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Learning Objectives
Winning Strategies & Regions

CT

M&C CPS

fundamental principles of computational thinking
logical extensions
PL modularity principles
compositional extensions
differential game logic
denotational vs. operational semantics

adversarial dynamics
adversarial semantics
adversarial repetitions
fixpoints

CPS semantics
multi-agent operational-effects
mutual reactions
complementary hybrid systems
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Differential Game Logic: Syntax

Definition (Hybrid game α)

x := e | ?Q | x ′ = f (x) | α ∪ β | α;β | α∗ | αd

Definition (dGL Formula P)

p(e1, . . . , en) | e ≥ ẽ | ¬P | P ∧ Q | ∀x P | ∃x P | 〈α〉P | [α]P

Discrete
Assign

Test
Game

Differential
Equation

Choice
Game

Seq.
Game

Repeat
Game

All
Reals

Some
Reals

Dual
Game

Angel
Wins

Demon
Wins

TOCL’15
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Differential Game Logic: Denotational Semantics

Definition (Hybrid game α) [[·]] : HG→ (℘(S)→ ℘(S))

ςx :=e(X ) = {ω ∈ S : ω
ω[[e]]
x ∈ X}

ςx ′=f (x)(X ) = {ϕ(0) ∈ S : ϕ(r) ∈ X , dϕ(t)(x)
dt (z) = ϕ(z)[[f (x)]] for all z}

ς?Q(X ) = [[Q]] ∩ X
ςα∪β(X ) = ςα(X ) ∪ ςβ(X )
ςα;β(X ) = ςα(ςβ(X ))
ςα∗(X ) =

ςαd (X ) = (ςα(X {)){

Definition (dGL Formula P) [[·]] : Fml→ ℘(S)

[[e1 ≥ e2]] = {ω ∈ S : ω[[e1]] ≥ ω[[e2]]}
[[¬P]] = ([[P]]){

[[P ∧ Q]] = [[P]] ∩ [[Q]]
[[〈α〉P]] = ςα([[P]]) {ω : ν ∈ [[P]] for some ν with (ω, ν) ∈ [[α]]} ???
[[[α]P]] = δα([[P]])
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Differential Game Logic: Denotational Semantics

Definition (Hybrid game α: denotational semantics)

ςx :=e(X ) =

{ω ∈ S : ω
ω[[e]]
x ∈ X}

X

ςx :=e(X )
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Definition (Hybrid game α: denotational semantics)

ςx ′=f (x)(X ) =

{ϕ(0) ∈ S : ϕ(r) ∈ X , dϕ(t)(x)
dt (z) = ϕ(z)[[f (x)]] for all z}

Xx
′ =

f (
x)

ςx ′=f (x)(X )
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ς?Q(X ) =

[[Q]] ∩ X

X

[[Q]]

ς?Q(X )
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X )

X
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Differential Game Logic: Denotational Semantics

Definition (Hybrid game α: denotational semantics)

ςα;β(X ) =

ςα(ςβ(X ))

ςα(ςβ(X )) ςβ(X )

X

ςα;β(X )
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André Platzer (CMU) FCPS / 17: Winning Strategies & Regions 6 / 22



Differential Game Logic: Denotational Semantics

Definition (Hybrid game α: denotational semantics)

ςαd (X ) =

(ςα(X {)){

X {

X

ςα(X {)

ςα(X {){

ςαd (X )
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Filibusters & The Significance of Finitude

〈(x := 0 ∩ x := 1)∗〉x = 0

wfd
 false unless x = 0

〈(x := 0; x ′ = 1d)
∗〉x = 0

〈(x ′ = 1d ; x := 0)
∗〉x = 0

<∞
 true

X

X
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X

st
op
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Semantics of Repetition

Definition (Hybrid game α)

ςα∗(X ) =
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Semantics of Repetition

Definition (Hybrid game α)

ςα∗(X ) =
⋃

n∈N ςαn(X )

[[α∗]] =
⋃

n∈N [[αn]] where αn+1 ≡ αn;α α0 ≡ ?true for HP α
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Semantics of Repetition

Definition (Hybrid game α)

ςα∗(X ) =
⋃

n∈N ςαn(X )
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Semantics of Repetition Advance Notice Semantics

Definition (Hybrid game α)

ςα∗(X ) =
⋃

n∈N ςαn(X ) advance notice semantics
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+1 Argument

Note (+1 argument)

Y ⊆ ςα∗(X ) then ςα(Y ) ⊆ ςα∗(X )

Since ςα(Y ) is just one round away from Y .

ςα(Y ) \ ςα∗(X )
∅

ςα∗(X ) ςα(Y ) Y
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Semantics of Repetition

Definition (Hybrid game α)

ςα∗(X ) =
⋃

n∈N ς
n
α(X )

ς0
α(X )

def
= X

ςκ+1
α (X )

def
= X ∪ ςα(ςκα(X ))

ςλα(X )
def
=

⋃
κ<λ

ςκα(X ) λ 6= 0 a limit ordinal
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⋃
κ<λ
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〈(x := 1; x ′ = 1d ∪ x := x − 1)
∗〉 (0 ≤ x < 1)

ςnα([0, 1)) = [0, n) 6= R

ςω+1
α ([0, 1)) = ςα([0,∞)) = R

ςωα ([0, 1)) =
⋃

n∈N ς
n
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Strategic Closure Ordinal ≥ ωCK
1

Theorem

Hybrid game closure ordinal >ωω
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Expedition: Ordinal Arithmetic

ι+ 0 = ι

ι+ (κ+1) = (ι+ κ) + 1 successor κ+1

ι+ λ =
⊔
κ<λ

ι+ κ limit λ

ι · 0 = 0

ι · (κ+1) = (ι · κ) + ι successor κ+1

ι · λ =
⊔
κ<λ

ι · κ limit λ

ι0 = 1

ικ+1 = ικ · ι successor κ+1

ιλ =
⊔
κ<λ

ικ limit λ

2 · ω = 4 · ω 6= ω · 2 < ω · 4
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Semantics of Repetition

Definition (Hybrid game α)

ςα∗(X ) =
⋃
κ<∞ ς

κ
α(X )

by Knaster-Tarski
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André Platzer (CMU) FCPS / 17: Winning Strategies & Regions 15 / 22



Semantics of Repetition

Definition (Hybrid game α)

ςα∗(X ) =
⋃
κ<∞ ς

κ
α(X )

by Knaster-Tarski

ςα(ςα∗(X )) \ ςα∗(X )
∅

ς∞α (X ) · · · ς3
α(X ) ς2

α(X ) ςα(X ) X

ςα∗(X )
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The Power of Implicit Definitions

Implicit Definitions

The advantages of implicit definition
over construction are roughly those of
theft over honest toil.

— Bertrand Russell
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+1 Argument

Note (+1 argument)

Y ⊆ ςα∗(X ) then ςα(Y ) ⊆ ςα∗(X )

Since ςα(Y ) is just one round away from Y .

ςα(Y ) \ ςα∗(X )
∅

ςα∗(X ) ςα(Y ) Y
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+1 Argument

Note (+1 argument)

Y ⊆ ςα∗(X ) then ςα(Y ) ⊆ ςα∗(X )

Z
def
= ςα∗(X ) then ςα(Z ) ⊆ ςα∗(X ) = Z
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= ςα∗(X ) then ςα(Z ) ⊆ ςα∗(X ) = Z

Which Z with ςα(Z ) ⊆ Z is the right one?

Are there multiple such Z?

Does such a Z exist?

Existence: Z = ∅
No wait, dual tests: ς?Qd (∅) = ς?Q(∅{){ = ([[Q]] ∩ S){ = [[Q]]{ 6⊆ ∅
Then: ς?Qd ([[¬Q]]) = ς?Q([[¬Q]]{){ = ([[Q]] ∩ [[Q]]){ = [[¬Q]] ⊆ [[¬Q]]

Still too small: X ⊆ Z since Angel may decide not to repeat
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Fixpoints and Pre-Fixpoints

Definition (Pre-fixpoint)

X ∪ ςα(Z ) ⊆ Z for the winning region Z
def
= ςα∗(X )

ςα(ςα∗(X )) \ ςα∗(X )
∅

ς∞α (X ) · · · ς3
α(X ) ς2

α(X ) ςα(X ) X

ςα∗(X )

Which Z is the right one?
Are there multiple such Z?
Does such a Z exist?

Existence: Z = S

but that’s too big and independent of α

André Platzer (CMU) FCPS / 17: Winning Strategies & Regions 18 / 22



Fixpoints and Pre-Fixpoints

Definition (Pre-fixpoint)

X ∪ ςα(Z ) ⊆ Z for the winning region Z
def
= ςα∗(X )

ςα(ςα∗(X )) \ ςα∗(X )
∅

ς∞α (X ) · · · ς3
α(X ) ς2

α(X ) ςα(X ) X

ςα∗(X )

Which Z is the right one?
Are there multiple such Z?
Does such a Z exist?

Existence: Z = S

but that’s too big and independent of α
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Comparing (Pre-)Fixpoints

Lemma (

Intersection closure

)

X ∪ ςα(Y ) ⊆ Y

X ∪ ςα(Z ) ⊆ Z

are pre-fixpoints, then

Y ∩ Z is a smaller pre-fixpoint.

Proof.

X ∪ ςα(Y ∩ Z )
mon
⊆ X ∪ (ςα(Y ) ∩ ςα(Z ))

above
⊆ Y ∩ Z

Even: The intersection of any family of pre-fixpoints is a pre-fixpoint!
So: repetition semantics is the smallest pre-fixpoint (well-founded)
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Semantics of Repetition

Definition (Hybrid game α)

ςα∗(X ) =
⋂{Z ⊆ S : X ∪ ςα(Z ) ⊆ Z}

by Knaster-Tarski

ςα(ςα∗(X )) \ ςα∗(X )
∅

ς∞α (X ) · · · ς3
α(X ) ς2

α(X ) ςα(X ) X

ςα∗(X )
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Z
def
=

X ∪ ςα(ςα∗(X )) ⊆ ςα∗(X ) ςα∗(X ) intersection of solutions

X ∪

ςα(Z ) ⊆

X ∪

ςα(ςα∗(X ))

= Z

by mon since Z ⊆ ςα∗(X )

ςα∗(X ) ⊆ X ∪ ςα(ςα∗(X )) = Z since ςα∗(X ) smallest such Z
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Differential Game Logic: Denotational Semantics

Definition (Hybrid game α) [[·]] : HG→ (℘(S)→ ℘(S))

ςx :=e(X ) = {ω ∈ S : ω
ω[[e]]
x ∈ X}

ςx ′=f (x)(X ) = {ϕ(0) ∈ S : ϕ(r) ∈ X , dϕ(t)(x)
dt (z) = ϕ(z)[[f (x)]] for all z}

ς?Q(X ) = [[Q]] ∩ X
ςα∪β(X ) = ςα(X ) ∪ ςβ(X )
ςα;β(X ) = ςα(ςβ(X ))
ςα∗(X ) =

⋃
κ<∞ ς

κ
α(X )

ςαd (X ) = (ςα(X {)){

Definition (dGL Formula P) [[·]] : Fml→ ℘(S)

[[e1 ≥ e2]] = {ω ∈ S : ω[[e1]] ≥ ω[[e2]]}
[[¬P]] = ([[P]]){

[[P ∧ Q]] = [[P]] ∩ [[Q]]
[[〈α〉P]] = ςα([[P]])
[[[α]P]] = δα([[P]])
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Summary

differential game logic

dGL = GL + HG = dL + d
〈α〉ϕ

ϕ

Semantics for differential game logic

Simple compositional denotational semantics

Meaning is a simple function of its pieces

Outlier: repetition is subtle higher-ordinal iteration

Better: repetition means least fixpoint

Next lecture

1 Axiomatics

2 How to win and prove hybrid games
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