land t^+ \ge 0 \land x \ge 0 \land \varepsilon \ge t^+ \ge 0 \land Ft^+ + x \ge 0$$

$$\stackrel{\text{QE}}{A} \vdash \forall 0 \leq \tilde{t} \leq T \ (x + f^+ \tilde{t} \geq 0 \land \tilde{t} \leq \varepsilon) \land F = f^+ \land x^+ = x + Ft^+ \land t^+ = t^+$$

$$\exists \mathsf{R}, \mathsf{WR} A \vdash \exists T \geq 0 ((\forall 0 \leq \tilde{t} \leq T \ (x + f^+ \tilde{t} \geq 0 \land \tilde{t} \leq \varepsilon)) \land F = f^+ \land (x^+ = x + FT \land t^+ = T))$$

$$A \vdash \langle f := F; t := 0 \rangle \langle \{x' = f, t' = 1 \& x \ge 0 \land t \le \varepsilon\} \rangle \Upsilon^+$$

Water Tank Example: Synthesized Model Monitor

Input: Model and Safety Property

$$\underbrace{0 \leq x \leq m \wedge \varepsilon > 0}_{A} \rightarrow \left[\left(\begin{array}{c} f := *; \ ? \left(-1 \leq f \leq \frac{m - x}{\varepsilon} \right); \\ t := 0; \ \left(x' = f, \ t' = 1 \ \& \ x \geq 0 \wedge t \leq \varepsilon \right) \right)^{*} \right]$$

$$\underbrace{\left(0 \leq x \leq m \right)}_{S}$$

Output: Synthesized Model Monitor

$$-1 \le f^+ \le \frac{m-x}{\varepsilon} \wedge x^+ = x + f^+ t^+ \wedge x \ge 0 \wedge x + f^+ t^+ \ge 0 \wedge \varepsilon \ge t^+ \ge 0$$

Proof (Generated by ModelPlex tactic).

A proof of correctness of the synthesized model monitor.

Outline

For typical models ctrl; plant we can check earlier

Controller Monitor: Early Compliance Checks Model Monitor

Semantical:
$$(\omega, \nu) \in \llbracket \mathsf{ctrl} \rrbracket$$
 < reachability relation of ctrl

Offline

Semantical:
$$(\omega, \nu) \in \llbracket \mathsf{ctrl} \rrbracket$$

$$\updownarrow \quad \mathsf{Theorem}$$

$$\mathsf{Logical} \ \mathsf{d} \mathcal{L} \colon \quad (\omega, \nu) \models \langle \mathsf{ctrl} \rangle (x = x^+)$$

$$\uparrow \quad \mathsf{d} \mathcal{L} \ \mathsf{proof}$$

Arithmetical: $(\omega, \nu) \models F(x, x^+)$

check at runtime (efficient)

Semantical:
$$(\omega, \nu) \in \llbracket \mathsf{ctrl} \rrbracket$$

↑ Theorem

Logical d \mathcal{L} : $(\omega, \nu) \models \langle \mathsf{ctrl} \rangle (x = x^+)$

 \uparrow d \mathcal{L} proof

Arithmetical: $(\omega, \nu) \models F(x, x^+)$

check at runtime (efficient)

exists a run of ctrl to

a state where $x = x^+$

Theorem (Controller Monitor Correctness)

FMSD'16

"Controller safe & in plant bounds as long as monitor satisfied."

Controller Monitor before actuation

Controller Monitor

Immediate detection of unsafe control before actuation

→ Safe execution of unverified implementations
in perfect environments

Logical d
$$\mathcal{L}$$
: $(\omega, \nu) \models \langle \mathsf{ctrl} \rangle (x = x^+)$
 $\uparrow \mathsf{d} \mathcal{L}$ proof

Arithmetical: $(\omega, \nu) \models F(x, x^+)$

check at runtime (efficient)

Theorem (Controller Monitor Correctness)

FMSD'16

"Controller safe & in plant bounds as long as monitor satisfied."

Outline

Safe despite evolution with disturbance?

Outline

Safe despite evolution with disturbance?

"Prediction is very difficult, especially if it's about the future." [Nils Bohr]

disturbance
$$t := 0$$
; $(f(x) - \delta \le x' \le f(x) + \delta, \ t' = 1 \& Q \land t \le \varepsilon)$

Model α

prior state x
 ω

Prediction Monitor before actuation posterior state x^+
 $i+1$

States reachable within ε time

disturbance
$$t := 0$$
; $\left(f(x) - \delta \le x' \le f(x) + \delta, \ t' = 1 \& Q \land t \le \varepsilon \right)$

Model α

prior state x
 ω

Ctrl plant
i+1

Prediction Monitor before actuation posterior state x^+

Offline

Offline

Logical d
$$\mathcal{L}$$
: $(\omega, \nu) \models \langle \mathsf{ctrl} \rangle (x = x^+ \land [\mathsf{plant}] \varphi)$

$$\uparrow \quad \mathsf{d} \mathcal{L} \text{ proof}$$
Arithmetical: $(\omega, \nu) \models F(x, x^+)$
Invariant φ implies safety S
(known from safety proof)

disturbance
$$t := 0$$
; $(f(x) - \delta \le x' \le f(x) + \delta, t' = 1 \& Q \land t \le \varepsilon)$

 $\begin{array}{c|c} & \text{Model } \alpha & \forall \\ & \text{prior state } x & \omega & \xrightarrow{\text{ctrl}} & \text{plant} \\ & & \downarrow & \downarrow \\ & & & \downarrow & \downarrow \\ \end{array}$

Prediction Monitor with Disturbance

Proactive detection of unsafe control before actuation despite disturbance

→ Safety in realistic environments

Offline

Logical d
$$\mathcal{L}$$
: $(\omega, \nu) \models \langle \mathsf{ctrl} \rangle (x = x^+ \land [\mathsf{plant}] \varphi)$

$$\uparrow \quad \mathsf{d} \mathcal{L} \text{ proof}$$
Invariant φ is

Arithmetical: $(\omega, \nu) \models F(x, x^+)$

Invariant φ implies safety S (known from safety proof)

Outline

- Motivation
- 2 Learning Objectives
- ModelPlex Runtime
 - ModelPlex Runtime Monitors
 - ModelPlex Compliance
- ModelPlex
 - Logical State Relations
 - Model Monitors
 - Correct-by-Construction Synthesis
 - Example: Water Tank
 - Controller Monitors
 - Prediction Monitors
- 5 Evaluation
- 6 Summary

Evaluation

Evaluated on hybrid system case studies

Water tank

Cruise control

Traffic control

Ground robots

Model sizes: 5–16 variables

Monitor sizes: 20–150 operations

- Synthesis duration: 0.3–23 seconds (axiomatic) 6.2–211 (sequent)
- ModelPlex tactic produces correct-by-construction monitor in KeYmaera X
- Theorem: ModelPlex is decidable and monitor synthesis fully automated for controller monitor synthesis and for important classes

Outline

- Motivation
- 2 Learning Objectives
- ModelPlex Runtime
 - ModelPlex Runtime Monitors
 - ModelPlex Compliance
- ModelPlex
 - Logical State Relations
 - Model Monitors
 - Correct-by-Construction Synthesis
 - Example: Water Tank
 - Controller Monitors
 - Prediction Monitors
- Evaluation
- **6** Summary

Summary

ModelPlex ensures that proofs apply to real CPS

- Validate model compliance
- Characterize compliance with model in logic
- Prover transforms compliance formula to executable monitor
- Provably correct runtime model validation

Stefan Mitsch and André Platzer.

ModelPlex: Verified runtime validation of verified cyber-physical system models.

Form. Methods Syst. Des., 49(1):33-74, 2016. Special issue of selected papers from RV'14. doi:10.1007/s10703-016-0241-z.

Stefan Mitsch and André Platzer.

ModelPlex: Verified runtime validation of verified cyber-physical system models.

In Borzoo Bonakdarpour and Scott A. Smolka, editors, RV, volume 8734 of LNCS, pages 199–214. Springer, 2014. doi:10.1007/978-3-319-11164-3 17.

André Platzer.

Logics of dynamical systems.

In *LICS*, pages 13–24. IEEE, 2012. doi:10.1109/LICS.2012.13.

André Platzer.

A complete uniform substitution calculus for differential dynamic logic.

J. Autom. Reas., 2016. doi:10.1007/s10817-016-9385-1.

A logic of proofs for differential dynamic logic: Toward independently checkable proof certificates for dynamic logics.

In Jeremy Avigad and Adam Chlipala, editors, *Proceedings of the 2016 Conference on Certified Programs and Proofs, CPP 2016, St. Petersburg, FL, USA, January 18-19, 2016*, pages 110–121. ACM, 2016.

doi:10.1145/2854065.2854078.

Differential dynamic logic for hybrid systems.

J. Autom. Reas., 41(2):143-189, 2008. doi:10.1007/s10817-008-9103-8.

A uniform substitution calculus for differential dynamic logic.

In Amy Felty and Aart Middeldorp, editors, *CADE*, volume 9195 of *LNCS*, pages 467–481. Springer, 2015. doi:10.1007/978-3-319-21401-6_32.