
14: Verified Models & Verified Runtime Validation
15-424: Foundations of Cyber-Physical Systems

Stefan Mitsch André Platzer

Computer Science Department
Carnegie Mellon University, Pittsburgh, PA

Simplex for Hybrid System Models (FMSD’16)

ModelPlex

Sensors

Controller

Compliance
Monitor

Fallback

Actuators

André Platzer (CMU) FCPS / 14: Verified Models & Verified Runtime Validation FCPS 1 / 27

http://dx.doi.org/10.1007/s10703-016-0241-z

Outline

1 Motivation
2 Learning Objectives
3 ModelPlex Runtime

ModelPlex Runtime Monitors
ModelPlex Compliance

4 ModelPlex
Logical State Relations
Model Monitors
Correct-by-Construction Synthesis
Example: Water Tank
Controller Monitors
Prediction Monitors

5 Evaluation
6 Summary

André Platzer (CMU) FCPS / 14: Verified Models & Verified Runtime Validation FCPS 2 / 27

Outline

1 Motivation
2 Learning Objectives
3 ModelPlex Runtime

ModelPlex Runtime Monitors
ModelPlex Compliance

4 ModelPlex
Logical State Relations
Model Monitors
Correct-by-Construction Synthesis
Example: Water Tank
Controller Monitors
Prediction Monitors

5 Evaluation
6 Summary

André Platzer (CMU) FCPS / 14: Verified Models & Verified Runtime Validation FCPS 2 / 27

Correctness Questions in Complex System Design

Safety The system must be safe under all circumstances
Liveness The system must reach a given goal

How do we make cyber-physical systems safe?

Extensive testing?
Code reviews?

When are we done? How many test cases are
enough? Did we cover all relevant tests?

André Platzer (CMU) FCPS / 14: Verified Models & Verified Runtime Validation FCPS 3 / 27

Benefits of Logical Foundations for CPS V & V

Proofs LICS’12,JAR’16
Safety Formalize system properties: What is “Safe”? “Reach goal”?

Models Formalize system models, clarify behavior
Assumptions Make assumptions explicit rather than silently

Predictions Safety analysis predicts behavior for infinitely many cases
Constraints Reveal invariants, switching conditions, operating conditions

Design Invariants/proofs guide safe controller design

Byproducts
Analysis Determine design trade-offs & feasibility early arXiv

Synthesis Turn models into code & safety monitors ModelPlex
Certificate Proofs as evidence for certification CPP’16

Tools
KeYmaera X aXiomatic Tactical Theorem Prover for CPS CADE’15

André Platzer (CMU) FCPS / 14: Verified Models & Verified Runtime Validation FCPS 4 / 27

http://dx.doi.org/10.1109/LICS.2012.13
http://dx.doi.org/10.1007/s10817-016-9385-1
http://arxiv.org/abs/1605.00604
http://dx.doi.org/10.1007/s10703-016-0241-z
http://dx.doi.org/10.1145/2854065.2854078
http://keymaeraX.org/
http://keymaeraX.org/
http://dx.doi.org/10.1007/978-3-319-21401-6_36

An aXiomatic Tactical Theorem Prover for CPS

http://keymaeraX.org/

CADE’15
André Platzer (CMU) FCPS / 14: Verified Models & Verified Runtime Validation FCPS 5 / 27

http://keymaeraX.org/
http://keymaeraX.org/
http://dx.doi.org/10.1007/978-3-319-21401-6_36

An aXiomatic Tactical Theorem Prover for CPS

http://keymaeraX.org/

Small Core Increases trust, modularity, enables experimentation (1677)
Tactics Bridging between small core and (Hilbert)

powerful reasoning steps (Sequent++)
Separation Tactics can make courageous inferences

Core establishes soundness
Search&Do Search-based tactics that follow proof search strategies

Constructive tactics that directly build a proof
Interaction Interactive proofs mixed with tactical proofs and proof search
Extensible Flexible for new algorithms, new tactics, new logics, new

proof rules, new axioms, . . .
Customize Modular user interface, API

CADE’15
André Platzer (CMU) FCPS / 14: Verified Models & Verified Runtime Validation FCPS 5 / 27

http://keymaeraX.org/
http://dx.doi.org/10.1007/978-3-319-21401-6_36

KeYmaera X Microkernel for Soundness

≈LOC
KeYmaera X 1 652
KeYmaera 65 989
KeY 51 328
Nuprl 15 000 + 50 000
MetaPRL 8 196
Isabelle/Pure 8 913
Coq 16 538
HOL Light 396
PHAVer 30 000
HSolver 20 000
SpaceEx 100 000
Flow∗ 25 000
dReal 50 000 + millions
HyCreate2 6 081 + user model analysis

Disclaimer: Self-reported estimates of the soundness-critical lines of code + rules

hybrid
prover

Java
}

general
math

hybrid
verifier

André Platzer (CMU) FCPS / 14: Verified Models & Verified Runtime Validation FCPS 6 / 27

http://keymaeraX.org/
http://symbolaris.com/info/KeYmaera.html

Formal Verification in CPS Development

Real CPS

Proof
Reachability

Analysis
. . .

Verification Results

safe

Challenge
Verification results about models

only apply if CPS fits to the model

 Verifiably correct runtime model validation

André Platzer (CMU) FCPS / 14: Verified Models & Verified Runtime Validation FCPS 7 / 27

Formal Verification in CPS Development

Real CPS

Model α∗

Control αctrl
v := v + 1

Plant αplant
x ′ = v

sense act

abstract

Proof
Reachability

Analysis
. . .

Verification Results

safe

safe

Challenge
Verification results about models

only apply if CPS fits to the model

 Verifiably correct runtime model validation

André Platzer (CMU) FCPS / 14: Verified Models & Verified Runtime Validation FCPS 7 / 27

Formal Verification in CPS Development

Real CPS

Model α∗

Control αctrl
v := v + 1

Plant αplant
x ′ = v

sense act

abstract

Proof
Reachability

Analysis
. . .

Verification Results

safe

safe

Challenge
Verification results about models

only apply if CPS fits to the model

 Verifiably correct runtime model validation

André Platzer (CMU) FCPS / 14: Verified Models & Verified Runtime Validation FCPS 7 / 27

Formal Verification in CPS Development

Real CPS

Model α∗

Control αctrl
v := v + 1

Plant αplant
x ′ = v

sense act

abstract

Proof
Reachability

Analysis
. . .

Verification Results

safe

safe

Challenge
Verification results about models

only apply if CPS fits to the model
 Verifiably correct runtime model validation

André Platzer (CMU) FCPS / 14: Verified Models & Verified Runtime Validation FCPS 7 / 27

Outline

1 Motivation
2 Learning Objectives
3 ModelPlex Runtime

ModelPlex Runtime Monitors
ModelPlex Compliance

4 ModelPlex
Logical State Relations
Model Monitors
Correct-by-Construction Synthesis
Example: Water Tank
Controller Monitors
Prediction Monitors

5 Evaluation
6 Summary

André Platzer (CMU) FCPS / 14: Verified Models & Verified Runtime Validation FCPS 7 / 27

Learning Objectives
Verified Models & Verified Runtime Validation

CT

M&C CPS

proof in a model vs. truth in reality
tracing assumptions
turning provers upside down
correct-by-construction
dynamic contracts
proofs for CPS implementations

models vs. reality
inevitable differences
model compliance
architectural design

tame CPS complexity
prediction vs. run
runtime validation
online monitor

André Platzer (CMU) FCPS / 14: Verified Models & Verified Runtime Validation FCPS 8 / 27

Contribution

ModelPlex ensures that verification results about models
apply to CPS implementations

André Platzer (CMU) FCPS / 14: Verified Models & Verified Runtime Validation FCPS 9 / 27

Outline

1 Motivation
2 Learning Objectives
3 ModelPlex Runtime

ModelPlex Runtime Monitors
ModelPlex Compliance

4 ModelPlex
Logical State Relations
Model Monitors
Correct-by-Construction Synthesis
Example: Water Tank
Controller Monitors
Prediction Monitors

5 Evaluation
6 Summary

André Platzer (CMU) FCPS / 14: Verified Models & Verified Runtime Validation FCPS 9 / 27

ModelPlex Runtime Model Validation

ModelPlex ensures that verification results about models
apply to CPS implementations

i−1 i i+1Model α ctrl plant

...

model adequate? control safe? until next cycle?

turn predict

Contributions
Verification results about models transfer to CPS when
validating model compliance
Compliance with model is characterizable in logic
Compliance formula transformed by proof to
executable monitor
Correct-by-construction provably correct runtime
model validation

André Platzer (CMU) FCPS / 14: Verified Models & Verified Runtime Validation FCPS 10 / 27

ModelPlex Runtime Model Validation

ModelPlex ensures that verification results about models
apply to CPS implementations

i−1 i i+1Model α ctrl plant

...

model adequate? control safe? until next cycle?

turn predict

Contributions
Verification results about models transfer to CPS when
validating model compliance
Compliance with model is characterizable in logic
Compliance formula transformed by proof to
executable monitor
Correct-by-construction provably correct runtime
model validation

André Platzer (CMU) FCPS / 14: Verified Models & Verified Runtime Validation FCPS 10 / 27

ModelPlex at Runtime ...

ModelPlex

Sensors

Controller

Compliance
Monitor Fallback

Actuators

“Simplex for Models”

André Platzer (CMU) FCPS / 14: Verified Models & Verified Runtime Validation FCPS 11 / 27

ModelPlex at Runtime ...

ModelPlex

Sensors

Controller

Compliance
Monitor Fallback

Actuators

Compliance Monitor Checks CPS for compliance with model at runtime
Model Monitor: model adequate?
Controller Monitor: control safe?
Prediction Monitor: until next cycle?

Fallback Safe action, executed when monitor is not satisfied (veto)
Challenge What conditions do the monitors need to check to be safe?

“Simplex for Models”

André Platzer (CMU) FCPS / 14: Verified Models & Verified Runtime Validation FCPS 11 / 27

ModelPlex Compliance ...

Is current CPS behavior included in the behavior of the model?

CPS observed through sensors
Model describes behavior of CPS between states

observation observation observation

. . .

i−1 i i+1 . . .Model α Model α

⊆ ⊆

fits to

C
P

S
M

od
el

time
Detect non-compliance ASAP to initiate fallback actions while still safe

Challenge
Model describes behavior,

but at runtime we get sampled observations
 Transform model into observation-monitor

André Platzer (CMU) FCPS / 14: Verified Models & Verified Runtime Validation FCPS 12 / 27

ModelPlex Compliance ...

Is current CPS behavior included in the behavior of the model?

CPS observed through sensors
Model describes behavior of CPS between states

observation observation observation

. . .

i−1 i i+1 . . .Model α Model α

⊆ ⊆
fits toC

P
S

M
od

el

time
Detect non-compliance ASAP to initiate fallback actions while still safe

Challenge
Model describes behavior,

but at runtime we get sampled observations
 Transform model into observation-monitor

André Platzer (CMU) FCPS / 14: Verified Models & Verified Runtime Validation FCPS 12 / 27

ModelPlex Compliance ...

Is current CPS behavior included in the behavior of the model?

CPS observed through sensors
Model describes behavior of CPS between states

observation observation observation

. . .

i−1 i i+1 . . .Model α Model α

⊆ ⊆
fits toC

P
S

M
od

el

time
Detect non-compliance ASAP to initiate fallback actions while still safe

Challenge
Model describes behavior,

but at runtime we get sampled observations
 Transform model into observation-monitor

André Platzer (CMU) FCPS / 14: Verified Models & Verified Runtime Validation FCPS 12 / 27

Outline

1 Motivation
2 Learning Objectives
3 ModelPlex Runtime

ModelPlex Runtime Monitors
ModelPlex Compliance

4 ModelPlex
Logical State Relations
Model Monitors
Correct-by-Construction Synthesis
Example: Water Tank
Controller Monitors
Prediction Monitors

5 Evaluation
6 Summary

André Platzer (CMU) FCPS / 14: Verified Models & Verified Runtime Validation FCPS 12 / 27

Outline

i−1 i i+1Model α ctrl plant

...

turn predict

Model Monitor

André Platzer (CMU) FCPS / 14: Verified Models & Verified Runtime Validation FCPS 13 / 27

Characterizing State Relations in Logic ...

When are two states linked through a run of model α?

i−1 i

a prior state
characterized by x

a posterior state
characterized by x+

Not initial state.
Model repeats. . .

dL proof A→ [α]S

Init i−1 |= A Safe i |= S

Model α

⊆

Offline

(i−1, i) ∈ [[α]]Semantical: reachability relation of α
m Lemma

(i−1, i) |= 〈α〉(x = x+)Logical dL:

exists a run of α to a
state where x = x+

m⇑
(i−1, i) |= F (x , x+)Arithmetical:

dL proof

check at runtime (efficient)

André Platzer (CMU) FCPS / 14: Verified Models & Verified Runtime Validation FCPS 14 / 27

Characterizing State Relations in Logic ...

When are two states linked through a run of model α?

ω ν

a prior state
characterized by x

a posterior state
characterized by x+

Not initial state.
Model repeats. . .

dL proof A→ [α]S

Init ω |= A Safe ν |= S

Model α

⊆

Offline

(ω, ν) ∈ [[α]]Semantical: reachability relation of α
m Lemma

(ω, ν) |= 〈α〉(x = x+)Logical dL:

exists a run of α to a
state where x = x+

m⇑
(ω, ν) |= F (x , x+)Arithmetical:

dL proof

check at runtime (efficient)

André Platzer (CMU) FCPS / 14: Verified Models & Verified Runtime Validation FCPS 14 / 27

Characterizing State Relations in Logic ...

When are two states linked through a run of model α?

ω ν

a prior state
characterized by x

a posterior state
characterized by x+

Not initial state.
Model repeats. . .

dL proof A→ [α]S

Init ω |= A Safe ν |= S

Model α

⊆

Offline

(ω, ν) ∈ [[α]]Semantical: reachability relation of α

m Lemma
(ω, ν) |= 〈α〉(x = x+)Logical dL:

exists a run of α to a
state where x = x+

m⇑
(ω, ν) |= F (x , x+)Arithmetical:

dL proof

check at runtime (efficient)

André Platzer (CMU) FCPS / 14: Verified Models & Verified Runtime Validation FCPS 14 / 27

Characterizing State Relations in Logic ...

When are two states linked through a run of model α?

ω ν

a prior state
characterized by x

a posterior state
characterized by x+

Not initial state.
Model repeats. . .

dL proof A→ [α]S

Init ω |= A Safe ν |= S

Model α

⊆

Offline

(ω, ν) ∈ [[α]]Semantical:

reachability relation of α

m Lemma
(ω, ν) |= 〈α〉(x = x+)Logical dL:

exists a run of α to a
state where x = x+

m⇑
(ω, ν) |= F (x , x+)Arithmetical:

dL proof

check at runtime (efficient)

André Platzer (CMU) FCPS / 14: Verified Models & Verified Runtime Validation FCPS 14 / 27

Characterizing State Relations in Logic ...

When are two states linked through a run of model α?

ω ν

a prior state
characterized by x

a posterior state
characterized by x+

Not initial state.
Model repeats. . .

dL proof A→ [α]S

Init ω |= A Safe ν |= S

Model α

⊆

Offline

(ω, ν) ∈ [[α]]Semantical:

reachability relation of α

m Lemma
(ω, ν) |= 〈α〉(x = x+)Logical dL:

exists a run of α to a
state where x = x+

m

⇑

(ω, ν) |= F (x , x+)Arithmetical:
dL proof

check at runtime (efficient)

André Platzer (CMU) FCPS / 14: Verified Models & Verified Runtime Validation FCPS 14 / 27

Characterizing State Relations in Logic ...

When are two states linked through a run of model α?

ω ν

a prior state
characterized by x

a posterior state
characterized by x+

Not initial state.
Model repeats. . .

dL proof A→ [α]S

Init ω |= A Safe ν |= S

Model α

⊆

Offline

(ω, ν) ∈ [[α]]Semantical:

reachability relation of α

m Lemma
(ω, ν) |= 〈α〉(x = x+)Logical dL:

exists a run of α to a
state where x = x+

m

⇑
(ω, ν) |= F (x , x+)Arithmetical:

dL proof

check at runtime (efficient)

André Platzer (CMU) FCPS / 14: Verified Models & Verified Runtime Validation FCPS 14 / 27

Logical Reductions for Model Safety Transfer ...

Logic reduces CPS safety to runtime monitor with offline proof

ω ν

a prior state
characterized by x

a posterior state
characterized by x+

Not initial state.
Model repeats. . .

dL proof A→ [α]S

Init ω |= A Safe ν |= S

Model α

⊆

Offline

(ω, ν) ∈ [[α]]Semantical:

reachability relation of α

m Lemma
(ω, ν) |= 〈α〉(x = x+)Logical dL:

exists a run of α to a
state where x = x+

m

⇑
(ω, ν) |= F (x , x+)Arithmetical:

dL proof

check at runtime (efficient)

André Platzer (CMU) FCPS / 14: Verified Models & Verified Runtime Validation FCPS 14 / 27

Logical Reductions for Model Safety Transfer ...

Logic reduces CPS safety to runtime monitor with offline proof

ω ν

a prior state
characterized by x

a posterior state
characterized by x+

Not initial state.
Model repeats. . .

dL proof A→ [α]S

Init ω |= A

Safe ν |= S

Model α

⊆

Offline

(ω, ν) ∈ [[α]]Semantical:

reachability relation of α

m Lemma
(ω, ν) |= 〈α〉(x = x+)Logical dL:

exists a run of α to a
state where x = x+

m

⇑
(ω, ν) |= F (x , x+)Arithmetical:

dL proof

check at runtime (efficient)

André Platzer (CMU) FCPS / 14: Verified Models & Verified Runtime Validation FCPS 14 / 27

Logical Reductions for Model Safety Transfer ...

Logic reduces CPS safety to runtime monitor with offline proof

ω ν

a prior state
characterized by x

a posterior state
characterized by x+

Not initial state.
Model repeats. . .

dL proof A→ [α]S

Init ω |= A Safe ν |= S

Model α

⊆

Offline

(ω, ν) ∈ [[α]]Semantical:

reachability relation of α

m Lemma
(ω, ν) |= 〈α〉(x = x+)Logical dL:

exists a run of α to a
state where x = x+

m

⇑
(ω, ν) |= F (x , x+)Arithmetical:

dL proof

check at runtime (efficient)

André Platzer (CMU) FCPS / 14: Verified Models & Verified Runtime Validation FCPS 14 / 27

Logical Reductions for Model Safety Transfer ...

Logic reduces CPS safety to runtime monitor with offline proof

ω ν

a prior state
characterized by x

a posterior state
characterized by x+

Not initial state.
Model repeats. . .

dL proof A→ [α]S

Init ω |= A Safe ν |= S

Model α

⊆

Offline

(ω, ν) ∈ [[α]]Semantical:

reachability relation of α

m Lemma
(ω, ν) |= 〈α〉(x = x+)Logical dL:

exists a run of α to a
state where x = x+

m

⇑
(ω, ν) |= F (x , x+)Arithmetical:

dL proof

check at runtime (efficient)

André Platzer (CMU) FCPS / 14: Verified Models & Verified Runtime Validation FCPS 14 / 27

Logical Reductions for Model Safety Transfer ...

Logic reduces CPS safety to runtime monitor with offline proof

ω ν

a prior state
characterized by x

a posterior state
characterized by x+

Not initial state.
Model repeats. . .

dL proof A→ [α]S

Init ω |= A Safe ν |= S

Model α

⊆

Offline

(ω, ν) ∈ [[α]]Semantical:

reachability relation of α

m Lemma
(ω, ν) |= 〈α〉(x = x+)Logical dL:

exists a run of α to a
state where x = x+

m

⇑
(ω, ν) |= F (x , x+)Arithmetical:

dL proof

check at runtime (efficient)

André Platzer (CMU) FCPS / 14: Verified Models & Verified Runtime Validation FCPS 14 / 27

Logical Reductions for Model Safety Transfer ...

Logic reduces CPS safety to runtime monitor with offline proof

ω ν

a prior state
characterized by x

a posterior state
characterized by x+

Not initial state.
Model repeats. . .

dL proof A→ [α]S

Init ω |= A Safe ν |= S

Model α

⊆

Offline

(ω, ν) ∈ [[α]]Semantical:

reachability relation of α

m Lemma
(ω, ν) |= 〈α〉(x = x+)Logical dL:

exists a run of α to a
state where x = x+

m

⇑
(ω, ν) |= F (x , x+)Arithmetical:

dL proof

check at runtime (efficient)

André Platzer (CMU) FCPS / 14: Verified Models & Verified Runtime Validation FCPS 14 / 27

Logical Reductions for Model Safety Transfer ...

Logic reduces CPS safety to runtime monitor with offline proof

ω ν

a prior state
characterized by x

a posterior state
characterized by x+

Not initial state.
Model repeats. . .

dL proof A→ [α]S

Init ω |= A Safe ν |= S

Model α

⊆

Offline

(ω, ν) ∈ [[α]]Semantical:

reachability relation of α

m Lemma
(ω, ν) |= 〈α〉(x = x+)Logical dL:

exists a run of α to a
state where x = x+

m

⇑
(ω, ν) |= F (x , x+)Arithmetical:

dL proof

check at runtime (efficient)

André Platzer (CMU) FCPS / 14: Verified Models & Verified Runtime Validation FCPS 14 / 27

Logical Reductions for Model Safety Transfer ...

Logic reduces CPS safety to runtime monitor with offline proof

ω ν

a prior state
characterized by x

a posterior state
characterized by x+

Not initial state.
Model repeats. . .

dL proof A→ [α]S

Init ω |= A Safe ν |= S

Model α

⊆

Offline

(ω, ν) ∈ [[α]]Semantical:

reachability relation of α

m Lemma
(ω, ν) |= 〈α〉(x = x+)Logical dL:

exists a run of α to a
state where x = x+

m

⇑
(ω, ν) |= F (x , x+)Arithmetical:

dL proof

check at runtime (efficient)

André Platzer (CMU) FCPS / 14: Verified Models & Verified Runtime Validation FCPS 14 / 27

Logical Reductions for Model Safety Transfer ...

Logic reduces CPS safety to runtime monitor with offline proof

ω ν

a prior state
characterized by x

a posterior state
characterized by x+

Not initial state.
Model repeats. . .

dL proof A→ [α]S

Init ω |= A Safe ν |= S

Model α

⊆

Offline

(ω, ν) ∈ [[α]]Semantical:

reachability relation of α

m Lemma
(ω, ν) |= 〈α〉(x = x+)Logical dL:

exists a run of α to a
state where x = x+

m

⇑
(ω, ν) |= F (x , x+)Arithmetical:

dL proof

check at runtime (efficient)

André Platzer (CMU) FCPS / 14: Verified Models & Verified Runtime Validation FCPS 14 / 27

Logical Reductions for α∗ Model Safety Transfer ...

Logic reduces CPS safety to runtime monitor with offline proof

ω ν

a prior state
characterized by x

a posterior state
characterized by x+

Not initial state.
Model repeats. . .

dL proof A→ [α∗]S

Init ω |= A Safe ν |= S

Model α∗

⊆

Offline

(ω, ν) ∈ [[α∗]]Semantical:

reachability relation of α∗

m Lemma
(ω, ν) |= 〈α∗〉(x = x+)Logical dL:

exists a run of α∗ to
a state where x = x+

m

⇑
(ω, ν) |= F (x , x+)Arithmetical:

dL proof

check at runtime (efficient)

André Platzer (CMU) FCPS / 14: Verified Models & Verified Runtime Validation FCPS 14 / 27

ModelPlex Model Monitor Correctness ...

0 i−1 i i+1Model α Model α Model α

⊆ ⊆ ⊆

Init 0 |= A Check (i , i+1) |= 〈α〉x=x+

dL proof A→ [α∗]S

Safe i+1 |= S

Theorem (Model Monitor Correctness) (FMSD’16)
“System safe as long as monitor satisfied.”

André Platzer (CMU) FCPS / 14: Verified Models & Verified Runtime Validation FCPS 15 / 27

http://dx.doi.org/10.1007/s10703-016-0241-z

ModelPlex Model Monitor Correctness ...

0 i−1 i i+1Model α Model α Model α

⊆ ⊆ ⊆

Init 0 |= A Check (i , i+1) |= 〈α〉x=x+

dL proof A→ [α∗]S

Safe i+1 |= S

Theorem (Model Monitor Correctness) (FMSD’16)
“System safe as long as monitor satisfied.”

André Platzer (CMU) FCPS / 14: Verified Models & Verified Runtime Validation FCPS 15 / 27

http://dx.doi.org/10.1007/s10703-016-0241-z

ModelPlex Model Monitor Correctness ...

0 i−1 i i+1Model α Model α Model α

⊆ ⊆ ⊆

Init 0 |= A

Check (i , i+1) |= 〈α〉x=x+

dL proof A→ [α∗]S

Safe i+1 |= S

Theorem (Model Monitor Correctness) (FMSD’16)
“System safe as long as monitor satisfied.”

André Platzer (CMU) FCPS / 14: Verified Models & Verified Runtime Validation FCPS 15 / 27

http://dx.doi.org/10.1007/s10703-016-0241-z

ModelPlex Model Monitor Correctness ...

0 i−1 i i+1Model α Model α Model α

⊆ ⊆ ⊆

Init 0 |= A Check (i , i+1) |= 〈α〉x=x+

dL proof A→ [α∗]S

Safe i+1 |= S

Theorem (Model Monitor Correctness) (FMSD’16)
“System safe as long as monitor satisfied.”

André Platzer (CMU) FCPS / 14: Verified Models & Verified Runtime Validation FCPS 15 / 27

http://dx.doi.org/10.1007/s10703-016-0241-z

ModelPlex Model Monitor Correctness ...

0 i−1 i i+1Model α Model α Model α

⊆ ⊆ ⊆

Init 0 |= A Check (i , i+1) |= 〈α〉x=x+

dL proof A→ [α∗]S

Safe i+1 |= S

Theorem (Model Monitor Correctness) (FMSD’16)
“System safe as long as monitor satisfied.”

André Platzer (CMU) FCPS / 14: Verified Models & Verified Runtime Validation FCPS 15 / 27

http://dx.doi.org/10.1007/s10703-016-0241-z

ModelPlex Model Monitor Correctness ...

0 i−1 i i+1Model α Model α Model α

⊆ ⊆ ⊆

Init 0 |= A Check (i , i+1) |= 〈α〉x=x+

dL proof A→ [α∗]S

Safe i+1 |= S

Theorem (Model Monitor Correctness) (FMSD’16)
“System safe as long as monitor satisfied.”

André Platzer (CMU) FCPS / 14: Verified Models & Verified Runtime Validation FCPS 15 / 27

http://dx.doi.org/10.1007/s10703-016-0241-z

Provably Correct Synthesis of Monitors ...

Proof calculus of dL executes models symbolically

Model α

i−1 iprior state x posterior state x+Model α

climb
descend

proof attempt
〈α(x)〉(x = x+)

〈climb ∪ descend〉(x = x+)

〈climb ∪ descend〉P ↔
〈climb〉P ∨ 〈descend〉P

∨
〈climb〉(x = x+) 〈descend〉(x = x+)

F1(x , x+) F2(x , x+)

F1(x , x+) ∨ F2(x , x+)Monitor:

The subgoals that cannot be proved express all the conditions on the
relations of variables imposed by the model close at runtime

Model Monitor
Immediate detection of model violation

 Mitigates safety issues with safe fallback action

André Platzer (CMU) FCPS / 14: Verified Models & Verified Runtime Validation FCPS 16 / 27

Provably Correct Synthesis of Monitors ...

Proof calculus of dL executes models symbolically
Model α

i−1 iprior state x posterior state x+

Model α

climb
descend

proof attempt

〈α(x)〉(x = x+)

〈climb ∪ descend〉(x = x+)

〈climb ∪ descend〉P ↔
〈climb〉P ∨ 〈descend〉P

∨
〈climb〉(x = x+) 〈descend〉(x = x+)

F1(x , x+) F2(x , x+)

F1(x , x+) ∨ F2(x , x+)Monitor:

The subgoals that cannot be proved express all the conditions on the
relations of variables imposed by the model close at runtime

Model Monitor
Immediate detection of model violation

 Mitigates safety issues with safe fallback action

André Platzer (CMU) FCPS / 14: Verified Models & Verified Runtime Validation FCPS 16 / 27

Provably Correct Synthesis of Monitors ...

Proof calculus of dL executes models symbolically
Model α

i−1 iprior state x posterior state x+

Model α

climb
descend

proof attempt

〈α(x)〉(x = x+)

〈climb ∪ descend〉(x = x+)

〈climb ∪ descend〉P ↔
〈climb〉P ∨ 〈descend〉P

∨
〈climb〉(x = x+) 〈descend〉(x = x+)

F1(x , x+) F2(x , x+)

F1(x , x+) ∨ F2(x , x+)Monitor:

The subgoals that cannot be proved express all the conditions on the
relations of variables imposed by the model close at runtime

Model Monitor
Immediate detection of model violation

 Mitigates safety issues with safe fallback action

André Platzer (CMU) FCPS / 14: Verified Models & Verified Runtime Validation FCPS 16 / 27

Provably Correct Synthesis of Monitors ...

Proof calculus of dL executes models symbolically
Model α

i−1 iprior state x posterior state x+

Model α

climb
descend

proof attempt

〈α(x)〉(x = x+)

〈climb ∪ descend〉(x = x+)

〈climb ∪ descend〉P ↔
〈climb〉P ∨ 〈descend〉P

∨
〈climb〉(x = x+) 〈descend〉(x = x+)

F1(x , x+) F2(x , x+)

F1(x , x+) ∨ F2(x , x+)Monitor:

The subgoals that cannot be proved express all the conditions on the
relations of variables imposed by the model close at runtime

Model Monitor
Immediate detection of model violation

 Mitigates safety issues with safe fallback action

André Platzer (CMU) FCPS / 14: Verified Models & Verified Runtime Validation FCPS 16 / 27

Provably Correct Synthesis of Monitors ...

Proof calculus of dL executes models symbolically
Model α

i−1 iprior state x posterior state x+

Model α

climb
descend

proof attempt

〈α(x)〉(x = x+)

〈climb ∪ descend〉(x = x+)

〈climb ∪ descend〉P ↔
〈climb〉P ∨ 〈descend〉P

∨
〈climb〉(x = x+) 〈descend〉(x = x+)

F1(x , x+) F2(x , x+)

F1(x , x+) ∨ F2(x , x+)Monitor:

The subgoals that cannot be proved express all the conditions on the
relations of variables imposed by the model close at runtime

Model Monitor
Immediate detection of model violation

 Mitigates safety issues with safe fallback action

André Platzer (CMU) FCPS / 14: Verified Models & Verified Runtime Validation FCPS 16 / 27

Provably Correct Synthesis of Monitors ...

Proof calculus of dL executes models symbolically
Model α

i−1 iprior state x posterior state x+

Model α

climb
descend

proof attempt

〈α(x)〉(x = x+)

〈climb ∪ descend〉(x = x+)

〈climb ∪ descend〉P ↔
〈climb〉P ∨ 〈descend〉P

∨
〈climb〉(x = x+) 〈descend〉(x = x+)

F1(x , x+) F2(x , x+)

F1(x , x+) ∨ F2(x , x+)Monitor:

The subgoals that cannot be proved express all the conditions on the
relations of variables imposed by the model close at runtime

Model Monitor
Immediate detection of model violation

 Mitigates safety issues with safe fallback action

André Platzer (CMU) FCPS / 14: Verified Models & Verified Runtime Validation FCPS 16 / 27

Provably Correct Synthesis of Monitors ...

Proof calculus of dL executes models symbolically
Model α

i−1 iprior state x posterior state x+

Model α

climb
descend

proof attempt

〈α(x)〉(x = x+)

〈climb ∪ descend〉(x = x+)

〈climb ∪ descend〉P ↔
〈climb〉P ∨ 〈descend〉P

∨
〈climb〉(x = x+) 〈descend〉(x = x+)

F1(x , x+) F2(x , x+)

F1(x , x+) ∨ F2(x , x+)Monitor:

The subgoals that cannot be proved express all the conditions on the
relations of variables imposed by the model close at runtime

Model Monitor
Immediate detection of model violation

 Mitigates safety issues with safe fallback action

André Platzer (CMU) FCPS / 14: Verified Models & Verified Runtime Validation FCPS 16 / 27

Water Tank Example: Monitor Conjecture
Variables

x current level
m maximum level

ε control cycle
f flow

Model and Safety Property

0 ≤ x ≤ m ∧ ε > 0︸ ︷︷ ︸
A

→
[(

f := ∗; ?
(
−1 ≤ f ≤ m−x

ε

)
;

t := 0; (x ′ = f , t ′ = 1 & x ≥ 0 ∧ t ≤ ε)
)∗]

(0 ≤ x ≤ m)︸ ︷︷ ︸
S

Model Monitor Specification Conjecture

ε > 0︸ ︷︷ ︸
A|const

→
〈

f := ∗; ?
(
−1 ≤ f ≤ m−x

ε

)
;

t := 0; (x ′ = f , t ′ = 1 & x ≥ 0 ∧ t ≤ ε)
〉 Υ+

Vm︷ ︸︸ ︷
(x=x+∧f =f +∧t=t+)

André Platzer (CMU) FCPS / 14: Verified Models & Verified Runtime Validation FCPS 17 / 27

Water Tank Example: Nondeterministic Assignment

Proof Rules

〈∗〉
Γ ` ∃X 〈x := X 〉P,∆

Γ ` 〈x := ∗〉P,∆ (X is a new logical variable)

∃R
Γ ` p(e), ∃x p(x),∆

Γ ` ∃x p(x),∆ (e is any arbitrary term)

WR
Γ ` ∆

Γ ` P,∆

Sequent Deduction
A ` 〈f := F 〉〈?−1 ≤ f ≤ m−x

ε
〉〈plant〉Υ+

∃R,WRA ` ∃F 〈f := F 〉〈?−1 ≤ f ≤ m−x
ε
〉〈plant〉Υ+

〈∗〉 A ` 〈f := ∗; ?−1 ≤ f ≤ m−x
ε
〉〈plant〉Υ+

A ` 〈f := f +〉
〈?−1 ≤ f ≤ m−x

ε
〉〈plant〉Υ+

∃R,WR . . .

with Opt. 1 (anticipate f = f + from Υ+)

w/o Opt. 1

André Platzer (CMU) FCPS / 14: Verified Models & Verified Runtime Validation FCPS 18 / 27

Water Tank Example: Differential Equations

Proof Rules

〈′〉
∃T≥0

(
(∀0≤t≤T 〈x := y(t)〉Q) ∧ 〈x := y(T)〉P

)
〈x ′ = f (x) & Q〉P (y(t) solution T , t new)

QE
QE(P)

P (iff P ↔ QE(P) in first-order real arithmetic)

Sequent Deduction
A ` F = f + ∧ x+ = x + Ft+ ∧ t+ ≥ 0 ∧ x ≥ 0 ∧ ε ≥ t+ ≥ 0 ∧ Ft+ + x ≥ 0

QE A ` ∀0≤t̃≤T (x + f +t̃ ≥ 0 ∧ t̃ ≤ ε) ∧ F = f + ∧ x+ = x + Ft+ ∧ t+ = t+

∃R,WRA ` ∃T≥0((∀0≤t̃≤T (x + f +t̃ ≥ 0 ∧ t̃ ≤ ε)) ∧ F = f + ∧ (x+ = x + FT ∧ t+ = T))
〈′〉 A ` 〈f := F ; t := 0〉〈{x ′ = f , t ′ = 1 & x ≥ 0 ∧ t ≤ ε}〉Υ+

André Platzer (CMU) FCPS / 14: Verified Models & Verified Runtime Validation FCPS 19 / 27

Water Tank Example: Synthesized Model Monitor

Input: Model and Safety Property

0 ≤ x ≤ m ∧ ε > 0︸ ︷︷ ︸
A

→
[(

f := ∗; ?
(
−1 ≤ f ≤ m−x

ε

)
;

t := 0; (x ′ = f , t ′ = 1 & x ≥ 0 ∧ t ≤ ε)
)∗]

(0 ≤ x ≤ m)︸ ︷︷ ︸
S

Output: Synthesized Model Monitor

−1 ≤ f + ≤ m − x
ε
∧ x+ = x + f +t+ ∧ x ≥ 0∧ x + f +t+ ≥ 0∧ ε ≥ t+ ≥ 0

Proof (Generated by ModelPlex tactic).
A proof of correctness of the synthesized model monitor.

André Platzer (CMU) FCPS / 14: Verified Models & Verified Runtime Validation FCPS 20 / 27

Outline

For typical models ctrl; plant we can check earlier

i−1 i i+1Model α ctrl plant

...

turn predict

Controller Monitor

André Platzer (CMU) FCPS / 14: Verified Models & Verified Runtime Validation FCPS 21 / 27

Controller Monitor: Early Compliance Checks ...

Model α

Offline

i

ν

i+1prior state x posterior state x+Model α

ctrl plant

Model Monitor

Controller Monitor before actuation
posterior state x+

(i , ν) ∈ [[ctrl]]Semantical: reachability relation of ctrl
m Theorem

(i , ν) |= 〈ctrl〉(x = x+)Logical dL:

exists a run of ctrl to
a state where x = x+

⇑ dL proof
(i , ν) |= F (x , x+)Arithmetical: check at runtime (efficient)

Theorem (Controller Monitor Correctness) (FMSD’16)
“Controller safe & in plant bounds as long as monitor satisfied.”

Controller Monitor
Immediate detection of unsafe control before actuation
 Safe execution of unverified implementations

in perfect environments

André Platzer (CMU) FCPS / 14: Verified Models & Verified Runtime Validation FCPS 22 / 27

http://dx.doi.org/10.1007/s10703-016-0241-z

Controller Monitor: Early Compliance Checks ...

Model α

Offline

ω ν i+1prior state x

posterior state x+Model α

ctrl plant

Model Monitor

Controller Monitor before actuation
posterior state x+

(ω, ν) ∈ [[ctrl]]Semantical: reachability relation of ctrl

m Theorem
(ω, ν) |= 〈ctrl〉(x = x+)Logical dL:

exists a run of ctrl to
a state where x = x+

⇑ dL proof
(ω, ν) |= F (x , x+)Arithmetical: check at runtime (efficient)

Theorem (Controller Monitor Correctness) (FMSD’16)
“Controller safe & in plant bounds as long as monitor satisfied.”

Controller Monitor
Immediate detection of unsafe control before actuation
 Safe execution of unverified implementations

in perfect environments

André Platzer (CMU) FCPS / 14: Verified Models & Verified Runtime Validation FCPS 22 / 27

http://dx.doi.org/10.1007/s10703-016-0241-z

Controller Monitor: Early Compliance Checks ...

Model α

Offline

ω ν i+1prior state x

posterior state x+Model α

ctrl plant

Model Monitor

Controller Monitor before actuation
posterior state x+

(ω, ν) ∈ [[ctrl]]Semantical:

reachability relation of ctrl

m Theorem
(ω, ν) |= 〈ctrl〉(x = x+)Logical dL:

exists a run of ctrl to
a state where x = x+

⇑ dL proof
(ω, ν) |= F (x , x+)Arithmetical: check at runtime (efficient)

Theorem (Controller Monitor Correctness) (FMSD’16)
“Controller safe & in plant bounds as long as monitor satisfied.”

Controller Monitor
Immediate detection of unsafe control before actuation
 Safe execution of unverified implementations

in perfect environments

André Platzer (CMU) FCPS / 14: Verified Models & Verified Runtime Validation FCPS 22 / 27

http://dx.doi.org/10.1007/s10703-016-0241-z

Controller Monitor: Early Compliance Checks ...

Model α

Offline

ω ν i+1prior state x

posterior state x+Model α

ctrl plant

Model Monitor

Controller Monitor before actuation
posterior state x+

(ω, ν) ∈ [[ctrl]]Semantical:

reachability relation of ctrl

m Theorem
(ω, ν) |= 〈ctrl〉(x = x+)Logical dL:

exists a run of ctrl to
a state where x = x+

⇑ dL proof
(ω, ν) |= F (x , x+)Arithmetical: check at runtime (efficient)

Theorem (Controller Monitor Correctness) (FMSD’16)
“Controller safe & in plant bounds as long as monitor satisfied.”

Controller Monitor
Immediate detection of unsafe control before actuation
 Safe execution of unverified implementations

in perfect environments

André Platzer (CMU) FCPS / 14: Verified Models & Verified Runtime Validation FCPS 22 / 27

http://dx.doi.org/10.1007/s10703-016-0241-z

Controller Monitor: Early Compliance Checks ...

Model α

Offline

ω ν i+1prior state x

posterior state x+Model α

ctrl plant

Model Monitor

Controller Monitor before actuation
posterior state x+

(ω, ν) ∈ [[ctrl]]Semantical:

reachability relation of ctrl

m Theorem
(ω, ν) |= 〈ctrl〉(x = x+)Logical dL:

exists a run of ctrl to
a state where x = x+

⇑ dL proof
(ω, ν) |= F (x , x+)Arithmetical: check at runtime (efficient)

Theorem (Controller Monitor Correctness) (FMSD’16)
“Controller safe & in plant bounds as long as monitor satisfied.”

Controller Monitor
Immediate detection of unsafe control before actuation
 Safe execution of unverified implementations

in perfect environments

André Platzer (CMU) FCPS / 14: Verified Models & Verified Runtime Validation FCPS 22 / 27

http://dx.doi.org/10.1007/s10703-016-0241-z

Controller Monitor: Early Compliance Checks ...

Model α

Offline

ω ν i+1prior state x

posterior state x+Model α

ctrl plant

Model Monitor

Controller Monitor before actuation
posterior state x+

(ω, ν) ∈ [[ctrl]]Semantical:

reachability relation of ctrl

m Theorem
(ω, ν) |= 〈ctrl〉(x = x+)Logical dL:

exists a run of ctrl to
a state where x = x+

⇑ dL proof
(ω, ν) |= F (x , x+)Arithmetical: check at runtime (efficient)

Theorem (Controller Monitor Correctness) (FMSD’16)
“Controller safe & in plant bounds as long as monitor satisfied.”

Controller Monitor
Immediate detection of unsafe control before actuation
 Safe execution of unverified implementations

in perfect environments

André Platzer (CMU) FCPS / 14: Verified Models & Verified Runtime Validation FCPS 22 / 27

http://dx.doi.org/10.1007/s10703-016-0241-z

Outline

Safe despite evolution with disturbance?

i−1 i i+1Model α ctrl plant

...

turn predict

Prediction Monitor

“Prediction is very difficult, especially if it’s about the future.” [Nils Bohr]

André Platzer (CMU) FCPS / 14: Verified Models & Verified Runtime Validation FCPS 23 / 27

Outline

Safe despite evolution with disturbance?

i−1 i i+1Model α ctrl plant

...

turn predict

Prediction Monitor

“Prediction is very difficult, especially if it’s about the future.” [Nils Bohr]
André Platzer (CMU) FCPS / 14: Verified Models & Verified Runtime Validation FCPS 23 / 27

Prediction Monitor: Compliance with Disturbance ...

Model α

Model αModel α

i i+1prior state x

posterior state x+

...

...
Prediction Monitor

before actuation
posterior state x+

ctrl plant

plant

plant of the form
(

x ′ = f (x) & Q
)

time bound t := 0;
(

x ′ = f (x), t′ = 1 & Q ∧ t ≤ ε
)

disturbance t := 0;
(
f (x) − δ ≤ x′ ≤ f (x) + δ, t ′ = 1 & Q ∧ t ≤ ε

)

states reachable
within ε time

Offline

(i , ν) |= 〈ctrl〉(x = x+ ∧ [plant]ϕ)

Invariant ϕ implies safety S
(known from safety proof)

Logical dL:
⇑ dL proof

(i , ν) |= F (x , x+)Arithmetical:

Prediction Monitor with Disturbance
Proactive detection of unsafe control before actuation

despite disturbance
 Safety in realistic environments

André Platzer (CMU) FCPS / 14: Verified Models & Verified Runtime Validation FCPS 24 / 27

Prediction Monitor: Compliance with Disturbance ...

Model α

Model α

Model α

ω ν i+1prior state x

posterior state x+

...

...
Prediction Monitor

before actuation
posterior state x+

ctrl plant

plant

plant of the form
(

x ′ = f (x) & Q
)

time bound t := 0;
(

x ′ = f (x), t′ = 1 & Q ∧ t ≤ ε
)

disturbance t := 0;
(
f (x) − δ ≤ x′ ≤ f (x) + δ, t ′ = 1 & Q ∧ t ≤ ε

)

states reachable
within ε time

Offline

(ω, ν) |= 〈ctrl〉(x = x+ ∧ [plant]ϕ)

Invariant ϕ implies safety S
(known from safety proof)

Logical dL:
⇑ dL proof

(ω, ν) |= F (x , x+)Arithmetical:

Prediction Monitor with Disturbance
Proactive detection of unsafe control before actuation

despite disturbance
 Safety in realistic environments

André Platzer (CMU) FCPS / 14: Verified Models & Verified Runtime Validation FCPS 24 / 27

Prediction Monitor: Compliance with Disturbance ...

Model αModel α

Model α

ω ν i+1prior state x

posterior state x+

...

...
Prediction Monitor

before actuation
posterior state x+

ctrl plant

plant

plant of the form
(

x ′ = f (x) & Q
)

time bound t := 0;
(

x ′ = f (x), t′ = 1 & Q ∧ t ≤ ε
)

disturbance t := 0;
(
f (x) − δ ≤ x′ ≤ f (x) + δ, t ′ = 1 & Q ∧ t ≤ ε

)

states reachable
within ε time

Offline

(ω, ν) |= 〈ctrl〉(x = x+ ∧ [plant]ϕ)

Invariant ϕ implies safety S
(known from safety proof)

Logical dL:
⇑ dL proof

(ω, ν) |= F (x , x+)Arithmetical:

Prediction Monitor with Disturbance
Proactive detection of unsafe control before actuation

despite disturbance
 Safety in realistic environments

André Platzer (CMU) FCPS / 14: Verified Models & Verified Runtime Validation FCPS 24 / 27

Prediction Monitor: Compliance with Disturbance ...

Model αModel α

Model α

ω ν i+1prior state x

posterior state x+

...

...
Prediction Monitor

before actuation
posterior state x+

ctrl

plant

plant

plant of the form
(

x ′ = f (x) & Q
)

time bound t := 0;
(

x ′ = f (x), t′ = 1 & Q ∧ t ≤ ε
)

disturbance t := 0;
(
f (x) − δ ≤ x′ ≤ f (x) + δ, t ′ = 1 & Q ∧ t ≤ ε

)

states reachable
within ε time

Offline

(ω, ν) |= 〈ctrl〉(x = x+ ∧ [plant]ϕ)

Invariant ϕ implies safety S
(known from safety proof)

Logical dL:
⇑ dL proof

(ω, ν) |= F (x , x+)Arithmetical:

Prediction Monitor with Disturbance
Proactive detection of unsafe control before actuation

despite disturbance
 Safety in realistic environments

André Platzer (CMU) FCPS / 14: Verified Models & Verified Runtime Validation FCPS 24 / 27

Prediction Monitor: Compliance with Disturbance ...

Model αModel α

Model α

ω ν i+1prior state x

posterior state x+

...

...
Prediction Monitor

before actuation
posterior state x+

ctrl

plant

plant

plant of the form
(

x ′ = f (x) & Q
)

time bound t := 0;
(

x ′ = f (x), t′ = 1 & Q ∧ t ≤ ε
)

disturbance t := 0;
(
f (x) − δ ≤ x′ ≤ f (x) + δ, t ′ = 1 & Q ∧ t ≤ ε

)

states reachable
within ε time

Offline

(ω, ν) |= 〈ctrl〉(x = x+ ∧ [plant]ϕ)

Invariant ϕ implies safety S
(known from safety proof)

Logical dL:
⇑ dL proof

(ω, ν) |= F (x , x+)Arithmetical:

Prediction Monitor with Disturbance
Proactive detection of unsafe control before actuation

despite disturbance
 Safety in realistic environments

André Platzer (CMU) FCPS / 14: Verified Models & Verified Runtime Validation FCPS 24 / 27

Prediction Monitor: Compliance with Disturbance ...

Model αModel α

Model α

ω ν i+1prior state x

posterior state x+

...

...
Prediction Monitor

before actuation
posterior state x+

ctrl

plant

plant

plant of the form
(

x ′ = f (x) & Q
)

time bound t := 0;
(

x ′ = f (x), t′ = 1 & Q ∧ t ≤ ε
)

disturbance t := 0;
(
f (x) − δ ≤ x′ ≤ f (x) + δ, t ′ = 1 & Q ∧ t ≤ ε

)

states reachable
within ε time

Offline

(ω, ν) |= 〈ctrl〉(x = x+ ∧ [plant]ϕ)

Invariant ϕ implies safety S
(known from safety proof)

Logical dL:
⇑ dL proof

(ω, ν) |= F (x , x+)Arithmetical:

Prediction Monitor with Disturbance
Proactive detection of unsafe control before actuation

despite disturbance
 Safety in realistic environments

André Platzer (CMU) FCPS / 14: Verified Models & Verified Runtime Validation FCPS 24 / 27

Outline

1 Motivation
2 Learning Objectives
3 ModelPlex Runtime

ModelPlex Runtime Monitors
ModelPlex Compliance

4 ModelPlex
Logical State Relations
Model Monitors
Correct-by-Construction Synthesis
Example: Water Tank
Controller Monitors
Prediction Monitors

5 Evaluation
6 Summary

André Platzer (CMU) FCPS / 14: Verified Models & Verified Runtime Validation FCPS 24 / 27

Evaluation

Evaluated on hybrid system case studies

Water tank Cruise control

c©Volvo

Traffic control

c©ASFINAG

Ground robots

c©Black-I Robotics

Train control

c©Harald Eisenberger

Model sizes: 5–16 variables
Monitor sizes: 20–150 operations
Synthesis duration: 0.3–23 seconds (axiomatic) 6.2–211 (sequent)
ModelPlex tactic produces correct-by-construction monitor in
KeYmaera X
Theorem: ModelPlex is decidable and monitor synthesis fully

automated for controller monitor synthesis and for important classes

André Platzer (CMU) FCPS / 14: Verified Models & Verified Runtime Validation FCPS 25 / 27

Outline

1 Motivation
2 Learning Objectives
3 ModelPlex Runtime

ModelPlex Runtime Monitors
ModelPlex Compliance

4 ModelPlex
Logical State Relations
Model Monitors
Correct-by-Construction Synthesis
Example: Water Tank
Controller Monitors
Prediction Monitors

5 Evaluation
6 Summary

André Platzer (CMU) FCPS / 14: Verified Models & Verified Runtime Validation FCPS 25 / 27

Summary

ModelPlex ensures that proofs apply to real CPS

Validate model compliance
Characterize compliance with model in logic
Prover transforms compliance formula to executable monitor
Provably correct runtime model validation

i−1 i i+1Model α ctrl plant

...

Model Monitor
model adequate?

Controller Monitor
control safe?

Prediction Monitor
until next cycle?

André Platzer (CMU) FCPS / 14: Verified Models & Verified Runtime Validation FCPS 26 / 27

Proof

Model
safe!

safe!

André Platzer (CMU) FCPS / 14: Verified Models & Verified Runtime Validation FCPS 27 / 27

Stefan Mitsch and André Platzer.
ModelPlex: Verified runtime validation of verified cyber-physical
system models.
Form. Methods Syst. Des., 49(1):33–74, 2016.
Special issue of selected papers from RV’14.
doi:10.1007/s10703-016-0241-z.

Stefan Mitsch and André Platzer.
ModelPlex: Verified runtime validation of verified cyber-physical
system models.
In Borzoo Bonakdarpour and Scott A. Smolka, editors, RV, volume
8734 of LNCS, pages 199–214. Springer, 2014.
doi:10.1007/978-3-319-11164-3_17.

André Platzer.
Logics of dynamical systems.
In LICS, pages 13–24. IEEE, 2012.
doi:10.1109/LICS.2012.13.
André Platzer.

André Platzer (CMU) FCPS / 14: Verified Models & Verified Runtime Validation FCPS 27 / 27

http://dx.doi.org/10.1007/s10703-016-0241-z
http://dx.doi.org/10.1007/978-3-319-11164-3_17
http://dx.doi.org/10.1109/LICS.2012.13

A complete uniform substitution calculus for differential dynamic logic.

J. Autom. Reas., 2016.
doi:10.1007/s10817-016-9385-1.

Nathan Fulton and André Platzer.
A logic of proofs for differential dynamic logic: Toward independently
checkable proof certificates for dynamic logics.
In Jeremy Avigad and Adam Chlipala, editors, Proceedings of the 2016
Conference on Certified Programs and Proofs, CPP 2016, St.
Petersburg, FL, USA, January 18-19, 2016, pages 110–121. ACM,
2016.
doi:10.1145/2854065.2854078.
André Platzer.
Differential dynamic logic for hybrid systems.
J. Autom. Reas., 41(2):143–189, 2008.
doi:10.1007/s10817-008-9103-8.

André Platzer.
A uniform substitution calculus for differential dynamic logic.
André Platzer (CMU) FCPS / 14: Verified Models & Verified Runtime Validation FCPS 27 / 27

http://dx.doi.org/10.1007/s10817-016-9385-1
http://dx.doi.org/10.1145/2854065.2854078
http://dx.doi.org/10.1007/s10817-008-9103-8

In Amy Felty and Aart Middeldorp, editors, CADE, volume 9195 of
LNCS, pages 467–481. Springer, 2015.
doi:10.1007/978-3-319-21401-6_32.

André Platzer (CMU) FCPS / 14: Verified Models & Verified Runtime Validation FCPS 27 / 27

http://dx.doi.org/10.1007/978-3-319-21401-6_32

	Motivation
	Learning Objectives
	ModelPlex Runtime
	ModelPlex Runtime Monitors
	ModelPlex Compliance

	ModelPlex
	Logical State Relations
	Model Monitors
	Correct-by-Construction Synthesis
	Example: Water Tank
	Controller Monitors
	Prediction Monitors

	Evaluation
	Summary

