Game design as CPS

Vidya Narayanan
vidyan@cmu.edu

May 9, 2017

Abstract

2D Platform and side scroller games such as Super Mario or Flappy
Bird are very popular. Designing such games is an elaborate and creative
process but a few simplified steps of interest include — the design of the
primary character which usually includes simplified physics, the design
of the level or map, the rules of the game and its challenges.The goal
of this project was to explore if some aspects of game building can be
verified using hybrid systems and games. This project attempts to de-
velop a simple side scrolling game with a single character that the player
can control. I modeled a way to generate simple but arbitrary levels and
showed that they are safe. I also modeled two actions for the character
that shows that the player can achieve game challenges that require the
character to avoid (by jumping over) or attack(by jumping onto) a spec-
ified target. This project provided an opportunity to further understand
the diamond modality and adversarial components when modeling. While
each of these actions are proven with a fixed number of steps, composing
these features would provide a starting point to design a simple game such
that its non-triviality and playability can be proven by the designer.

0@

Jump
‘ limits

1 Introduction

Motivation Games appear to be non-critical when compared to traditional
domains that involve cps such as automobiles and robotics, but it offers an
excellent framework to understand many aspects of cps. Many games are built
assuming simplified physics but have a consistent model or view of the world.
Even though there are hacks thrown in, these are generally incorporated as a
part of the model — for example, a certain region of the game may have a different

value for gravity but the physics of the game continues to model acceleration due
to gravity [6]. The game physics lends itself to a continuous system that can be
modeled using ordinary differential equations. The human or computer player
interacts with game elements through a game controller. There is certainly
latency and lag that has to be considered, making the controller inherently time
triggered even though sensing in a virtual world can be assumed to be perfect.
Thus, hybrid systems provides a suitable framework in which one could think
about verification of these games.

Design Hybrid games involve understanding constraints and strategies under
which a player could ensure her win. These games include could also include
an adversarial element that the character is playing against. While designing
a game, the game designer and the choices she incorporates into the game are
adversarial to the player. This makes design inherently a hybrid game rather
than a system even if the game itself does not involve an explicit adversarial
character.

Playability Winning a game requires that the human player controlling the
game performs conscious actions towards achieving the goal of the game. Natu-
rally, this provides an opportunity to understand the diamond modality further.
We refer to this liveness property as playability since it ensures that the player
is capable of playing this game.

Safety The camera movement in side scrolling platform games tend to follow
the central character of the game without much movement along the orthogonal
axis. This is also important to have a pleasant viewing experience and fair game
play where the character is constantly visible but the camera does not rapidly
move too much. Hence, it was natural to view the notion of safety as ensuring
that the game is designed such that the characters activity can be constrained
in the vertical space while continuing to be playable — i.e perform actions crucial
to getting the character around. One could also consider a case where a similar
game is set in the physical world — such as in a play gym — notions of safety
becomes more relevant in such a case.

Education Physics based games have been used as an amusing medium for
physics and computer science education in general [5]. I believe they also provide
an excellent learning ground for understanding cyber-physical systems and dif-
ferential dynamic logic. Students can build upon their understanding of simple-
event driven hybrid systems, safety properties, time-triggered controllers, live-
ness properties, adversarial elements and winning strategies within the a unified
context of a game. I would hope that the allure of having a verified game design
and controller at the end of the term would make learning even more interesting.

2 Related work

Researchers across various fields — artifical intelligence, complexity and game
theory, graphics, have shown interest in building and proving games. Aloupis
and colleagues [2] have shown that classic nintendo games such as Mario and
Donkey Kong are NP-hard. Particularly, they discuss the problem of reachability
— given a stage or a level, can the player reach point ¢ from point s. Given
that this is hard, discussing if the level is playable may seem doomed to begin
with. The goal of this project is orthogonal to this notion of reachability, it is
to help design a level ensuring a simple notion of reachability in a bottom-up
compositional manner. Moreover, for an explicitly encoded, constant screen
size version of these games, Demaine and colleagues show that these games are
solvable in polynomial time.

Adelhart [1] formally verifies reachability from the start to the end of a
map by construction. That is, they show that the levels generated by their
system is correct even though an arbitrary level may be difficult to verify. This
is similar to our goal and though not in the context of hybrid games, they
verify game construction by analyzing a graph over actions where each action
can be verified by a simple axiom. This is much like the approach we would
like to take here, the individual actions are proven as smaller hybrid games.
The composition of these smaller games into a full game is out of the scope
of this project but a similar graph based approach over smaller hybrid games
can be considered in the future. Muller [7] and colleagues introduce techniquess
to reason about component based modeling and verification of hybrid systems
where components have local responsibilities. Such an approach might be crucial
to verifying large systems like games that can quickly get out of hand when
adding design complexity.

Hybrid games and systems have been successfully used to model and verify
airplane dynamics and collision handling systems, robotic surgeries etc. While
seemingly unrelated to the domain of game design, primary notions of reacha-
bility and actions such as avoiding or targeting a spatial region is common to
these physical systems. The piecewise linear modeling of safe-flying trajectories
can be used to generate game maps and player motion [4]. In this project, we
allow a highly general but simple notion of a game level consistently constrained
to ensure safety and playability.

3 Design

We first informally describe the game model that we consider.

Extent The game extent is defined as bounding height that can be fixed based
based on the screen resolution one wants to consider. The game scrolls along
the z—axis and is considered to be infinitely long as shown below:

Infinitely long

Max Height
H

i
y-axis

A

level

—> x-axis

An arbitrary point along the axis can be chosen to be a final goal state or
time limit is fixed to make the game play finite. The game world, and level
are used interchangeably to represent a side view of the ground over which the
player can walk. The walking motion is one-dimensional. The schematic above
shows a simple line, the game can allow the following styles of level design:

Level design First, the slope of the level can be changed to allow randomly
generated levels. We refer to these as sloped-level. An example of such a level
is shown below:

Infinitely long

<
<

v

i Max Height
|) b
' level .

Further, within the fixed height span H, the design can also incorporate
ceiling restrictions by generating an additional ceiling slope as follows:
Infinitely long

m Max Height
; H
—/\Ww

We refer to these as doubly-sloped level.
Additionally arbitrary obstacles can be added to the level ground allowing
procedural generation of levels such as :

Infinitely long
I Max Height
| L "

Player The player is represented in the model as a point mass with two co-
ordinates representing its position along the x-axis and y-axis. A unit vector
represents the direction of its motion. The character can move with a constant
minimum positive velocity, alternately the velocity can be changed by using the
game controller. The maximum speed of the character is capped by a game
defined constant. A radius to define the spatial extent of the character may be
considered, it is avoided in the model for simplicity. I use the term character
and player interchangeably. The character can also be made to jump, in which
case, a velocity is added along the y-axis making the character jump. When
the character is in the air, gravity is turned on, forcing it to land back on the
ground.

0®

: Jump
. limits

An important consideration when designing the levels is that any obstacle
placed must be reachable given the characters linear and jump velocity bounds.
Level design above does introduce challenges such as obstacles that may have to
be avoided or reached as a part of the game play. In order to accomplish these
goals the players game controller allows the player to walk(along the ground
or level) and jump(across and over) obstacles. These are the allowed player
actions.

Challenges The obstacle based level indicated challenges that would require
the player to jump. We now explicitly define the two challenges the player faces
in this game.

The game design can mark regions or points of the level as dangerous that
the player needs to avoid. Given the actions allowed, the only choice is to jump
over these regions. We refer to these as avoid-challenges. For example, the level
design can require that points marked with the danger sign need to be avoided
by the player in order to survive the level.

The second challenge requires the character to land on a target (obstacle,
platform, jewels or enemies) in order to succeed. Again, if the target is not at
the level ground, the player has to jump in order to achieve this goal. We refer
to these as attack challenges in general. Here, the player’s goal is to target the
jewel.

i @

P

The game consists of a level, player and a set of challenges. We next show
how these are modeled in differential dynamic logic using the KeyMaeraX proof
system. We then discuss proofs for level safety given player definition and for
individual challenges.

4 dL models and proofs

Player model As mentioned earlier, we model the character with two co-
ordinates (x,h) representing its position along the x-axis and its height. The
player is equipped with a unit vector (dz,dy) that represents the direction of
motion i.e the slope along the level. The player has a velocity v. The game
is forward scrolling, hence the player can stop or move forward which bounds
the velocity by 0 from below. The player moves forward following a simple ODE

¥ =v-dz,h =v-dy

The game design also bounds the velocity by same constant V' from above.
The game controller allows the player to jump. This is incorporated by adding
a jump velocity j that takes a game defined value to the h component of the
motion. Thus, the player moves and jumps based on the ODE.

' =v-dr,h = j+v-dy

When the character is walking on the ground gravity does not impact mo-
tion since we wan’t the player to be on the ground. When the player choses to
jump, his jump velocity j is affected by acceleration due to gravity g.

J =—9

We enable gravity only when the player starts to jump and switch it off once
the player lands on the ground. Further, we only allow the player to jump when
on or close to the ground(indicated by I). The game controller is thus defined
as

/* player controller */
{
/* when on the ground, jump or stay on the ground */
if(h= 1){ {j:=J; g:=G;} ++ {j:=0;g:=0}}
/* increase or decrease velocity*/
{ {ve=v+15} ++ {vi=v-1;} ++ {v:=v;}}
/* clamp velocity to bounds*/
if (v>W{v:=V;}
if (v<0){v:=0;}
}

Finally, once the player starts his jump, gravity is turned on by setting the
value of g to the gravitational acceleration constant defined within the game.
Once the player lands back on the ground [, this needs to be turned off so that
the player can continue on the level. Since this is a part of the worlds reaction
on impact, we handle this by letting the world fiz-up the constants. We add a
domain constraint to the ODEs

|.&h>=1

that triggers a world fix-up as

/* world fix-up controller */
{

if (h<1){ h:=1; g:=0; j:=0;}
}

Level model We model the level design as being procedurally generated as
a hypothetical player moves forward. Hence the level is defined by its slope
(dz,dy) at the player position. The ceiling is also generated as this player
moves forward with its own slope defined by (udz,udy). The level height is
defined by a variable [that mimics the players motion along the ground and
is maintained explicitly to ensure the level can propogate correctly even when
the player choses to jump. The horizontal position of the level while it is being
designed can be set to the players position. Hence, we include a term for level

propogation in the ODEs

I'=v-dy

The level is a part of the world or the environment and can freely chose to
modify its slope. This is done by non-deterministically assigning the lower and
upper unit slopes.

/* world controller */

{
/* assign an arbitrary slope */
dx:=x; dy:=%;

udx:=%; udy:=x%;

/* ensure these are unit vectors*/
?7(dx"2+dy~2=1);

?(udx"2+udy~2=1);

/* ensure movement is strictly forward */
?7(dx>eps); 7(udx>eps);

3

Further, the world must be allowed to modify its slope at will, but the
player’s controller can only be triggered after fixed units of time. Thus, our en-
vironment and world are event driven while the player is time triggered defined
by a constant 7. To allow for a time-triggered controller we maintain a clock
variable ¢ that evolves, along with the other ODEs, according to

t'=1,.&t<="T..

To ensure that the player is time-triggered and the world can be event-
triggered, we set up the controllers and dynamics as follows:

{
if (£>=T){
t:= 0;
/* reset clock and run player controller */
}
{0DEs & h>=1 & t<=T}
{/*run world fix-up controller */}
{/*run world controller*/}
}

One can also consider a global clock that is initialized at clock = 0 and is
evolved as clock’ = 1. This variable can be used to model time constrained

goals that requires the player to be efficient. I have not considered efficiency as
a part of this game model.

Safety Now that we have defined the player and the level, we can talk about
defining safety, what are the necessary constraints to generate safe and playable
levels. For simplicity, let us consider a single slope-level.

As suggested earlier, one of the requirements of the level design is to fit
within the space confines 0 — H along the y-axis. Hence a safe level is one
where the ground [is such that [>= 0&! <= H and the player h is such that
h >= 0&h <= H. However this means that the player can only jump when
there is sufficient distance between [and H. Further more, since level design
is arbitrary, this could lead to levels where the player can only move since the
level leaves no space for jumping within the confines of the world.

In order to allow the player free choice of movement action, level design
should encode the space required to jump while generating levels.

When the player choses to jump, an initial velocity j = J is added to the
y-component that then evolves according to j' = —g with ¢ = G until the player
hits the ground again. The vertical distance covered by the player while jump-
ing is defined by. We consider the maximum velocity as J + v since we wan’t to
allow the player to move forward and dy is bounded by 1. For the safety of the
level we only want to allow the player to move forward not necessarily by the
maximum speed, so we set v to 1.

(Hj = (J+0)*/(26) |

Thus, if h + H; <= H&h >= 0, the level generated is playable and safe.

’safety: h+H; <= H&h >= 0‘

Note that h is determined by I because of the domain constraints and iden-
tical motion ODEs. [is determined by the slope (dz,dy). First, we set the
following constraint on the slope generation that for a unit time, the level is
safe under moving forward i.e v > 0. We then only allow slopes that when
followed for T' units of time under velocity v, does not exceed the bounds.

h+hj+v-dy<=H
h+v-dy>=0

Infinitely long

Max Height

S A

Note that considering a positive velocity is important since it ensures that
a level is not simply safe because the player can stand in place and jump, the
player can also move forward at some velocity. While it might appear as if the
level is only safe when the player is moving at velocity v = 1, the intent is to
generate levels that are playable i.e some forward and perpendicular motion is
allowed. One can relax this constraint by using the velocity bound V instead
of 1 that allow more conservative levels. Putting it all together, the dL can be
formulated as

(x =0&h =1 & constants) ->
[

{

{/* slope controller */}
{0DEs & t<=T}

F*

1 (safety)

This proof follows directly by construction and proves in KeyMaeraX using
the solve rule and QF (.kyx and .kya files have been submitted). Doubly
sloped levels prove similarly however require that the position of the ceiling be
considered instead of H.

The levels generated so far generate no obstacles. The motion of the player
along the level does not require the player to jump though we have proven that
the player could jump safely. In order to randomly generate obstacles, we need
to consider how far spaced the obstacles need to be such that the player can
jump over them. This is important since we only allow the player to jump when
she is on the level. However, as long as obstacles are not higher than the extents
H, this does not affect the safety of the game which is defined on the basis of the
players position and does not consider if the player could reach that position at
all or not. So such obstacle based levels are safe as long as the obstacle height
is within the specified bounds. We next consider the more challenging aspect,
can the player succeed challenges assuming a safe level.

Challenge Safety only shows that these components are not placed such that
jumping over them would require the character to move off-screen or that it is
utterly impossible to jump over them given the maximum height the character
can jump to. It is an entirely different matter to show that the player can
actually achieve these goals.

Before we proceed towards this goal, we revisit the game model in the context
of diamond modalities. Consider a proof for a simplified challenge that requires
the player to move forward. One could describe this model schematically as:

(initial game state & constraints) ->
<{

{control player}

{0DEs & h>=1 & t<=T}

10

{control world}
Fx

> (challenge succeeds)

But, this would imply that the player gets to chose all world control decisions
in order to achieve success. In some sense, this is not completely inaccurate.
It models the following question — Does there exist some random level that
the game could generate that the player could win with some choice of actions
? However, when looking at designing games one is mostly not asking that
question but rather — Given any level that the game could generate, can the
player succeed with some choice of actions ? This would ensure that every level
is playable in some sense, even if it required an extremely skilled player. The
key point is that even for a simple action of can the player move forward ? one
needs to introduce an adversarial world that could throw any game level at the
player.

A better abstraction to encode this is to consider the game model as follows:

(initial game state & constraints) ->
<{

{control player}

{0DEs & h>=1 & t<=T}"@

{control world}"@

F*

> (challenge succeeds)

This says that if the world was your adversary and controlled how long the
ODE runs and controls how the slope is changed, could the player succeed in the
challenge. Note that the loop iteration is controlled by the player, since choosing
to play one more round is strictly the players choice. The reason the ODE is
being controlled by the world is because the world is not time-triggered and
could choose to change the slope at any point of time. However, the world does
need to guarantee that the player would make some progress by moving forward
otherwise the player can be defeated by simply not running the dynamics. To
avoid that edge case we add a dual test ?{(t > ¢); } to the world controller.

Given this model of the game, we first prove a simple challenge, the player
can walk forward to an arbitrary position along the x-axis.

challenge-move Given an arbitrary position x; > = along the x-axis, we show
that it is possible for the character to move past that point. For simplicity, let
us assume the character starts with a valid non-zero velocity of 1. Given that
we don’t know what distance z, — x is or how long the world will chose to run
the ODE, we cannot prove this by unfolding iterations. However, given that the
world needs to maintain ¢ > ¢ we know that in every iteration some progress
will be made. Intuitively, this means that in some number of steps the distance

11

will be covered. Ensuring that the x-component of the slopes and the amount
of time each iteration is run is atleast ¢ > 0, ensures that the world cannot
generate vanishing but non-zero values for these variables. The challenge can
be formulated as follows:

(x =0 & xb>=x & v = 1 & constants) —>
<{

{control player}

{0DEs & h>=1 & t<=T}"@

{?(t>eps); control world}"@

Fx

> (x > xb)

Instead of proving this directly, I show that the following model holds:

(x =0 & xb>=x & v = 1 & constants) —->
<{

{control player}

{0DEs & h>=1 & t<=T}" @

{?(t>eps); control world}"@

Ix

> (x > eps”™2)

That is, the amount of progress that can be performed in each iteration is atleast
eps?, this provides a bound on the number of iterations required to prove z > xb.
In principle, one could unfold the iterations to prove reachability in the absence
of obstacles and avoid Xeno’s paradox.

challenge-avoid This challenge models the scenario where there is a point
on the ground marked as an obstacle (xb,l) and the goal of the player is to
ensure that she does not walk over the obstacle enforcing a jump. The success
of this challenge is measured when if x = zb— > h > [. Modeling this using
loop convergence proved difficult and so I view this as a two part challenge. The
first part, uses the previous proof in showing that one can reach a point x on
the ground such that xb <= x + T} * dr * w. Now, we know that in a single
iteration, if the player jumps, she should be able to reach the target which is
the only simplified part the proof models.

(x = 0 & xb=x+tj*w & w = 1 & t= T & constants) ->
<{
{
if(t >= T){

t:= 0;

/*jump if the next iteration is too late,

this is the worst case scenario (i.e dx=1),

if you have fallen short, you can jump again. */

12

if(x + T >= xb & h=1){
j:=J;
g:=G;

}

}

{0DEs & h>=1 & t<=T} @
{7(t>eps); control world}"@
F*

> (x = xb->h>1)

Note that while it may seem that the player can succeed by simply not
reaching the target and thereby not needing to be above it, the loop iteration
and the initial value for dx is chosen by the world. Since the setup is such that
the character can reach xb in one iteration, the world can definitely force it to
do so.

This still does not ensure that the iteration cycles would allow the player
to jump at the exact moment when composing various challenges and move-
ment cycles. By ensuring that xb is introduced at a distance that covers a few
buffer iteration cycles, the design could ensure the playability when composing
challenges.

challenge-attack The attack challenge is set up similarly, requiring that
when x = xb— > h = hb i.e the character should reach some position hb > I.
To identify the correct set of starting conditions that would ensure this can be
achieved by a jump in the next iteration, we compute the time tb taken to cover
the distance between the highest point that the player can reach H; and hb.

(% = 25 (=hj + hb) /Gleth > 0 |

If 2b = = + (tb+ tj) xw and tb + ¢j < T, the player can reach the target
in the next iteration. We add a few more simplifications that sets the velocity
component arising due to the slope to be 0 while jumping and the linear speed to
correspondingly be 1. However, this can be incorporated by assuming (dx, dy)
is constant for the iteration. Further, we also simplify the world model to not
allow any changes to the slope. This can be incorporated into the overall model
by allowing the world to only change when the player is on the ground and
not while jumping. The constraint between the jump times and the trigger
time is also a reasonable one since it says that jumping iteraions should occur
within one trigger cycle. This would allow the character to repeatedly jump
after landing, instead of having to wait for the time trigger after each time the
character jumps and lands.

(x = 0 & xb=x+tj*w & w = 1 & t= T & constants) ->
<{

13

{

if(t >= T){

t:= 0;

/*assuming constant linear speed while jumping. */
if(x + (tb+tj)*w >= xb & h=1){
j:=J;

g:=G;

dx:=1;

dy:=0;

}

}

}

{0DEs & h>=1 & t<=T}"Q
{?(t>eps); control world}"@

F*

> (x = xb->h=hb)

The challenge proofs can be shown to hold using the solve rule for solving
the ODE and performing Quantifier elimination (.kyx and .kya files are included
with the submission)

5 Designing a game

Though simple, the individual pieces above cover a significant set of basic fea-
tures that most physics based platform style or 2D scroller games have. However,
to design a complete level one needs to put these steps together. While I could
not explored it within the scope of this project, an interactive design system
can be envisioned that allows an author to design a game in bottom-up man-
ner, starting from the winning criteria and exploring acceptable regions where
game elements can be added. Discontinuities can be bridged by special game
elements that allow altering physical realities(like reducing gravity) and player
characteristics(increasing jumping speed). A useful feature would be to build
a system that allows an interactive way to author diamond proofs and identify
constraints.

14

This illustration shows a possible approach. The designer begins with fixing
the end goal of a game (a challenge to reach or attack a jewel). The system
then helps identify a buffer zone(green) required for the player to jump in which
no other obstacles are placed. The designer can then place a challenge(avoid
danger). The system can identify the next buffer zone and indicate if there is
a discontinuity (such as jumping speed needs to be modified for the player to
achieve this target). The designer can then place a power-up element to bridge
the gap. Following this, a safe starting position can be computed for the player.

5.1 Playability vs Non-triviality

The focus so far was on ensuring the level is safe and fair to the player and that
a reasonable player has some way of achieving the goals set out. It is often the
case that a players physical capabilities in the game such as the jumping velocity
and maximum height to which the player can reach will not be constant but
will be modified based on achieving challenges within the game. Most games
even constantly modify gravity to achieve different styles of motion. Once we
have a proof that a player can achieve a challenge, one can easily modify game
constants such that the proof fails. This is good, since it can be used to prove
the non-triviality of a challenge. It can be shown that unless the player achieves
a power-up of some nature, the subsequent challenges will be impossible to solve
with current capabilities. From the proof, one can identify what rewards a power
up should provide in order to pass the next challenge.

6 Discussion

The hope of this project is to tie together various aspects of CPS that was learnt
through the semester within the framework of a simple 2D game. As a part of
this project I modeled a simple but general level designer that would always
allow the player to move and provide sufficient space to jump while keeping the
character within the confines of the game world. The player is modeled as a

15

simple point that can move or walk along the designed level. The control allows
the player to increase and decrease speed and jump to avoid obstacles or attack
them.

Lessons During the initial proposal and white paper, I viewed this project as a
hybrid system with opportunities to prove liveness/diamond modalities. While
obvious in hindsight, it quickly became apparent that when building a game
design, one has to think about an adversarial design world. The world models
a general environment and it is unreasonable to expect it to be time-triggered
even though sensing and reacting to the world could be time-triggered. For the
model, this meant that one had to view the game physics as being driven by
the adversarial world. My initial models did not consider dual driven ODEs
and in general though the models appear incredibly simple, understanding the
adversarial nature of the system was an interesting learning point.

Invariant and variant driven proofs help capture the constraints relevant
in making the model safe and playable. These constraints essentially encode
design decisions — how close can two obstacles be placed or how high can a
platform move. Further, these help in building non-trivial game models by
suggesting exactly how far an obstacle needs to be placed such that a gamer
needs to perform some action designed for the player. Within game design,
discontinuities can be handled by adding specialized game elements such as a
power up that bridges the constraints required between two components that
have been individually verified.

Extensions The game currently models only two explicit actions of the player
— walking along the level and jumping. It also models only two challenges or
game elements — one that requires the player to avoid a particular region on the
level by jumping over it and one that requires the player to reach a particular
region by jumping onto it. These two actions as an abstraction cover many game
scenarios. However, many more game elements can be introduced to make the
design space more rich.

An adversarial enemy attempts to strategically target the player such that
she loses the game. This could be a competitive second player or an Al agent.
The current system does not model any adversarial enemy. Other adversarial
elements in the game such as a target that needs to be attacked or a region that
needs to be avoided can be modeled as described but these challenges can be
further enriched by allowing these targets to move in complex manners.

Game complexity is often introduced by including resource constraints and
opportunities to increase resources within the environment. We briefly talked
about time constrained system. Collecting resources can be modeled using tar-
get actions. Again, interesting combinations can be considered — If the jump-
ing velocity that the character can avail diminishes over time should she jump
quickly to attain a high moving target or wait until the target moves down. A
combination of strategies could quickly provide a large number of actions that
a character can perform and proving their compositions is a challenging next

16

step.

While player physics can be made arbitrarily complex, the goal of this project

was to build upon simple physics and show liveness and safety properties. In-
corporating challenging player physics within diamond modalities is another
extension that may be of interest.

I also envision an interactive design and proof system that could help vi-

sualize a simple model of interest and then allow modification of the model
interactively based on proof constraints. This would provide intuition and feed-
back since the model encodes an inherently spatial design.

References

[1]

2]

Adelhardt, Kim, and Nedyalko Kargov. ”Mario game solver.” IT University
of Copenhagen (2012).

Aloupis, Greg, et al. ”Classic Nintendo games are (computationally) hard.”
Theoretical Computer Science 586 (2015): 135-160.

Demaine, Erik D., Giovanni Viglietta, and Aaron Williams. ”Super Mario
Bros. is harder/easier than we thought.” (2016).

Jeannin, Jean-Baptiste, et al. ” A Formally Verified Hybrid System for the
Next-Generation Airborne Collision Avoidance System (CMU-CS-14-138).”
(2014).

Motivating Calculus-Based Kinematics Instruction with Super Mario Bros
http://info.sonicretro.org/SPG:Jumping

Mller, Andreas, et al. ”Change and delay contracts for hybrid system com-
ponent verification.” International Conference on Fundamental Approaches
to Software Engineering. Springer, Berlin, Heidelberg, 2017.

Icon credits: Joel McKinney, iconsphere, corpus delicti from the Noun
project

17

