15-819/18-879 Hybrid Systems Analysis & Theorem ProvingAssignment 2due by Thu 2/19/2009, hand in WEH 7120/7109

André Platzer

Carnegie Mellon University, Computer Science Department, Pittsburgh, PA aplatzer@cs.cmu.edu

Disclaimer: No solution will be accepted that comes without an **explanation**!

Exercise 1 First-Order Tableaux (10p)

- 1. Prove or disprove the following formulas using tableaux.
 - a) $(\forall x \forall y \forall z (p(x,y) \land p(y,z) \to p(z,x)) \land \forall x p(x,f(x))) \to \forall x \exists y p(y,x)$
 - b) $(\forall x (ground(x) \rightarrow cruise(x)) \land \forall x \forall y (cruise(x) \land cruise(y) \rightarrow separate(x, y)) \land \exists x ground(x)) \rightarrow \forall x (cruise(x) \rightarrow \exists y separate(x, y))$ You can use abbreviations g, c, s for ground, cruise, separate, respectively.
- 2. Give tableau proof rules for the following operators:
 - a) XOR (exclusive-or)
 - b) NAND (negated and)
 - c) NOR (negated or)
 - d) A?B:C with the semantics

$$\llbracket A?B:C\rrbracket_I = \begin{cases} \llbracket B\rrbracket_I & \text{if } \llbracket A\rrbracket_I = true \\ \llbracket C\rrbracket_I & \text{if } \llbracket A\rrbracket_I = false \end{cases}$$

Exercise 2 Tableau Calculus (5p)

Give an example showing why the application of closing substitutions in free variable tableaux to the full tableau is necessary.

Exercise 3 Propositional Tableaux (4p)

Is the following tableau rule a replacement for the implication rule?

$$\frac{A \to B}{\neg A \quad A}$$

$$B$$

What is the advantage of this rule? Is it a sound replacement? Is it a complete replacement for the implication rule?

Exercise 4 Sequent Calculus (4p)

1. Prove or disprove the following formulas using the sequent calculus presented in class.

a) $C \lor \forall x \left(\neg p(x) \land \neg q(x)\right) \right) \rightarrow \left((\exists y \left(\neg q(y) \rightarrow p(y)\right)\right) \rightarrow C\right)$

Exercise 5 Completeness of Propositional Tableaux (9p)

- 1. Prove formally that propositional tableaux are complete, i.e., every valid propositional formula can be proven using propositional tableaux.
- 2. Prove formally that propositional tableaux give a decision procedure for propositional logic.

Exercise 6 Logical Modeling (18p)

We call relation $R \subseteq D \times D$ reflexive if $\{(a, a) : a \in D\} \subseteq R$. We call relation $R \subseteq D \times D$ irreflexive if $\{(a, a) : a \in D\} \cap R = \emptyset$. We call relation R symmetric if $\{(a, b) : (b, a) \in R\} \subseteq R$. We call relation R asymmetric if it is symmetric at no point, i.e., we never find $(b, a) \in R$ and $(a, b) \in R$ simultaneously.

We call relation R transitive if $\{(a,b) : (a,c) \in R, (c,b) \in R \text{ for some } c\} \subseteq R$.

- 1. Formalize each of those notions about relations in first-order logic.
- 2. Formalize the conjecture that all asymmetric relations are irreflexive.
- 3. Formalize the conjecture that all relations that are transitive and irreflexive are also asymmetric.
- 4. Prove these conjectures in KeY^1 .

¹ http://www.key-project.org/ or http://www.key-project.org/download/releases/webstart/KeY. jnlp