
15-424/15-624/15-824 Recitation 6
Differential Invariants and Differential Cuts

Reminder: The first exam is next Thursday, so today we’re going to focus on material
that’s important for the exam. Specifically, we’re going to focus on differential invariants
because they’re new, but also important for the exam. In contrast, we will not talk about
differential ghosts yet until after the exam. They’re cool and useful, but it’s more important
to focus on understanding differential invariants well before moving on to ghosts.

Today’s example model is a frictionless box sliding down a ramp. The physics are non-
obvious, so let’s start with the physics before doing the proofs.

1 Modeling a Box on a Ramp

In Newtonian mechanics, if we have a frictionless box on a ramp, there are two forces (or
equivalently, accelerations) that we have to model. The first force is gravity, which pulls the
box straight down. If that’s the only force we had, then the box would just fall through the
ramp, so the ramp has to push back at the box, but it can only push back along the normal
vector. How strong does this normal force(or rather acceleration due to normal force) have
to be before it stops the box from falling through the ramp? It needs to be just strong
enough that the overall acceleration will be parallel to the ramp (so we slide along the ramp
instead), which is a fancy way of saying g · cos(θ), where g is acceleration due to gravity and
θ is the angle between the normal vector and the x-axis. We can break this down into an
x-component and y-component of acceleration:

v′x = g · cos(θ) sin(θ), v′y = g · (cos2(θ)− 1)

Alarm bells should be going off in your head right now. Trigonometric functions like cos(θ)
are a major pain to prove things about, so much that KeYmaera X doesn’t support them.
What are we going to do? The trick is that we have an easy definition for cos(θ) and sin(θ)
if we already know tan(θ). And if you think about it, tan(θ) is really simple here: that’s
just the slope of the ramp. Let’s make the slope a parameter to our model and call it m.
Then recall from trigonometry that we can compute:

cos(θ) =
1√

1 +m2
, sin(θ) =

m√
1 +m2

We should still be a little careful: We formally haven’t defined square roots as part of
dL, but KeYmaera X is nice to us and supports them anyway. Those formulas are a bit

1

complicated, but they’re never going to change because the slope is constant, so let’s stick
them in variables so we can reuse them:

cosTh :=
1√

1 +m2
; sinTh :=

m√
1 +m2

We can stick this together to get a hybrid program:

α ≡ cosTh :=
1√

1 +m2
; sinTh :=

m√
1 +m2

; {x′ = vx, v
′
x = g·cosTh·sinTh, , y′ = vy, v

′
y = g·(cosTh2−1)}

Now that we have a model, we should do what we do every time we come up with a cool
new model: Prove stuff about it, this time using differential invariants!

2 Proving Invariant Equations

Let’s warm up with a familiar invariant: proving that the box always stays on the ramp. To
make things simple, let’s say the ramp passes through the origin, in which case the ramp is
just the line y = m · x. Last week we had to dream up a new invariant in order to prove
we stayed on the line, but now we have a new, better version of DI that can prove arbitrary
equalities:

Γ ` θ1 = θ2,∆ Γconst, Q ` [x′ := θ](θ1)′ = (θ2)′
DI=

Γ ` [x′ = θ&Q](θ1 = θ2),∆

What this says is that if two terms θ1, θ2 are equal at the start of an ODE, they remain
equal so long as their differentials (θ1)′ and (θ2)′ are equal. It’s important to pay attention
to the contexts here: We can’t assume the invariant θ1 = θ2 holds when proving (θ1)′ = (θ2).
If we want to really keep things simple, we should just say that you can’t keep around any
assumptions except what’s in the domain constraint. In practice, that a little unwieldy, so
instead we say you can only keep around formulas which “obviously” never change, where
“obvious” has a precise technical definition: formulas that don’t mention any variables which
are modified by the ODE. Our notation for this is Γconst. The intuition for this proof rule
can be described graphically:

Let’s go ahead and try using this proof rule to show that we stay on the ramp, using the
following definitions to make the proof easier to read:1

Γ ≡ x = 0, y = 0, vx = 0, vy = 0, cosTh =
1√

1 +m2
, sinTh =

m√
1 +m2

1Man, what a handy technique to reduce the time spent writing when you’re writing a proof in a time-
pressured environment!

2

Figure 1: Invariant for θ1 = θ2: (θ1)′ = (θ2)′

Γconst ≡ cosTh =
1√

1 +m2
, sinTh =

m√
1 +m2

β ≡ {x′ = vx, v
′
x = g · cosTh · sinTh, y′ = vy, v

′
y = g · (cosTh2 − 1)}

Γ ` y = m · x

???
???

Γconst ` vy = −m · vx
[:=]

Γconst ` [β]y′ = −m · x′
derive

Γconst ` [β](y)′ = (−m · x)′
DI=

Γ ` [β]y = −m · x

We can follow the strategy for doing DI proofs, but eventually we get stuck. If we look at the
one remaining branch, it’s asking us “does the velocity vector always stay along the ramp?”
That sounds like something that should actually be true, though, so let’s try proving it.

∗R
Γ ` vy = m · vx

∗R
Γconst ` g · (−m

2

m2+1
) = −m · g m

m2=1
algebra

Γconst ` g · (1
m2+1

− 1) = −m · g m
m2=1

[:=]
Γconst ` [β]v′y = −m · v′x

derive
Γconst ` [β](vy)

′ = (−m · vx)′
DI=

Γ ` [β]vy = −m · vx

Are we done? Can we just plug this into the hole in our other proof? Nope! Why? Because
this proof used assumptions from Γ, such as the initial values vx = 0, vy = 0. Remember
we lose the (non-constant parts of the) context Γ in the middle of a differential invariant
proof, so we can’t copy-paste this proof into ???. We are almost done, though. We proved
a lemma about our ODE (velocity vector always follows the slope) and now we want to use
that to prove a theorem about the same ODE (the position always follows the slope). This
is exactly what a Differential Cut allows us to do:

3

Γ ` [x′ = θ&Q]R,∆ Γ ` [x′ = θ&(Q ∧R)]P,∆

Γ ` [x′ = θ&Q]P,∆

Differential cuts are named after the cut rule from sequent calculus, and follow a similar
intuition:

Γ ` P,∆ Γ, P `,∆
Γ ` ∆

If we really wanted to prove some formula Q ∈ ∆, a perfectly valid way to do that is to first
go and prove a lemma P and use P to help finish proving Q. Similarly, if we want to prove
that some formula P is a differential invariant, we can first prove some other invariant R
and add it to the domain constraint, where it can help us prove P . In this sense, domain
constraints work kind of like contexts Γ for a differential equation.

If we use a differential cut, now when we get to point ??? we’ll just have to prove:

vy = −m · vx,Γconst ` [β]vy = −m · vx

Wow, the domain constraint is exactly what we wanted to prove, so we can prove this using
by close!

*
id

vy = −m · vx,Γconst ` vy = −m · vx
[:=]

vy = −m · vx,Γconst ` [β]vy = −m · vx

More generally, this illustrates our methodology for proving differential invariants:

1. Try proving some formula is an invariant using DI

2. If the proof fails, look at where it failed, use the failure to come up with a new invariant
φ. Cut in φ with differential cut and repeat.

3. When you have enough invariants, use differential weakening to finish the proof.

And in fact, if you’re starting a proof on paper and you suspect you’re going to need a
differential cut, it might save you time to just do a cut right away and name the cut formula
R. Further along the proof you’ll eventually discover what R should be, then you can come
back and define + prove R.

4

Figure 2: Invariant for θ1 ≥ θ2: (θ1)′ ≥ (θ2)′

3 Proving Invariant Inequalities

We also saw in lecture that we can prove inequalities by invariant as well. The intuition is
not so different from equations: If x ≥ y and x, y only keep getting further apart, then it
will always be the case that x ≥ y.

Γ ` θ1 ≥ θ2,∆ Γconst, Q ` [x′ := θ](θ1)′ ≥ (θ2)′

Γ ` [x′ = θ&Q](θ1 ≥ θ2),∆

Let’s use this to prove more fun things about boxes. It turns out our friend Nathan has
a box too, and Nathan is really competitive, so he wants to have a box race! Luckily, our
ramp has a steeper slope than his, which means we’re going to win the race, but just to be
safe let’s prove that we win the race. First we update the model so we have two boxes on
two ramps:

α′ ≡
{v′x,1 =g · cosTh1 · sinTh1, v′y,1 = g · (cosTh2

1 − 1),

v′x,2 =g · cosTh2 · sinTh2, v′y,2 = g · (cosTh2
2 − 1),

x′1 =vx,1 x′2 = vx,2 y′1 = vy,1 y′2 = vy,2}

and we add some assumptions: we both start out at a stop and our ramp is steeper:

Γ′ ≡ x1 = 0, y1 = 0, x2 = 0, y2 = 0, vx,1 = 0, vy,1 = 0, vx,2 = 0, vy,2 = 0,m1 > m2

cosTh1 =
1√

1 +m2
1

, sinTh1 =
m1√

1 +m2
1

, cosTh2 =
1√

1 +m2
2

, sinTh2 =
m2√

1 +m2
2

5

The proof follows a similar structure: First we’ll need to prove a lemma about the velocities
and then we can prove the theorem about the positions. What’s the lemma in this case?
We need to know that we’re always moving faster than the other box, which is intuitively
relevant to whether we’re winning the race.

6

*R
Γ ` y2 ≥ y1

*
id

Γconst, vy,2 ≥ vy,1 ` vy,2 ≥ vy,1
[:=]

Γconst, vy,2 ≥ vy,1 ` [β′](y2)′ ≥ (y1)′
DI≥

Γ ` [α′ ∧ vy,2 ≥ vy,1]y2 ≥ y1

*R
Γ ` (vy,2 ≥ vy,1)

*R
Γconst ` g · m2

1+m2
2
≥ g · m1

1+m2
1

eq. rewriting
Γconst ` g · cosTh2 · sinTh2 ≥ g · cosTh1 · sinTh1

[:=]
Γconst ` [β′]((vy,2)′ ≥ (vy,1)′)

DI≥
Γ ` [α′](vy,2 ≥ vy,1)

DC
Γ ` [α′](y2 ≥ y1)

7

2

4 Choosing Cuts + Invariants

There’s an interesting pattern in both of the previous proofs: First we proved something
about v and used it to prove something about x or y. This is more than just a cute
observation: In any proof we ever do, the order in which we cut+prove differential invariants
is going to follow the dependencies between the variables. Because x depends on v, we have
to prove something about v first. If multiple variables depend on each other mutually, then
we would prove an invariant about them simultaneously (think circular motion dynamics).

5 Differential Formulas: Arbitrary Invariants

Both of the DI rules we’ve used so far are just special cases of the mother-of-all-DI-rules:

Γ ` P,∆ Γconst, Q ` [x′ := θ](P)′

Γ ` [x′ = θ&Q]P,∆

We can prove any formula P using differential induction by proving that its differential (P)′

is always true and P is true initially. But what does (P)′ actually mean? Unlike all the
other formulas in dL, we haven’t bothered to tell you the semantics of (P)′ yet. And the
idea of differentials for formulas is weird. I mean, formulas are either true or false, so how
the heck would they . . . change . . . continuously?

It’s actually quite difficult to come up with a beautiful semantics for (P)′ (read: nobody has
done that yet). But observe that the rule DI above is the only place we ever use the (P)′

operator in dL, so the following informal semantics is sufficient (well, except we wish it was
formal):

[[(P)′]] = [[φ]]For any formula φ so long as ` [x′ = θ&Q]φ and Γ ` P,∆ give us Γ ` [x′ = θ&Q]P,∆

3

2The astute reader may notice this is a different proof from what was done in recitation. This is because
the property proved in recitation (as pointed out by an astute student) is false. But what we can prove
is that we always win the y-coordinate race (meaning we always have a more-negative y-coordinate than
the opponent. Luckily the structure of the proof is exactly the same; the only part that was wrong is the
arithmetic that I brushed over quickly in recitation anyway.)

3Interestingly enough, there is actually a nice way to express this definition in logic, and your TA almost
did that. If you’re curious, ask about Hilbert’s Epsilon Operator.

8

In other words, it doesn’t really matter which invariant (P)′ gives us, as long as it happens
to be a sound invariant. So let’s look at the different cases for P and figure out a sound
invariant in each case:

(θ1 = θ2)′ = (θ1)′ = (θ2)′

(θ1 ≥ θ2)′ = (θ1)′ ≥ (θ2)′

(θ1 > θ2)′ = (θ1)′ ≥ (θ2)′

(P ∧Q)′ = (P)′ ∧ (Q)′

(P ∨Q)′ = (P)′ ∧ (Q)′

(θ1 6= θ2)′ = (θ1)′ = (θ2)′

We’ve actually already seen why the cases for = and ≥ are sound — those are the previous
two version of the DI rule. The case for θ1 > θ2 is very similar, but notice we can get away
with a nonstrict inequality (θ1) ≥ (θ2)′ because if the derivatives are exactly the same, then
θ1 is still greater than θ2 by just as much as before.

What about P ∧Q? Well in general if we want to prove [α](P ∧Q) (it doesn’t even matter
whether α is an ODE), one way we can do that is by proving both [α]P and [α]Q and sticking
them together with the []∧ axiom. And how would we prove [α]P and [α]Q in this case? By
calling DI twice, which means proving [α](P)′, ` [α](Q)′, Γ ` P , and Γ ` Q. So (P)′ ∧ (Q)′

worked as an invariant.

What about P ∨Q? It only seems natural that (P ∨Q) = (P)′ ∨ (Q)′. Unfortunately that
would also be wrong. As before, let’s imagine how we might try to “implement” the ∨ case
of DI. If we know that P ∨ Q holds true initially, we could case on which one was true: If
P is true then prove [α]P by DI, else if Q is true prove [α]Q by DI. There’s only one way
you can do that, though: when you know both [α](P)′ and [α](Q)′! If you only required
[α](P)′ ∨ [α](Q)′ then you might end up in the case where all you have is P ∧ [α](Q)′, in
which you get stuck.

What about θ1 6= θ2? You can actually derive this using the rules above. You can also prove
it directly: If we had (θ1)′ 6= (θ2)′ we have no idea what they’ll look like after the ODE
finishes, but if (θ1)′ = (θ2)′ then the difference θ1− θ2 will be constant throughout the ODE,
so θ1 6= θ2 is preserved.

You might be disappointed by the rules for ∨ and 6= because it feels like they throw away
some information (i.e. they are incomplete). If you felt this way, you were right! Sometimes
you might find that using differential induction on some formula φ won’t prove it, but if
you rewrite it to some equivalent ψ, DI will work. The reason is that DI uses the syntax
of φ to pick an invariant, not the semantics. Even when syntactically different φ and ψ are
semantically equivalent, their invariants may be semantically different ! Watch out for this if
you get stuck in a DI proof.

9

The good news is that you’re totally allowed to replace φ with ψ when you can prove that
φ↔ ψ is valid. When DI is combined with our rewriting superpowers, they are complete.

Case Study: 3D Lotka-Volterra

In fact, here’s a concrete example of a system where you need to rewrite the formula before
doing DI. The following predator/prey model describes the behavior of the biomasses x, y
and z of three distinct species. That is, it determines how the population of each species
evolves over time (when they get eaten by each other and whatnot). We want to prove that
none of the three involved species will disappear: that is we reach an equilibrium cycle.

ProgramVariables.

R x.

R y.

R z.

End.

Problem.

x != 0 & y != 0 & z != 0

->

[

{x’ = x*(y-z),

y’ = y*(z-x),

z’ = z*(x-y)

}

](x != 0 & y != 0 & z != 0)

1. Apply a DI first (with the postcondition as differential invariant). Observe that the
proof does not close because the condition asks about separate properties for x, y and
z.

2. Apply a DC with xyz 6= 0 (which is equivalent to the post-condition, but links explicitly
the involved variables).

3. Close the proof by a DI and DW.

Quiz

1. Can you prove that y > 0 ∧ x < 0→ [x′ = x, y′ = y]x 6= y ? Explain why or why not.

2. Can you prove x < xo → [a := v2

2(x−xo)
; {x′ = v, v′ = a, v ≥ 0}]x ≤ xo using DI instead

of ODE (solving the differential equation) ? Write down your DI.

3. Try proving the .kyx files in the recitation .zip file.

10

	Modeling a Box on a Ramp
	Proving Invariant Equations
	Proving Invariant Inequalities
	Choosing Cuts + Invariants
	Differential Formulas: Arbitrary Invariants

