
André Platzer

Lecture Notes on Foundations of
Cyber-Physical Systems

15-424/624/824 Foundations of Cyber-Physical Systems

http://lfcps.org/course/fcps17.html

Chapter 10
Differential Equations & Differential Invariants

Synposis This chapter leaves the realm of cyber-physical systems whose differen-
tial equations are solvable in closed form. Without closed-form solvable differential
equations, the continuous dynamics of cyber-physical systems becomes much more
challenging. The change is as noticeable and significant as the change from single-
shot control systems to systems with an unbounded number of interactions in a con-
trol loop. All of a sudden, we can no longer pretend each differential equation could
be replaced by an explicit representation of a function that describes the resulting
state at time t along with a quantifier for t. Instead, differential equations have to
be handled implicitly based on their actual dynamics as opposed to their solution.
This leads to a remarkable shift in perspective opening up a new world of fascina-
tion in the continuous dynamical aspects of cyber-physical systems, and it begins
by ascribing an entirely new meaning to primes in cyber-physical system models.

10.1 Introduction

So far, this textbook explored only one way to deal with differential equations: the
[′] axiom from Lemma 5.3. Just like almost all other axioms, this axiom [′] is an
equivalence, so it can be used to reduce a property of a more complex HP, in this
case a differential equation, to a structurally easier logical formula.

[′] [x′ = f (x)]p(x)↔∀t≥0 [x :=y(t)]p(x) (y′(t) = f (y))

However, in order to use the [′] axiom for a differential equation x′ = f (x), we must
first find a symbolic solution to the symbolic initial value problem (i.e. a function
y(t) such that y′(t) = f (y) and y(0) = x). But what if the differential equation does
not have such an explicit closed-form solution y(t)? Or what if y(t) cannot be writ-
ten down in first-order real arithmetic? Chapter 2 allows many more differential
equations to be part of CPS models than just the ones that happen to have simple so-

267

268 10 Differential Equations & Differential Invariants

lutions. These are the differential equations we will look at in this chapter to provide
rigorous reasoning techniques for them.

You may have previously seen a whole range of methods for solving differential
equations. These are indubitably useful for many common cases. But, in a certain
sense, “most” differential equations are impossible to solve, because they have no
explicit closed-form solution with elementary functions, for instance [18]:

x′′(t) = et2

And even if they do have solutions, the solution may no longer be in first-order real
arithmetic. Example 2.5 showed that, for certain initial values, the solution of

x′ = y,y′ =−x

is x(t) = sin(t),y(t) = cos(t), which is not expressible in real arithmetic (recall that
both are infinite power series) and leads to undecidable arithmetic [7]. The sine
function, for example, needs infinitely many powers, which does not give a finite
term in first-order real arithmetic:

sin(t) = t− t3

3!
+

t5

5!
− t7

7!
+

t9

9!
− . . .

This chapter reinvestigates differential equations from a more fundamental per-
spective, which will lead to a way of proving properties of differential equations
without using their solutions. It seeks unexpected analogies among the seemingly
significantly different dynamical aspects of discrete dynamics and of continuous
dynamics. The first and quite influential observation is that differential equations
and loops have more in common than one might suspect.1 Discrete systems may be
complicated, but have a powerful ally: induction as a way of establishing truth for
discrete dynamical systems by generically analyzing the one step that it performs
(repeatedly like the body of a loop). What if we could use induction for differential
equations? What if we could prove properties of differential equations directly by
analyzing how these properties change along the differential equation rather than
having to find a global solution first and inspecting whether it satisfies that property
at all times? What if we could tame the analytic complexity of differential equations
by analyzing the generic local “step” that a continuous dynamical system performs
(repeatedly). The biggest conceptual challenge will, of course, be in understanding
what exactly the counterpart of a step even is for continuous dynamical systems,
because there is no such thing as a next step for a differential equation that evolves
in continuous time.

This chapter is of central significance for the Foundations of Cyber-Physical Sys-
tems. The analytic principles begun in this chapter will be a crucial basis for ana-
lyzing all complex CPS. The most important learning goals of this chapter are:

1 In fact, discrete and continuous dynamics turn out to be proof-theoretically quite related [13].

10.2 A Gradual Introduction to Differential Invariants 269

Modeling and Control: This chapter will advance the core principles behind CPS
by developing a deeper understanding of their continuous dynamical behavior.
This chapter will also illuminate another facet of how discrete and continuous
systems relate to one another, which ultimatelys lead to a fascinating view on
understanding hybrid systems [13].

Computational Thinking: This chapter exploits computational thinking in its purest
form by seeking and exploiting surprising analogies among discrete dynamics
and continuous dynamics, however different both may appear at first sight. This
chapter is devoted to rigorous reasoning about the differential equations in CPS
models. Such rigorous reasoning is crucial for understanding the continuous be-
havior that CPSs exhibit over time. Without sufficient rigor in their analysis it
can be impossible to understand their intricate behavior and spot subtle flaws in
their control or say for sure whether and why a design is no longer faulty. This
chapter systematically develops one reasoning principle for equational proper-
ties of differential equations that is based on induction for differential equations
[9, 14]. It follows an axiomatic logical understanding of differential invariants
via differential forms [15]. Subsequent chapters expand the same core princi-
ples developed in this chapter to the study of general invariant properties of
differential equations. This chapter continues the axiomatization of differential
dynamic logic dL [12, 13] pursued since Chap. 5 and lifts dL’s proof techniques
to systems with more complex differential equations. The concepts developed
in this chapter form the differential facet illustrating the more general relation
of syntax (which is notation), semantics (what carries meaning), and axiomatics
(which internalizes semantic relations into universal syntactic transformations).
These concepts and their relations jointly form the significant logical trinity of
syntax, semantics, and axiomatics. This chapter studies the differential facet of
this logical trinity. Finally, the verification techniques developed in this chapter
are critical for verifying CPS models of appropriate scale and technical com-
plexity.

CPS Skills: We will develop a deeper understanding of the semantics of the contin-
uous dynamical aspects of CPS models and develop and exploit a significantly
better intuition for the operational effects involved in CPS. In addition to ex-
hibiting semantic nuances, this understanding is critical to rigorous reasoning
for all but the most elementary cyber-physical systems.

10.2 A Gradual Introduction to Differential Invariants

This section provides a gradual development of the intuition behind differential in-
variants. Such an incremental development is useful to understand the working prin-
ciples and to understand why differential invariants work like they do. It can also
support our intuition when designing systems or proofs for them.

270 10 Differential Equations & Differential Invariants

CT

M&C CPS

discrete vs. continuous analogies
rigorous reasoning about ODEs
induction for differential equations
differential facet of logical trinity

understanding continuous dynamics
relate discrete+continuous

semantics of continuous dynamics
operational CPS effects

10.2.1 Global Descriptive Power of Local Differential Equations

Differential equations let the physics evolve continuously for longer periods of time.
They describe such global behavior locally, however, just by the right-hand side of
the differential equation.

Note 53 (Local descriptions of global behavior by differential equations)
The key principle behind the descriptive power of differential equations is that
they describe the evolution of a continuous system over time using only a lo-
cal description of the direction into which the system evolves at any point in
space. The solution of a differential equation is a global description of how
the system evolves. The differential equation itself is a local characterization.
While the global behavior of a continuous system can be subtle, complex, and
challenging, its local description as a differential equation is much simpler.

This difference between local description and global behavior, which is fun-
damental to the descriptive power of differential equations, can be exploited
for proofs.

Recall the semantics of differential equations from Chap. 3:

Definition 3.3 (Transition semantics of ODEs).

[[x′ = f (x)&Q]] =
{
(ω,ν) : ϕ(0) = ω except at x′ and ϕ(r) = ν for a solution

ϕ : [0,r]→S of any duration r satisfying ϕ |= x′ = f (x)∧Q
}

where ϕ |= x′ = f (x)∧Q, iff for all times 0≤ z≤ r: ϕ(z) ∈ [[x′ = f (x)∧Q]]

with ϕ(z)(x′) def
= dϕ(t)(x)

dt (z) and ϕ(z) = ϕ(0) except at x,x′.

The solution ϕ describes the global behavior of the system, which is specified
locally by the right-hand side f (x) of the differential equation x′ = f (x).

Chap. 2 has shown a number of examples illustrating the descriptive power of
differential equations. That is, examples in which the solution was very complicated

10.2 A Gradual Introduction to Differential Invariants 271

even though the differential equation was rather simple. This is a strong property of
differential equations: they can describe even complicated processes in simple ways.
Yet, that representational advantage of differential equations does not carry over into
the verification when verification is stuck with proving properties of differential
equations only by way of their solutions, which, by the very nature of differential
equations, are more complicated again.

This chapter, thus, investigates ways of proving properties of differential equa-
tions using the differential equations themselves, not their solutions. This leads to
differential invariants [9, 14, 15], which can perform induction for differential equa-
tions. In fact, loops and differential equations have a lot more in common [13] than
meets the eye (Sect. 10.8.1).

10.2.2 Intuition for Differential Invariants

Just as inductive invariants are the premier technique for proving properties of loops,
differential invariants [8–10, 14, 15] provide the primary inductive technique we
use for proving properties of differential equations (without having to solve them).
Recall the loop induction proof rule from Sect. 7.3.3

loop
Γ ` F,∆ F ` [α]F F ` P

Γ ` [α∗]P,∆

The core principle behind loop induction is that the induction step for proving
[α∗]P investigates the loop body as the local generator α ands shows that it never
changes the truth-value of the invariant F (see the middle premise F ` [α]F of proof
rule loop from Sect. 7.3.3 or the only premise of the core essentials induction proof
rule ind from Chap. ??). Let us try to establish the same inductive principle, just
for differential equations. The first and third premise of the rule loop transfer easily
to differential equations. The challenge is to figure out what the counterpart of the
induction step F ` [α]F would be since differential equations do not have a notion
of “one step”.

What does the local generator of a differential equation x′ = f (x) tell us about
the evolution of a system? And how does it relate to the truth of a formula F all
along the solution of that differential equation? That is, to the truth of the dL for-
mula [x′ = f (x)]F expressing that all runs of x′ = f (x) lead to states satisfying F .
Figure 10.1 depicts an example of a vector field for a differential equation (plotting
the right-hand side of the differential equation as a vector at every point in the state
space), a global solution (in red), and an unsafe region ¬F (shown in blue). The
safe region F is the complement of the blue unsafe region ¬F . Of course, it is quite
impossible to draw the appropriate direction vector of the differential equation at
literally every point in the state space in Fig. 10.1, so we have to settle for a few.

One way of proving that [x′ = f (x)]F is true in a state ω would be to compute the
solution from that state ω , and check every point in time along the solution to see if it

272 10 Differential Equations & Differential Invariants

Fig. 10.1 Vector field and
one solution of a differential
equation that does not enter
the blue unsafe regions

is in the safe region F or the unsafe region ¬F . Unfortunately, these are uncountably
infinitely many points in time to check. Furthermore, that only considers a single
initial sate ω , so proving validity of a formula would require considering every of
the uncountably infinitely many possible initial states and computing and following
a solution in each of them. That is why this naïve approach would not compute.

A similar idea can still be made to work when the symbolic initial-value problem
can be solved with a symbolic initial value x and a quantifier for time can be used,
which is what the solution axiom [′] does. Yet, even that only works when a solution
to the symbolic initial-value problem can be computed and the arithmetic resulting
from the quantifier for time can be decided. For polynomial solutions, this works
by Tarski’s quantifier elimination (Sect. 6.5). But polynomial solutions come from
very simple systems only (the nilpotent linear differential equation systems from
Sect. 2.9.3).

Reexamining the illustration in Fig. 10.1, we suggest an entirely different way
of checking whether the system could ever lead to an unsafe state in ¬F when
following the differential equation x′ = f (x). The intuition is the following. If there
were a vector in Fig. 10.1 that points from a safe state in F to an unsafe state ¬F
(in the blue region), then following the differential equation along that vector could
get the system into the unsafe region ¬F . If, instead, all vectors only point from
safe states to safe states in F , then, intuitively, following such a chain of vectors will
only lead from safe states to safe states. So if the system also started in a safe state,
it would stay safe forever. In fact, this also illustrates that we have some leeway
in how we show [x′ = f (x)]F . We do not need to know where exactly the system
evolves to, just that it remains somewhere in F .

Let us make this intuition rigorous to obtain a sound proof principle that is per-
fectly reliable in order to be usable in CPS verification. What we need to do is to
find a way of characterizing how the truth of F changes when moving along the
differential equation. That will then enable us to show that the system only evolves
into directions in which the formula F stays true.

10.2 A Gradual Introduction to Differential Invariants 273

Fig. 10.2 One scenario for
the rotational dynamics and
relationship of vector (v,w) to
radius r and angle ϑ

v

w

w
=

rc
os

ϑ

v
r sinϑ

r

10.2.3 Deriving Differential Invariants

How can the intuition about directions of evolution of a logical formula F with
respect to a differential equation x′ = f (x) be made rigorous? We develop this step
by step.

Example 10.1 (Rotational dynamics). As a guiding example, consider a conjecture
about the rotational dynamics where v and w represent the direction of a vector
rotating clockwise in a circle of radius r (Fig. 10.2):

v2 +w2 = r2→ [v′ = w,w′ =−v]v2 +w2 = r2 (10.1)

The conjectured dL formula (10.1) is valid, because, indeed, if the vector (v,w)
is initially at distance r from the origin (0,0), then it will always remain at that dis-
tance when rotating around the origin, which is what the dynamics does. That is, the
point (v,w) will always remain on the circle of radius r. But how can we prove that?
In this particular case, we could possibly investigate solutions, which are trigono-
metric functions (although the solutions indicated in Fig. 10.2 are not at all the only
solutions). With those solutions, we could perhaps find an argument why they stay
at distance r from the origin. But the resulting arithmetic will involve power series,
which make it unnecessarily difficult. The argument for why the simple dL formula
(10.1) is valid should be an easy one. And it is, after we have discovered the right
proof principle as this chapter will do.

First, what is the direction into which a continuous dynamical system evolves?
The direction is exactly described by the differential equation, because the whole
point of a differential equation is to describe in which direction the state evolves
at every point in space. So the direction into which a continuous system obeying
x′ = f (x) follows from state ω is described by the time-derivative, which is exactly
the value ω[[f (x)]] of term f (x) in state ω . Recall that the term f (x) can mention x
and other variables so its value ω[[f (x)]] depends on the present state ω .

274 10 Differential Equations & Differential Invariants

Fig. 10.3 Differential invari-
ant F remains true in the
direction of the dynamics

¬ ¬FF F

Note 54 (“Formulas that remain true in the direction of the dynamics”)
Proving dL formula [x′ = f (x)]F does not really require us to answer where
exactly the system evolves to but just how the evolution of the system relates to
the formula F and the set of states ω in which F evaluates to true. It is enough
to show that the system only evolves into directions in which formula F will
stay true (Fig. 11.3).

A logical formula F is ultimately built from atomic formulas that are comparisons
of (polynomial or rational) terms such as e = 5 or v2 +w2 = r2. Let e denote such
a (polynomial) term in the variable (vector) x that occurs in the formula F . The
semantics of a polynomial term e in a state ω is the real number ω[[e]] that it evaluates
to. In which direction does the value of e evolve when following the differential
equation x′ = f (x) for some time? That depends both on the term e that is being
evaluated and on the differential equation x′ = f (x) that describes how the respective
variables x evolve over time.

Note 55 Directions of evolutions are described by derivatives, after all the
differential equation x′ = f (x) describes that the time-derivative of x is f (x).

To find out how the value of a term changes, let’s differentiate the term of inter-
est and see what that tells us about how its value evolves over time. Wait, what do
the resulting derivatives actually mean? That is a crucial question, but let us, nev-
ertheless, take the inexcusable liberty of postponing this question till later and just
develop an intuition for now.

Example 10.2 (Differentiating terms in rotational dynamics). Which of the terms
should be differentiated when trying to understand how the truth-value of the post-
condition in (10.1) changes? Since that is not necessarily clear so far, let’s turn the
formula (10.1) around and consider the following equivalent (Exercise 10.2) dL for-
mula, which only has a single nontrivial term to worry about:

v2 +w2− r2 = 0→ [v′ = w,w′ =−v]v2 +w2− r2 = 0 (10.2)

Differentiating the only relevant term v2 +w2− r2 in the postcondition of (10.2)
gives:

(v2 +w2− r2)′ = 2vv′+2ww′−2rr′ (10.3)

Of course, differentiating v2 +w2− r2 does not just result in 2v+2w−2r, because
its value also depends on the derivative v′ of v etc. If only we knew what the symbols

10.3 Differentials 275

v′,w′ and r′ mean in (10.3). The differential equation of (10.2) seems to indicate that
v′ equals w and w′ equals −v. Would it be okay to replace the left-hand side w′ of
the differential equation with its right-hand side −v in (10.3)? That would lead to

2vv′+2ww′−2rr′ = 2vw+2w(−v)−2rr′ (10.4)

which is clearly 0 if only r′ were 0. Well, maybe we could consider r′ to be 0, since
r does not come with a differential equation, so r is not supposed to change, which
is what the differential equation r′ = 0 would tell us, too.

Lo and behold! This might lead to a possible proof. We just do not know whether
it is a proof yet. What proof rules should we have applied to prove (10.2)? Why
are they sound proof rules? Was it okay to substitute the right-hand side of the
differential equation for its left-hand side in (10.4)? Can we differentiate terms to
find out how they change over time? What do the respective primed symbols v′,w′,r′

mean? What is the meaning of the operator (·)′ that we used on the term v2+w2−r2

in (10.3)? How do we know that this operator makes both sides of (10.3) equal?
These are a bunch of important questions on the road to turning the intuition in

Example 10.2 into sound proof principles. Let’s answer them one at a time.

10.3 Differentials

In order to clarify the intuition we followed for motivating differential invariant
reasoning, we first add x′ and (e)′ officially into syntax since we used them in our
reasoning in Example 10.2. The second step is to define their meaning. And the third
step of the logical trinity is to develop axioms that can be proved sound with respect
to the semantics and that enable syntactic reasoning about such primes.

10.3.1 Syntax of Differentials

The first step for understanding reasoning with differentiation is to ennoble the
primes of x′ and (e)′ and officially consider them as part of the language of dif-
ferential dynamic logic by adding them to its syntax. For every variable x add a
corresponding differential symbol x′ that can be used like any other variable. For
every term e, add the differential term (e)′. Formally, they really should have been
part of differential dynamic logic all along, but our understanding only caught up
with that fact in this chapter. Besides, it was easier to first suppress primes and
exclusively have them in differential equations.

Definition 10.2 (dL Terms). A term e of (differential-form) differential dy-
namic logic is defined by the grammar (where e, ẽ are terms, x a variable with

276 10 Differential Equations & Differential Invariants

corresponding differential symbol x′, and c is a rational number constant):

e ::= x | x′ | c | e+ ẽ | e− ẽ | e · ẽ | e/ẽ | (e)′
For emphasis, when primes are allowed, the logic is also called differential-form

differential dynamic logic [15], but we will continue to just call it differential dy-
namic logic. The formulas and hybrid programs of (differential-form) differential
dynamic logic are built as in Sects. 3.3 and 4.4. The semantics remains unchanged
except that the new addition of differential terms (e)′ and differential symbols x′

need to be outfitted with a proper meaning.
It is, of course, important to take care that division e/ẽ only makes sense in a

context where the divisor ẽ is guaranteed not to be zero in order to avoid undefined-
ness. We only allow division to be used in a context where the divisor is ensured not
to be zero.

10.3.2 Semantics of Differential Symbols

The meaning of a variable symbol x is defined by the state ω as ω(x), so its value
ω[[x]] in state ω is directly determined by the state via ω[[x]] = ω(x). It is crucial to
understand the significant subtleties and challenges that arise when trying to give
meaning to a differential symbol x′ or anything else with a derivative connotation
such as the differential term (e)′ of term e.

The first mathematical reflex may be to set out for a definition of x′ and (e)′ in
terms of a time-derivative d

dt of something. But there is no time and, thus, no time-
derivative in an isolated state ω . It is completely meaningless to ask for the rate of
change of the value of x over time in a single isolated state ω . For time-derivatives
to make sense, we at least need a concept of time and the values understood as a
function of time. That function needs to be defined on a big enough interval for
derivatives to have a chance to become meaningful. And the function needs to be
differentiable so that the time-derivatives even exist to begin with. In the presence
of discrete state change, not every value will always have a time-derivative even if
we were to keep its history around.

The next mathematical reflex may be to say that the meaning of x′ and (e)′ de-
pends on the differential equation. But there is no differential equation in an isolated
state ω either. And the meaning of something should not depend on something else
outside, because that violates all principles of denotational semantics.

While neither time-derivatives nor differential equations can come to the rescue
to give x′ or (e)′ a meaning, it is important to understand why the lack of having
a value and a meaning would cause complications for the fabrics of logic. De-
notational semantics defines the meaning of all expressions compositionally in a
modular fashion and without reference to outside elements, such as the differential
equation in which they also happen to occur. The meaning of terms is a function
of the state, and not a function of the state and the context or purpose for which it
happens to have been mentioned.

10.3 Differentials 277

Expedition 10.1 (Denotational semantics)

The whole paradigm of denotational semantics, initiated for programming lan-
guages by Dana Scott and Christopher Strachey [17], is based on the principle
that the semantics of expressions of programming languages should be the
mathematical object that it denotes. That is, a denotational semantics is a func-
tion assigning a mathematical object ω[[e]] from a semantic domain (here R) to
each term e, depending on the state ω .

The meaning of terms, thus, is a function [[·]] : Trm→ (S→ R) which maps
each term e ∈ Trm to the function [[e]] : S → R giving the real value ω[[e]] ∈
R that the term e has in each state ω ∈ S. In fact, this is exactly how the
semantics of terms of dL has been defined in Chap. 2 in the first place. For
classical logics such as first-order logic, this denotational semantics has always
been the natural and dominant approach since Gottlob Frege [1].

Scott and Strachey [17], however, pioneered the idea of leveraging the de-
notational style of semantics to give meaning to programming languages. And,
indeed, dL’s hybrid programs have a denotational semantics. The meaning of a
HP α is the reachability relation [[α]]⊆S×S that it induces on the states S.
Correspondingly, the (denotational) meaning of hybrid programs as defined in
Chap. 3 is a function [[·]] : HP→℘(S×S) assigning a relation [[α]]⊆S×S
in the powerset ℘(S×S) to each HP α .

A crucial feature of denotational semantics, however, is compositionality.
The meaning [[e+ ẽ]] of a compound such as e+ ẽ should be a simple function
of the meaning [[e]] and [[ẽ]] of its pieces e and ẽ. This compositionality is exactly
the way the meaning of differential dynamic logic is defined. For example:

ω[[e+ ẽ]] = ω[[e]]+ω[[ẽ]] for all states ω

With a point-wise understanding of +, this can be summarized as:

[[e+ ẽ]] = [[e]]+ [[ẽ]]

The mystery of giving meaning to differential symbols, thus, resolves by declar-
ing the state to be responsible for assigning a value not just to all variables x ∈ V
but also to all differential symbols x′ ∈ V ′. A state ω is a mapping ω : V ∪V ′→R
assigning a real number ω(x) ∈ R to each variable x ∈ V and also a real num-
ber ω(x′) ∈ R to each differential symbol x′ ∈ V ′. For example, when ω(v) =
1/2,ω(w) =

√
3/2,ω(r) = 5 and ω(v′) =

√
3/2,ω(w′) =−1/2,ω(r′) = 0 the term

2vv′+2ww′−2rr′ evaluates to:

ω[[2vv′+2ww′−2rr′]] = 2ω(v) ·ω(v′)+2ω(w) ·ω(w′)−2ω(r) ·ω(r′) = 0

A differential symbol x′ could have any arbitrary real value in a state ω . Along
the solution ϕ : [0,r]→S of a differential equation, however, we know precisely
what value x′ has. Or at least we do, if its duration r is nonzero so that we are not

278 10 Differential Equations & Differential Invariants

just talking about an isolated point ϕ(0) again. At any point in time z ∈ [0,r] along
such a continuous evolution ϕ , the differential symbol x′ has the same value as the
time-derivative d

dt of the value ϕ(t)(x) of x over time t at time z [9, 12, 15], because
that is what we needed to make sense of the equation x′ = f (x).

Definition 3.3 (Transition semantics of ODEs).

[[x′ = f (x)&Q]] =
{
(ω,ν) : ϕ(0) = ω except at x′ and ϕ(r) = ν for a solution

ϕ : [0,r]→S of any duration r satisfying ϕ |= x′ = f (x)∧Q
}

where ϕ |= x′ = f (x)∧Q, iff for all times 0≤ z≤ r: ϕ(z) ∈ [[x′ = f (x)∧Q]]

with ϕ(z)(x′) def
= dϕ(t)(x)

dt (z) and ϕ(z) = ϕ(0) except at x,x′.

The value of differential symbol x′ at time z ∈ [0,r] along a solution ϕ : [0,r]→S
of a differential equation x′ = f (x)&Q is equal to the analytic time-derivative at z:

ϕ(z)(x′) def
=

dϕ(t)(x)
dt

(z) (10.5)

Intuitively, the value ϕ(z)(x′) of x′ is, thus, determined by considering how the value
ϕ(z)(x) of x changes along the solution ϕ when we change time z “only a little bit”.
Visually, it corresponds to the slope of the tangent of the value of x at time z; see
Fig. 10.4. A subtlety poses the case of a solution of duration r = 0, in which case
there still is no time-derivative to speak of. If r = 0, the more detailed explanation
of Definition 3.3 in Sect. 3.3.2 ignores condition (10.5) leaving only the requirement
that ω and ν agree except for the value of x′ and that ν ∈ [[x′ = f (x)∧Q]].

Fig. 10.4 Semantics of differ-
ential symbols

0 t

ϕ(t)(x)

x0 ϕ(z)
(x
′)x′ = x3

z

ϕ(z)(x)

Now we finally figured out the answer to the question what x′ means and what
its value is. It all depends on the state. And nothing but the state. Along differential
equations, we know a lot about the value of x′, otherwise we know less.

The values that the states ϕ(z) visited along a solution ϕ : [0,r]→S of a dif-
ferential equation x′ = f (x)&Q assign to x′ will have a close relationship, namely
(10.5) and ϕ(z) ∈ [[x′ = f (x)]]. But that relationship is by virtue of ϕ being a solu-
tion of a differential equation, so that the family of states ϕ(z) for z ∈ [0,r] have a
unique link. It is perfectly consistent to have one state ω in which ω(x′) = 1 and an-
other equally isolated state ν in which ν(x′) =

√
8. In fact, that is just what happens

for the initial state ω and final state ν of following the differential equation x′ = x3

10.3 Differentials 279

from ω(x) = 1 for 1
4 time units. If we do not know that ω and ν are the initial and

final states of that differential equation or if we do not know that it was exactly 1
4

time units that we followed it, there is no reason to suspect much of a relationship
between the values of ω(x′) and ν(x′).

Differential symbols x′ have a meaning from now as being interpreted directly by
the state. Yet, what is the meaning of a differential term (e)′ such as (v2+w2−r2)′?

Before you read on, see if you can find the answer for yourself.

10.3.3 Semantics of Differential Terms

At this point it should no longer be a surprise that the first mathematical reflex of
understanding differential terms (e)′ as time-derivatives will quickly fall short of
its own expectations, because there still is no time-derivative in the isolated state ω

that the value ω[[(e)′]] has at its disposal. Likewise, we still cannot ask any differ-
ential equations occurring somewhere else in the context, because that would break
compositionality and would not explain the meaning in an isolated formula such as
(10.3). Unfortunately, though, we cannot follow the same solution and ask the state
to assign any arbitrary real value to each differential term. After all, there should be a
close relationship of ω[[(2x2)′]] and ω[[(8x2)′]] namely that 4ω[[(2x2)′]] = ω[[(8x2)′]].
And an arbitrary state would not respect this relationship if it were to remember arbi-
trary and unrelated real values for all possible differential terms. Thus, the structure
and meaning of the term e should contribute to the meaning of (e)′.

The value of (e)′ is supposed to tell us something about how the value of e
changes. But it is not and could not possibly be the change over time that this is
referring to, because there is no time nor time-derivative to speak of in an isolated
state ω . The trick is that we can still determine how the value of e will change, just
not over time. We can tell just from the term e itself how its value will change locally
depending on how its constituents change.

Recall that the partial derivative ∂ f
∂x (ξ) of a function f by variable x at the point

ξ characterizes how the value of f changes as x changes at the point ξ . The term
2x2 will locally change according to the partial derivative of its value by x, but the
ultimate change will also depend on how x itself changes locally. The term 5x2y
also changes according to the partial derivative of its value by x but also its partial
derivative by y and ultimately depends on how x as well as y themselves change
locally.

The clou is that the state ω has the values ω(x′) of the differential symbols x′ at its
disposal, which, qua Definition 3.3, are reminiscent of the direction that x would be
evolving to locally, if only state ω were part of a solution of a differential equation.
The value ω(x′) of differential symbol x′ acts like the “local shadow” of the time-
derivative dx

dt at ω if only that derivative even existed at that point to begin with.
But even if that time-derivative cannot exist at a general isolated state, we can still

280 10 Differential Equations & Differential Invariants

understand the value ω(x′) that x′ happens to have in that state as the direction that
x would involve in locally at that state. Likewise the value ω(y′) of y′ can be taken
to indicate the direction that y would involve in locally at that state. Now all it takes
is a way to accumulate the change by summing it all up to lead to the meaning of
differentials [15].

Definition 10.4 (Semantics of differentials). The semantics of differential
term (e)′ in state ω is the value ω[[(e)′]] defined as:

ω[[(e)′]] = ∑
x∈V

ω(x′)
∂ [[e]]
∂x

(ω)

The value ω[[(e)′]] is the sum of all (analytic) spatial partial derivatives at ω of the
value of e by all variables x∈V multiplied by the corresponding tangent or direction
of evolution described by the value ω(x′) of differential symbol x′ ∈ V ′.

That sum over all variables x ∈ V has finite support (only finitely many sum-
mands are nonzero), because term e only mentions finitely many variables x and the
partial derivative by variables x that do not occur in e is 0, so do not contribute to
the sum. The spatial derivatives exist since the evaluation ω[[e]] is a composition of
smooth functions such as addition, multiplication etc., so is itself smooth.

Overall the (real) value of (e)′, thus, depends not just on e itself and the values
in the current state ω of the variables x that occur in e but also on the direction
that these variables are taken to evolve to according to the values of the respective
differential symbols x′ in ω; see Fig. 10.5.

Fig. 10.5 Differential form
semantics of differentials:
their value depends on the
point as well as on the direc-
tion of the vector field at that
point

→ R

Example 10.3 (Rotational dynamics). In state ω , the differential term (v2+w2−r2)′

from the rotational dynamics has the semantics:

ω[[(v2 +w2− r2)′]] = ω(v′) ·ω[[2v]]+ω(w′) ·ω[[2w]]−ω(r′) ·ω[[2r]]

Example 10.4. In a state ω , the differential term (x3y+2x+1)′ has the semantics:

ω[[(x3y+2x+5)′]] = ω(x′) ·ω[[3x2y+2]]+ω(y′) ·ω[[x3]]

10.3 Differentials 281

10.3.4 Derivation Lemma

Quite crucially observe one byproduct of adopting differentials as first-class citizens
in dL. Differentiation, the process of forming derivatives that we used in (10.2), was
previously an amorphous operation without proper semantic counterparts. While it
might have been clear how to differentiate a term, it was quite unclear what that
really meant in a state. Using Definition 10.4, both sides of the equation (10.2) now
have a precise semantics and, indeed, both sides always have the same value.

Differentiation has now simply become the perfectly meaningful use of equations
of differential terms. For example, the use of Leibniz’ product rule of differentiation
simply corresponds to the use of the following equation:

(e · k)′ = (e)′ · k+ e · (k)′ (10.6)

Equations have a well-defined meaning on reals and both sides of the equation (10.6)
have a semantics by Definition 10.4, which can be shown to agree. After establishing
that the equation (10.6) is a valid formula, differentiating a product such as x3 · y
simply amounts to using the corresponding instance of (10.6) to justify:

(x3 · y)′ = (x3)′ · y+ x3 · (y)′

Corresponding equations of differentials hold for all other term operators.

Lemma 10.1 (Derivation lemma). The following equations of differentials
are valid formulas so sound axioms:

+′ (e+ k)′ = (e)′+(k)′

−′ (e− k)′ = (e)′− (k)′

·′ (e · k)′ = (e)′ · k+ e · (k)′

/′ (e/k)′ =
(
(e)′ · k− e · (k)′

)
/k2

c′ (c())′ = 0 (for numbers or constants c())

x′ (x)′ = x′ (for variable x ∈ V)

Proof. We only consider the summation case of the proof which is reported in full
elsewhere [15].

282 10 Differential Equations & Differential Invariants

ω[[(e+ k)′]] = ∑
x

ω(x′)
∂ [[e+ k]]

∂x
(ω) = ∑

x
ω(x′)

∂ ([[e]]+ [[k]])
∂x

(ω)

= ∑
x

ω(x′)
(

∂ [[e]]
∂x

(ω)+
∂ [[k]]
∂x

(ω)
)

= ∑
x

ω(x′)
∂ [[e]]
∂x

(ω)+∑
x

ω(x′)
∂ [[k]]
∂x

(ω)

= ω[[(e)′]]+ω[[(k)′]] = ω[[(e)′+(k)′]]ut

This gives us a way of computing simpler forms for differentials of terms by ap-
plying the equations Lemma 10.1 from left to right, which will, incidentally, lead us
to the same result that differentiation would have. Except now the result has been
obtained by a chain of logical equivalence transformations each of which are indi-
vidually grounded semantically with a soundness proof. It also becomes possible
to selectively apply equations of differentials as need be in a proof without endan-
gering soundness. Who would have figured that our study of differential equations
would lead us down a path to study equations of differentials instead?

By axiom x′, the differential (x)′ of a variable x is simply its corresponding dif-
ferential symbol x′, because both have the same semantics. The differential (c())′

of a constant symbol c() is 0, because constant symbols do not change their value
when changing the value of any variable. The differential of a division e/k uses a
division, which is where we need to make sure not to accidentally divide by zero.
Yet, in the definition of (e/k)′, the division is by k2 which, fortunately, has the same
roots that k already has, as k = 0↔ k2 = 0 is valid for any term k. Hence, in any
context in which e/k was defined, its differential (e/k)′ will also be defined.

Example 10.5. Computing the differential of a term like v2 +w2 is now easy just by
subsequently using the respective equations from Lemma 10.1 as indicated:

(v2 +w2)′ +
′

= (v · v)′+(w ·w)′
·′
= ((v)′ · v+ v · (v)′)+((w)′ ·w+w · (w)′)
x′
= v′ · v+ v · v′+w′ ·w+w ·w′ = 2vv′+2ww′

When r is a constant function symbol, an additional use of axiom c′ also justifies:

(v2 +w2− r2)′ = 2vv′+2ww′

10.3.5 Differential Lemma

Now that we obtained a precise semantics of differential symbols x′ and differentials
(e)′ that is meaningful in any arbitrary state ω , no matter how isolated it may be, it
is about time to come back to the question what we can learn from studying their
values along a differential equation.

10.3 Differentials 283

Along the solution ϕ of a differential equation, differential symbols x′ do not
have arbitrary values but, at all times z, are interpreted as time-derivatives of the
value of x by Definition 3.3:

ϕ(z)[[(x)′]] = ϕ(z)(x′) def
=

dϕ(t)(x)
dt

(z) (10.5*)

The key insight is that this equality of the value of differentials with analytic time-
derivatives continues to hold not just for differentials of variables x but also for
differentials (e)′ of arbitrary terms e.

The following central lemma [15], which is the differential counterpart of the
substitution lemma, establishes the connection between the semantics of syntactic
differentials of terms and semantic differentiation as an analytic operation to obtain
analytic time-derivatives of the semantics of terms along differential equations. It
will allow us to draw analytic conclusions about the behavior of a system along a
differential equation from the values of differentials obtained synctactically.

Lemma 10.2 (Differential lemma). Let ϕ |= x′ = f (x)∧Q for some solution
ϕ : [0,r]→ S of duration r > 0. Then for all times times 0 ≤ z ≤ r and all
terms e (defined all along ϕ with FV(e)⊆ {x}):

ϕ(z)[[(e)′]] =
dϕ(t)[[e]]

dt
(z)

In particular, ϕ(z)[[e]] is continuously differentiable in z. The same result applies
to vectorial differential equations as long as all free variables of the term e have
some differential equation so that their differential symbols agree with the time-
derivatives.

Note 56 (The differential lemma clou) Lemma 10.2 shows that analytic time-
derivatives coincide with the values of differentials. The clou with Lemma 10.2
is that it equates precise but sophisticated analytic time-derivatives with
purely syntactic differentials. The analytic time-derivatives on the right-hand
side of Lemma 10.2 are mathematically precise and pinpoint exactly what we
are interested in: the rate of change of the value of e along ϕ . But they are
unwieldy for computers, because analytic derivatives are ultimately defined in
terms of limit processes and also need a whole solution to be well-defined. The
syntactic differentials on the left-hand side of Lemma 10.2 are purely syntactic
(putting a prime on a term) and even their simplifications via the recursive use
of the axioms from Lemma 10.1 are computationally tame.

Having said that, the syntactic differentials need to be aligned with the in-
tended analytic time-derivatives, which is exactly what Lemma 10.2 achieves.
To wit, even differentiating polynomials and rational functions is much easier

284 10 Differential Equations & Differential Invariants

syntactically than by unpacking the meaning of analytic derivatives in terms
of limit processes.

10.3.6 Differential Invariant Term Axiom

The differential lemma immediately leads to a first proof principle for differential
equations. If the differential (e)′ is always zero along a differential equation, then
e will always be zero if and only if it was zero initially. For emphasis, we use the
backwards implication P← Q as alternative notation for the converse forward im-
plication Q→ P.

Lemma 10.3 (Differential invariant axiom for = 0). This axiom is sound:

DI
(
[x′ = f (x)]e = 0↔ e = 0

)
← [x′ = f (x)] (e)′ = 0

Proof. To prove that axiom DI is sound, we need to show validity of the formula:

[x′ = f (x)] (e)′ = 0→
(
[x′ = f (x)]e = 0↔ e = 0

)
Consider any state ω in which the assumption is true, so ω ∈ [[[x′ = f (x)] (e)′ = 0]],
and show that ω ∈ [[[x′ = f (x)]e = 0↔ e = 0]]. Now, ω ∈ [[[x′ = f (x)]e = 0]] di-
rectly implies ω ∈ [[e = 0]] when following the differential equation for duration
0.2 To show the converse implication, assume ω ∈ [[e = 0]]. If ϕ is a solution of
x′ = f (x), then the assumption implies that ϕ |= (e)′ = 0 since all restrictions of
solutions are again solutions. Consequently, Lemma 10.2 implies

0 = ϕ(z)[[(e)′]] =
dϕ(t)[[e]]

dt
(z)

This implies e stays zero along ϕ by the mean-value theorem, since it initially started
out 0 (by ω ∈ [[e = 0]]) and had 0 change over time. Hold on, that use of Lemma 10.2
was, of course, predicated on having a solution ϕ of duration r > 0 (otherwise there
are no time-derivatives to speak of). Yet, solutions of duration r = 0 also satisfy
e = 0 from the assumption ω ∈ [[e = 0]]. ut

The only nuisance with axiom DI is that it never proves any interesting properties
on its own. It reduces a proof of the postcondition e = 0 for a differential equation
to the question whether e = 0 is true initially but also to a proof of the postcondition
(e)′ = 0 for the same differential equation. This is similar to how the loop induction
axiom I from Lemma 7.2 reduced the proof of postcondition P of a loop to another

2 A minor subtlety when comparing the value of e in ω compared to ϕ(0) in this proof is that
we cannot allow x′ to occur free in e, because its value may differ before and after the differential
equation even for duration 0. A proof that is explicit about all subtleties is found elsewhere [15].

10.3 Differentials 285

postcondition P→ [α]P of the same loop, so that we ultimately still needed the
generalization rule G to get rid of the loop entirely. But just generalization rule G
alone will not quite suffice for differential equations.

For Example 11.1, a use of axiom DI would lead to:

` [v′ = w,w′ =−v]2vv′+2ww′−2rr′ = 0
DI v2 +w2− r2 = 0 ` [v′ = w,w′ =−v]v2 +w2− r2 = 0
→R ` v2 +w2− r2 = 0→ [v′ = w,w′ =−v]v2 +w2− r2 = 0

Without knowing anything about v′ and w′ and r′ in the postcondition, this proof
has no chance of ever closing. Certainly the generalization rule G cannot succeed
because the postcondition 2vv′+ 2ww′− 2rr′ = 0 alone is not always true. In fact,
it should not be valid, because whether a postcondition e = 0 is an invariant of a
differential equation does not just depend on the differential (e)′ of the term in the
postcondition, but also on the differential equation itself. What stands to reason is to
use the right-hand sides of the differential equations for their left-hand sides, after
all both sides of the equation are supposed to be equal. The question is how to justify
that that’s sound.

10.3.7 Differential Substitution Lemmas

Lemma 10.2 shows that, along a differential equation, the value of the differential
(e)′ of term e coincides with the analytic time-derivative of the value of term e. The
value of a differential term (e)′ depends on the term itself as well as the value of
its variables x and their corresponding differential symbols x′. Along a differential
equation x′ = f (x), the differential symbols x′ themselves actually have a simple
interpretation: their values equal the right-hand side f (x).

The direction into which the value of a term e evolves as the system follows
a differential equation x′ = f (x) depends on the differential (e)′ of the term
e as well as on the differential equation x′ = f (x) that locally describes the
evolution of its variable x over time.

What we need is a way of using the differential equation x′ = f (x) to soundly
replace occurrences of the differential symbol x′ from its left-hand side with the
corresponding right-hand side f (x) of the differential equation. Naïve replacement
would be unsound, because that might violate the scope of the formula where x′

equals f (x). Discrete assignments x :=e were ultimately handled in axiom [:=] from
Lemma 5.2 by substituting the new value e in for the variable x, and the axiom is
already mindful of scoping challenges. The trick is to use the same assignments but
for assigning terms to differential symbols x′ instead of variables x. Since x′ already
always has the value f (x) when following the differential equation x′ = f (x) along
its solution ϕ , assigning f (x) to x′ by a discrete assignment x′ := f (x) has no effect.

286 10 Differential Equations & Differential Invariants

Lemma 10.4 (Differential assignment). If ϕ |= x′ = f (x)∧Q for a solution
ϕ : [0,r]→S of any duration r ≥ 0, then

ϕ |= P↔ [x′ := f (x)]P

Proof. The proof [15] is a direct consequence of the fact that the semantics of differ-
ential equations (Definition 3.3) requires that ϕ(z) ∈ [[x′ = f (x)]] holds at all times z
all along ϕ . Consequently, the assignment x′ := f (x) that changes the value of x′ to
be the value of f (x) will have no effect, since x′ already does have that value along
the differential equation. Thus, P and [x′ := f (x)]P are equivalent along ϕ . ut
Using this equivalence at any state along a differential equation x′ = f (x) gives rise
to a simple axiom characterizing the effect that a differential equation has on its
differential symbol. Following a differential equation x′ = f (x) requires x′ and f (x)
to always have the same value along the differential equation.

Lemma 10.5 (Differential effects). The differential effect axiom is sound:

DE [x′ = f (x)&Q]P↔ [x′ = f (x)&Q][x′ := f (x)]P

While axiom DE performs a no-op, its benefit is that it makes the effect that a dif-
ferential equation has on the differential symbol available as a discrete assignment.

The last ingredient is to use the assignment axiom [:=] from Lemma 5.2 also
for discrete assignments x′ :=e to differential symbol x′ instead of just for discrete
assignments x :=e to variable x:

[:=] [x′ :=e]p(x′)↔ p(e)

Let’s continue the proof for Example 11.1:

` [v′ = w,w′ =−v]2v(w)+2w(−v)−2rr′ = 0
[:=] ` [v′ = w,w′ =−v][v′:=w][w′:=− v]2vv′+2ww′−2rr′ = 0
DE ` [v′ = w,w′ =−v]2vv′+2ww′−2rr′ = 0
DI v2 +w2− r2 = 0 ` [v′ = w,w′ =−v]v2 +w2− r2 = 0
→R ` v2 +w2− r2 = 0→ [v′ = w,w′ =−v]v2 +w2− r2 = 0

Oops, that did not make all differential symbols disappear, because r′ is still around,
since r did not have a differential equation in (10.2) to begin with. Stepping back,
what we mean by a differential equation like v′ = w,w′ =−v that does not mention
r′ is that r is not supposed to change. If r were supposed to change during a contin-
uous evolution, then there would have to be a differential equation for r describing
how r changes.

10.4 Differential Invariant Terms 287

Note 57 (Explicit change) Hybrid programs are explicit change. Nothing
changes unless an assignment or differential equation specifies how (compare
the semantics from Chap. 3 and the bound variables in Sect. 5.6.5). In partic-
ular, if a differential equation (system) x′ = f (x) does not mention z′, then the
variable z does not change during x′ = f (x), so x′ = f (x) and x′ = f (x),z′ = 0
are the same. Strictly speaking this equivalence only holds when z′ itself does
not occur elsewhere in the program or formula, which is a condition that is
usually met. The subtle nuance is that only x′ = f (x) will leave the value of z′

untouched, but x′ = f (x),z′ = 0 will change z′ to 0.
Even if KeYmaera X has a rigorous treatment with uniform substitutions of

free constant symbols, it suffices for our paper proofs to assume z′ = 0 without
further notice for variables z that do not change during a differential equation.

as (10.2) does not have a differential equation for r, Note 57 implies that instead of
its differential equation v′ = w,w′ =−v we could have used v′ = w,w′ =−v,r′ = 0,
which, with DE, would give rise to an extra [r′:=0], which we will assume implicitly
from now on after showing its use explicitly just once.

∗
R ` 2vw−2wv−0 = 0
G ` [v′ = w,w′ =−v]2v(w)+2w(−v)−0 = 0
[:=] ` [v′ = w,w′ =−v][v′:=w][w′:=− v][r′:=0]2vv′+2ww′−2rr′ = 0
DE ` [v′ = w,w′ =−v]2vv′+2ww′−2rr′ = 0
DI v2+w2−r2=0 ` [v′ = w,w′ =−v]v2 +w2− r2 = 0
→R ` v2 +w2− r2 = 0→ [v′ = w,w′ =−v]v2 +w2− r2 = 0

This is amazing, because we found out that the value of v2 +w2− r2 does not
change over time along the differential equation v′ = w,w′ =−v. And we found
that out without ever solving the differential equation, just by a few lines of simple
but mathematically rigorous symbolic proof steps.

10.4 Differential Invariant Terms

In order to be able to use the above reasoning as part of a sequent proof efficiently,
let’s package up the argument in a simple proof rule. As a first shot, we stay with
equations of the form e = 0, which gives us soundness for the following proof rule.

Lemma 10.6 (Differential invariant terms). The following special case of
the differential invariants proof rule is sound, i.e. if its premise is valid then so
is its conclusion:

288 10 Differential Equations & Differential Invariants

dI
` [x′:= f (x)](e)′ = 0

e = 0 ` [x′ = f (x)]e = 0

Proof. We could prove soundness of this proof rule by going back to the semantics
and lemmas we proved about it. The easier soundness proof is to prove that it is a
derived rule, meaning that it can be expanded into a sequence of other proof rule
applications that we have already seen to be sound:

` [x′ := f (x)](e)′ = 0
G ` [x′ = f (x)&Q][x′ := f (x)](e)′ = 0

DE ` [x′ = f (x)&Q](e)′ = 0
DIe = 0 ` [x′ = f (x)&Q]e = 0

This proof shows dI to be a derived rule because it starts with the premise of rule dI
as the only open goal and ends with the conclusion of rule dI, using only proof rules
we already know are sound. ut

Notice that Gödel’s generalization rule G was used to derive dI, so it would not be
sound to retain a sequent context Γ ,∆ in its premise (except, as usual, assumptions
about constants). After all, its premise represents an induction step for a differential
equation. Just like in loop invariants, we cannot assume the state considered in the
induction step would still satisfy whatever we knew in the initial state.

This proof rule enables us to prove dL formula (10.2) easily in sequent calculus:

∗
R ` 2vw+2w(−v)−0 = 0
[:=] ` [v′:=w][w′:=− v]2vv′+2ww′−0 = 0
dI v2 +w2− r2 = 0 ` [v′ = w,w′ =−v]v2 +w2− r2 = 0
→R ` v2 +w2− r2 = 0→ [v′ = w,w′ =−v]v2 +w2− r2 = 0

Taking a step back, this is an exciting development, because, thanks to differential
invariants, the property (10.2) of a differential equation with a nontrivial solution
has a very simple proof that we can easily check. The proof did not need to solve
the differential equation, which has infinitely many solutions with combinations of
trigonometric functions.3 The proof only required deriving the postcondition and
substituting the differential equation in.

3 Granted, the solutions in this case are not quite so terrifying yet. They are all of the form

v(t) = acos t +bsin t, w(t) = bcos t−asin t

But the special functions sin and cos still fall outside the decidable parts of arithmetic.

10.5 A Differential Invariant Proof by Generalization 289

10.5 A Differential Invariant Proof by Generalization

So far, the argument captured in the differential invariant term proof rule dI works
for

v2 +w2− r2 = 0→ [v′ = w,w′ =−v]v2 +w2− r2 = 0 (10.2*)

with an equation v2 +w2− r2 = 0 normalized to having 0 on the right-hand side but
not for the original formula

v2 +w2 = r2→ [v′ = w,w′ =−v]v2 +w2 = r2 (10.1*)

because its postcondition is not of the form e = 0. Yet, the postcondition v2 +w2−
r2 = 0 of (10.2) is trivially equivalent to the postcondition v2 +w2 = r2 of (10.1),
just by rewriting the polynomials on one side, which is a minor change. That is an
indication, that differential invariants can perhaps do more than what proof rule dI
already knows about.

But before we pursue our discovery of what else differential invariants can do for
us any further, let us first understand a very important proof principle.

Note 58 (Proof by generalization) If you do not find a proof of a formula, it
can sometimes be easier to prove a more general property from which the one
you were looking for follows.

This principle, which may at first appear paradoxical, turns out to be very helpful.
In fact, we have made ample use of Note 58 when proving properties of loops by
induction. The loop invariant that needs to be proved is usually more general than
the particular postcondition one is interested in. The desirable postcondition follows
from having proved a more general inductive invariant.

Recall the monotone generalization rule from Chap. 7:

MR
Γ ` [α]Q,∆ Q ` P

Γ ` [α]P,∆
Instead of proving the desirable postcondition P of α (conclusion), proof rule MR

makes it possible to prove the postcondition Q instead (left premise) and prove that
Q is more general than the desired P (right premise). Generalization MR can help
us prove the original dL formula (10.1) by first turning the postcondition into the
form of the (provable) (10.2) and adapting the precondition using a corresponding
cut with v2 +w2− r2 = 0:

→R

MR

cut,WL,WR

R
∗

v2 +w2 = r2 ` v2 +w2− r2 = 0
dI

R
∗

` 2vw+2w(−v)−0 = 0
` [v′:=w][w′:=− v]2vv′+2ww′−0

v2 +w2− r2 = 0 ` [v′ = w,w′ =−v]v2 +w2− r2 = 0
v2 +w2 = r2 ` [v′ = w,w′ =−v]v2 +w2− r2 = 0

R
∗

v2 +w2− r2 = 0 ` v2 +w2 = r2

v2 +w2 = r2 ` [v′ = w,w′ =−v]v2 +w2 = r2

` v2 +w2 = r2→ [v′ = w,w′ =−v]v2 +w2 = r2

290 10 Differential Equations & Differential Invariants

This is a possible way of proving the original (10.1), but also unnecessarily com-
plicated. Differential invariants can prove (10.1) directly once we generalize proof
rule dI appropriately. For other purposes, however, it is still important to have the
principle of generalization Note 58 in our repertoire of proof techniques.

10.6 Example Proofs

Of course, differential invariants are just as helpful for proving properties of other
differential equations.

Example 10.6 (Self-crossing). Another example is the following invariant property
illustrated in Fig. 10.6:

x2 + x3− y2− c = 0→ [x′ =−2y,y′ =−2x−3x2]x2 + x3− y2− c = 0

This dL formula proves easily using dI:

Fig. 10.6 Two differential invariants of the indicated dynamics (illustrated in thick red) for differ-
ent values of c

∗
R ` 2x(−2y)+3x2(−2y)−2y(−2x−3x2) = 0
[:=] ` [x′:=−2y][y′:=−2x−3x2]2xx′+3x2x′−2yy′−0 = 0
dI x2 + x3− y2− c = 0 ` [x′ =−2y,y′ =−2x−3x2]x2 + x3− y2− c = 0
→R ` x2 + x3− y2− c = 0→ [x′ =−2y,y′ =−2x−3x2]x2 + x3− y2− c = 0

Example 10.7 (Motzkin). Another nice example is the Motzkin polynomial, which
is an invariant of the following dynamics (see Fig. 10.7):

10.6 Example Proofs 291

x4y2 + x2y4−3x2y2 +1 = c→
[x′ = 2x4y+4x2y3−6x2y,y′ =−4x3y2−2xy4 +6xy2]x4y2+x2y4−3x2y2+1 = c

Fig. 10.7 Two differential invariants of the indicated dynamics for the Motzkin polynomial (illus-
trated in thick red) for different values of c

This dL formula proves easily using dI, again after normalizing the equation to
have right-hand side 0:

∗
R ` 0 = 0
[:=] ` [x′:=2x4y+4x2y3−6x2y][y′:=−4x3y2−2xy4 +6xy2](x4y2 + x2y4−3x2y2 +1− c)′ = 0
dI . . ` [x′ = 2x4y+4x2y3−6x2y,y′ =−4x3y2−2xy4 +6xy2]x4y2 + x2y4−3x2y2 +1− c = 0
→R ` . .→ [x′ = 2x4y+4x2y3−6x2y,y′ =−4x3y2−2xy4 +6xy2]x4y2 + x2y4−3x2y2 +1− c = 0

This time, the proof step that comes without a label is simple, but requires some
space:

(x4y2 + x2y4−3x2y2 +1− c)′ = (4x3y2 +2xy4−6xy2)x′+(2x4y+4x2y3−6x2y)y′

After substituting in the differential equation, this gives

(4x3y2 +2xy4−6xy2)(2x4y+4x2y3−6x2y)

+(2x4y+4x2y3−6x2y)(−4x3y2−2xy4 +6xy2)

which simplifies to 0 after expanding the polynomials, and, thus, leads to the equa-
tion 0 = 0, which is easy to prove.

292 10 Differential Equations & Differential Invariants

Note that the arithmetic complexity reduces when hiding unnecessary contexts
as shown in Sect. 6.5.3.

Thanks to Andrew Sogokon for the nice Example 10.7.

10.7 Summary

This chapter showed one form of differential invariants: the form where the dif-
ferential invariants are terms whose value always stays 0 along all solutions of a
differential equation. The next chapter will use the tools developed in this chapter to
investigate more general forms of differential invariants and more advanced proof
principles for differential equations. They all share the important discovery in this
chapter: that properties of differential equations can be proved using the differential
equation rather than its solution.

The most important technical insight of this chapter was that even very compli-
cated behavior that is defined by mathematical properties of the semantics can be
captured by purely syntactical proof principles using differentials. The differential
lemma proved that the values of differentials of terms coincide with the analytic
derivatives of the values. The derivation lemma gave us the usual rules for com-
puting derivatives as equations of differentials. The differential assignment lemma
allowed us the intuitive operation of substituting differential equations into terms.
Proving properties of differential equations using a mix of these simple proof princi-
ples is much more civilized and effective than working with solutions of differential
equations. The proofs are also computationally easier, because the proof arguments
are local and derivatives even decrease the polynomial degrees.

The principles begun in this chapter have more potential, though, and are not lim-
ited to proving only properties of the rather limited form e = 0. Subsequent chapters
will make use of the results obtained and build on the differential lemma, derivation
lemma, and differential assignment lemma to develop more general proof principles
for differential equations.

10.8 Appendix

10.8.1 Differential Equations vs. Loops

One way of developing an intuition for the purpose of differential invariants leads
through a comparison of differential equations with loops. This perhaps surprising
relation can be made completely rigorous and is at the heart of a deep connection
equating discrete and continuous dynamics proof-theoretically [13]. This chapter
will stay at the surface of this surprising connection but still leverage the relation of
differential equations to loops for our intuition.

10.8 Appendix 293

To get started with relating differential equations to loops, compare

x′ = f (x) vs. (x′ = f (x))∗

How does the differential equation x′ = f (x) compare to the same differential equa-
tion in a loop (x′ = f (x))∗ instead? Unlike the differential equation x′ = f (x), the re-
peated differential equation (x′ = f (x))∗ can run the differential equation x′ = f (x)
repeatedly any number of times. Albeit, on second thought, does that get the repeti-
tive differential equation (x′ = f (x))∗ to any more states than where the differential
equation x′ = f (x) could evolve to?

Not really, because chaining lots of solutions of differential equations from a
repetitive differential equation (x′ = f (x))∗ together will still result in a single solu-
tion for the same differential equation x′ = f (x) that we could have followed all the
way. This is precisely what a classical result about the continuation of solutions is
about (Proposition 2.2).

Note 59 (Looping differential equations) The loop (x′ = f (x))∗ over a dif-
ferential equation is equivalent to x′ = f (x), written (x′ = f (x))∗ ≡ (x′ = f (x)),
i.e. both have the same transition semantics:

[[(x′ = f (x))∗]] = [[x′ = f (x)]]

That is, differential equations “are their own loop”.4

In light of Note 59, differential equations already have some aspects in com-
mon with loops. Like nondeterministic repetitions, differential equations might stop
right away. Like nondeterministic repetitions, differential equations could evolve for
longer or shorter durations and the choice of duration is nondeterministic. Like in
nondeterministic repetitions, the outcome of the evolution of the system up to an
intermediate state influences what happens in the future. And, in fact, in a deeper
sense, differential equations actually really do correspond to loops executing their
discrete Euler approximations [13].

With this rough relation in mind, let’s advance the dictionary translating differ-
ential equation phenomena into loop phenomena and back. The local description
of a differential equation as a relation x′ = f (x) of the state to its derivative corre-
sponds to the local description of a loop by a repetition operator ∗ applied to the loop
body α . The global behavior of a global solution of a differential equation x′ = f (x)
corresponds to the full global execution trace of a repetition α∗, but are similarly
unwieldy objects to handle. Because the local descriptions are so much more con-
cise than the respective global behaviors, but still carry all information about how
the system will evolve over time, we also say that the local relation x′ = f (x) is the
generator of the global system solution and that the loop body α is the generator
of the global behavior of repetition of the loop. Proving a property of a differen-

4 Beware not to confuse this with the case for differential equations with evolution domain con-
straints, which is subtly different (Exercise 10.1).

294 10 Differential Equations & Differential Invariants

tial equation in terms of its solution corresponds to proving a property of a loop by
unwinding it (infinitely long) by axiom [∗] from Chap. 5.

Table 10.1 Correspondence map between loops and differential equations

loop α∗ differential equation x′ = f (x)

could repeat 0 times could evolve for duration 0

repeat any number n ∈ N of times evolve for any duration r ∈ R,r ≥ 0

effect depends on previous loop iteration effect depends on the past solution

local generator is loop body α local generator is x′ = f (x)

full global execution trace global solution ϕ : [0,r]→S

proof by unwinding iterations with axiom [∗] proof by global solution with axiom [′]

proof by induction with loop invariant rule loop proof by differential invariant

Now, Chap. 7 made the case that unwinding the iterations of a loop can be a
rather tedious way of proving properties about the loop, because there is no good
way of ever stopping to unwind, unless a counterexample can be found after a finite
number of unwindings. This is where working with a global solution of a differen-
tial equation with axiom [′] is actually more useful, because the solution, if we can
write it down in first-order real arithmetic, can be handled completely because of
the quantifier ∀t≥0 over all durations. But Chap. 7 introduced induction with invari-
ants as the preferred way of proving properties of loops, by, essentially, cutting the
loop open and arguing that the generic state after any run of the loop body has the
same characterization as the generic state before. After all these analogous corre-
spondences between loops and differential equations, the obvious question is what
the differential equation analogue of a proof concept would be that corresponds to
proofs by induction for loops, which is the premier technique for proving loops.

Induction can be defined for differential equations using what is called differ-
ential invariants [9, 14, 15]. The have a similar principle as the proof rules for
induction for loops. Differential invariants prove properties of the solution of the
differential equation using only its local generator: the right-hand side of the differ-
ential equation.

10.8.2 Derivation Operators

How can we derive e? The term e could be built from any of the operators discussed
in Chap. 2, to which we now add division for rational terms to make it more inter-
esting. Let V denote the set of all variables. Recall from Chap. 2 that terms e are
defined by the grammar (where e, ẽ are terms, x is a variable, and c is a rational
number constant):

e ::= x | c | e+ ẽ | e− ẽ | e · ẽ | e/ẽ

10.8 Appendix 295

It is, of course, important to take care that division e/ẽ only makes sense in a context
where the divisor ẽ is guaranteed not to be zero in order to avoid undefinedness. We
only allow division to be used in a context where the divisor is ensured not to be
zero.

If the term is a sum e+ k, then the mathematical expectation is that its derivative
should be the derivative of e plus the derivative of k. If the term is a product e ·k, its
derivative is the derivative of e times k plus e times the derivative of k by Leibniz’
rule. The derivative of a rational number constant c∈Q is zero.5 The other operators
are similar, leaving only the case of a single variable x. What is its derivative?

Before you read on, see if you can find the answer for yourself.

The exact value of the derivative of a variable x very much depends on the current
state and on the overall continuous evolution of the system. So we punt on that for
now and define the derivative of a variable x in a seemingly innocuous way to be
the differential symbol x′ and consider what to do with it later. This gives rise to the
following way of computing the derivative of a term syntactically.

Remark 10.1 (Derivatives). Recall the familiar syntactic laws for derivatives:

(c())′ = 0 for numbers or constants c() (10.7a)
(x)′ = x′ for variable x ∈ V (10.7b)

(e+ k)′ = (e)′+(k)′ (10.7c)
(e− k)′ = (e)′− (k)′ (10.7d)
(e · k)′ = (e)′ · k+ e · (k)′ (10.7e)

(e/k)′ = ((e)′ · k− e · (k)′)/k2 (10.7f)

Note that, while the intuition and precise semantics of derivatives of terms will
ultimately be connected with more involved aspects of how values change over time,
the computation of derivatives of terms according to Remark 10.1 is a seemingly
innocuous but straightforward recursive computation on terms. If we were to apply
the equations (10.7) from left to right, then they define a recursive operator on terms
(·)′ called syntactic (total) derivation.

Remark 10.1 makes it possible to form the derivative of any polynomial or ratio-
nal term. The total derivative operator (·)′ does not, however, result in a term involv-
ing the variables V , but, instead, a differential term, i.e. a term involving V ∪V ′,
where V ′ def

= {x′ : x∈V } is the set of all differential symbols x′ for variables x∈V .
The total derivative (e)′ of a polynomial term e is not a polynomial term, but may
mention differential symbols such as x′ in addition to the symbols that where in e
to begin with. All syntactic elements of those differential terms are easy to interpret

5 Of course, the derivative of real number constants c ∈ R is also zero, but only rational number
constants are allowed to occur in the formulas of first-order logic of real arithmetic (or any real-
closed fields).

296 10 Differential Equations & Differential Invariants

Expedition 10.2 (Differential algebra)

Even though the following names and concepts are not needed directly for
this textbook, let’s take a brief scientific expedition to align Remark 10.1 with
the algebraic structures from differential algebra [3, 16] in order to illustrate
the systematic principles behind Remark 10.1. Case (10.7a) defines (rational)
number symbols alias literals as differential constants, which do not change
their value during continuous evolution. Their derivative is zero. The number
symbol 5 will always have the value 5 and never change, no matter what dif-
ferential equation is considered. Equation (10.7c) and the Leibniz or product
rule (10.7e) are the defining conditions for derivation operators on rings. The
derivative of a sum is the sum of the derivatives (additivity or a homomor-
phic property with respect to addition, i.e. the operator (·)′ applied to a sum
equals the sum of the operator applied to each summand) according to equa-
tion (10.7c). Furthermore, the derivative of a product is the derivative of one
factor times the other factor plus the one factor times the derivative of the other
factor as in (10.7e). Equation (10.7d) is a derived rule for subtraction according
to the identity e− k = e+(−1) · k and again expresses a homomorphic prop-
erty, now with respect to subtraction rather than addition.

The equation (10.7b) uniquely defines the operator (·)′ on the differential
polynomial algebra spanned by the differential indeterminates x ∈ V , i.e. the
symbols x that have indeterminate derivatives x′. It says that we understand the
differential symbol x′ as the derivative of the symbol x for all state variables
x ∈ V . Equation (10.7f) canonically extends the derivation operator (·)′ to the
differential field of quotients by the usual quotient rule. As the base field R has
no zero divisorsa, the right-hand side of (10.7f) is defined whenever the original
division e/k can be carried out, which, as we assumed for well-definedness, is
guarded by k 6= 0.

a In this setting, R has no zero divisors, because the formula ab = 0→ a = 0∨b = 0 is valid,
i.e. a product is zero only if a factor is zero.

based on the semantics of terms defined in Chap. 2, except for the differential sym-
bols. What now is the meaning of a differential symbol x′? And, in fact, what is the
precise meaning of the construct (e)′ for a term e and the equations in (??) to begin
with?

10.8.3 Differential Invariant Terms and Invariant Functions

It is not a coincidence that the examples in this chapter were provable by differ-
ential invariant proof rule dI, because that proof rule can handle arbitrary invariant
functions.

10.8 Appendix 297

Expedition 10.3 (Semantics of differential algebra)

The view of Expedition 10.2 sort of gave (e)′ a meaning, but, when we think
about it, did not actually define it. Differential algebra studies the structural
algebraic relations of, e.g., the derivative (e+ k)′ to the derivatives (e)′ plus
(k)′ and is incredibly effective about capturing and understanding them start-
ing from (10.7). But algebra—and differential algebra is no exception—is,
of course, deliberately abstract about the question what the individual pieces
mean, because algebra is the study of structure, not the study of the meaning of
the objects that are being structured in the first place. That is why we can learn
all about the structure of derivatives and derivation operators from differential
algebra, but have to go beyond differential algebra to complement it with a
precise semantics that relates to the needs of understanding the mathematics of
real cyber-physical systems.

Despite the power that differential invariant terms offer, challenges lie ahead in
proving properties. Theorem 10.1 gives an indication where challenges remain.

Example 10.8 (Generalizing differential invariants). The following dL formula is
valid

x2 + y2 = 0→ [x′ = 4y3,y′ =−4x3]x2 + y2 = 0 (10.9)

but cannot be proved directly using dI, because x2 + y2 is no invariant function of
the dynamics. In combination with generalization (MR to change the postcondition
to the equivalent x4 + y4 = 0) and a cut (to change the antecedent to the equivalent
x4 + y4 = 0), however, there is a proof using differential invariants dI:

∗
R ` 4x3(4y3)+4y3(−4x3) = 0
[:=] ` [x′:=4y3][y′:=−4x3]4x3x′+4y3y′ = 0
dI x4 + y4 = 0 ` [x′ = 4y3,y′ =−4x3]x4 + y4 = 0

cut,MRx2 + y2 = 0 ` [x′ = 4y3,y′ =−4x3]x2 + y2 = 0
→R ` x2 + y2 = 0→ [x′ = 4y3,y′ =−4x3]x2 + y2 = 0

The use of MR leads to another branch x4 + y4 = 0 ` x2 + y2 = 0 that is elided
above. Similarly, cut leads to another branch x2 + y2 = 0 ` x4 + y4 = 0 that is also
elided. Both prove easily by real arithmetic (R).

How could this happen? How could the original formula (10.9) be provable only
after generalizing its postcondition to x4 + y4 = 0 and not before?

Note 60 (Strengthening induction hypotheses) An important phenomenon
we already encountered in Chap. 7 and other uses of induction is that, some-

298 10 Differential Equations & Differential Invariants

Expedition 10.4 (Lie characterization of invariant functions)

The proof rule dI works by deriving the postcondition and substituting the
differential equation in:

dI
` [x′:= f (x)](e)′ = 0

e = 0 ` [x′ = f (x)]e = 0

There is something quite peculiar about dI. Its premise is independent of the
constant term in e. If, for any constant symbol c, the formula e = 0 is replaced
by e− c = 0 in the conclusion, then the premise of dI stays the same, because
c′ = 0. Consequently, if dI proves

e = 0 ` [x′ = f (x)]e = 0

then it also proves

e− c = 0 ` [x′ = f (x)]e− c = 0 (10.8)

for any constant c. This observation is the basis for a more general result, which
simultaneously proves all formulas (10.8) for all c from the premise of dI.

On open domains, equational differential invariants are even a necessary
and sufficient characterization of such invariant functions, i.e. functions that
are invariant along the dynamics of a system, because, whatever value c that
function had in the initial state, the value will stay the same forever. The equa-
tional case of differential invariants are intimately related [11] to the seminal
work by Sophus Lie on what are now called Lie groups [5, 6].

Theorem 10.1 (Lie’s characterization of invariant terms). Let
x′ = f (x) be a differential equation system and Q a domain, i.e., a first-
order formula of real arithmetic characterizing a connected open set.
The following proof rule is a sound global equivalence rule, i.e. the con-
clusion is valid if and only if the premise is:

dIc
Q ` [x′:= f (x)](e)′ = 0

` ∀c
(
e = c→ [x′ = f (x)&Q]e = c

)

times, the only way to prove a property is to strengthen the induction hy-
pothesis. Differential invariants are no exception. It is worth noting, however,
that the inductive structure in differential invariants includes their differential
structure. And, indeed, the derivatives of x4 + y4 = 0 are different and more
conducive for an inductive proof than those of x2 + y2 = 0 even if both have
the same set of solutions.

10.8 Appendix 299

Theorem 10.1 explains why x2 + y2 = 0 was doomed to fail as a differential invari-
ant while x4 + y4 = 0 succeeded. All formulas of the form x4 + y4 = c for all c are
invariants of the dynamics in (10.9), because the proof succeeded. But x2 + y2 = c
only is an invariant for the lucky choice c = 0 and only equivalent to x4 + y4 = 0 for
this case.

There also is a way of deciding equational invariants of algebraic differential
equations using a higher-order generalization of differential invariants called differ-
ential radical invariants [2].

Exercises

10.1 (Repeating differential equations with domains). Note 59 explained that
(x′ = f (x))∗ is equivalent to x′ = f (x). Does the same hold for differential equa-
tions with evolution domain constraints? Are the hybrid programs (x′ = f (x)&Q)∗

and x′ = f (x)&Q equivalent or not? Justify or modify the statement and justify the
variation.

10.2. We argued that dL formulas (10.1) and (10.2) are equivalent and have then
gone on to find a proof of (10.2). Continue this proof of (10.2) to a proof of (10.1)
using the generalization rule MR and the cut rule.

10.3 (Derivation lemma proof). Prove the other cases of Lemma 10.1 where e is of
the form e− k or e · k or e/k.

10.4 (Absence of solutions). What happens in the proof of Lemma 10.6 if there is
no solution ϕ? Show that this is not a counterexample to proof rule dI, but that the
rule is sound in that case.

10.5. Carry out the polynomial computations needed to prove Example 10.7 using
proof rule dI.

10.6. Prove the following dL formula using differential invariants:

xy = c→ [x′ =−x,y′ = y,z′ =−z]xy = c

10.7. Prove the following dL formula using differential invariants:

x2 +4xy−2y3−y = 1→ [x′ =−1+4x−6y2,y′ =−2x−4y]x2 +4xy−2y3−y = 1

10.8. Prove the following dL formula using differential invariants:

x2 +
y3

3
= c→ [x′ = y2,y′ =−2x]x2 +

y3

3
= c

10.9 (Hénon-Heiles). Prove a differential invariant of a Hénon-Heiles system:

300 10 Differential Equations & Differential Invariants

1
2
(u2 + v2 +Ax2 +By2)+ x2y− 1

3
εy3 = 0→

[x′ = u,y′ = v,u′ =−Ax−2xy,v′ =−By+ εy2− x2]

1
2
(u2 + v2 +Ax2 +By2)+ x2y− 1

3
εy3 = 0

References

1. Frege, G. Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache
des reinen Denkens (Verlag von Louis Nebert, 1879).

2. Ghorbal, K. & Platzer, A. Characterizing Algebraic Invariants by Differen-
tial Radical Invariants in TACAS (eds Ábrahám, E. & Havelund, K.) 8413
(Springer, 2014), 279–294. doi:10.1007/978-3-642-54862-8_19.

3. Kolchin, E. R. Differential Algebra and Algebraic Groups 446 (Academic
Press, New York, 1972).

4. Proceedings of the 27th Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS 2012, Dubrovnik, Croatia, June 25–28, 2012 (IEEE, 2012).

5. Lie, S. Vorlesungen über continuierliche Gruppen mit geometrischen und an-
deren Anwendungen (Teubner, Leipzig, 1893).

6. Lie, S. Über Integralinvarianten und ihre Verwertung für die Theorie der Dif-
ferentialgleichungen. Leipz. Berichte 49, 369–410 (1897).

7. Platzer, A. Differential Dynamic Logic for Hybrid Systems. J. Autom. Reas.
41, 143–189 (2008).

8. Platzer, A. Differential Dynamic Logics: Automated Theorem Proving for Hy-
brid Systems Appeared with Springer. PhD thesis (Department of Computing
Science, University of Oldenburg, Dec. 2008), 299.

9. Platzer, A. Differential-Algebraic Dynamic Logic for Differential-Algebraic
Programs. J. Log. Comput. 20, 309–352 (2010).

10. Platzer, A. Logical Analysis of Hybrid Systems: Proving Theorems for Com-
plex Dynamics doi:10.1007/978-3-642-14509-4 (Springer, Heidel-
berg, 2010).

11. Platzer, A. A Differential Operator Approach to Equational Differential In-
variants in ITP (eds Beringer, L. & Felty, A.) 7406 (Springer, 2012), 28–48.
doi:10.1007/978-3-642-32347-8_3.

12. Platzer, A. Logics of Dynamical Systems in LICS (IEEE, 2012), 13–24. doi:10.
1109/LICS.2012.13.

13. Platzer, A. The Complete Proof Theory of Hybrid Systems in LICS (IEEE,
2012), 541–550. doi:10.1109/LICS.2012.64.

14. Platzer, A. The Structure of Differential Invariants and Differential Cut Elim-
ination. Log. Meth. Comput. Sci. 8, 1–38 (2012).

http://dx.doi.org/10.1007/978-3-642-54862-8_19
http://dx.doi.org/10.1007/978-3-642-14509-4
http://dx.doi.org/10.1007/978-3-642-32347-8_3
http://dx.doi.org/10.1109/LICS.2012.13
http://dx.doi.org/10.1109/LICS.2012.13
http://dx.doi.org/10.1109/LICS.2012.64

10.8 Appendix 301

15. Platzer, A. A Complete Uniform Substitution Calculus for Differential Dy-
namic Logic. J. Autom. Reas. doi:10.1007/s10817- 016- 9385- 1
(2016).

16. Ritt, J. F. Differential equations from the algebraic standpoint (AMS, 1932).
17. Scott, D. & Strachey, C. Toward a mathematical semantics for computer lan-

guages? tech. rep. PRG-6 (Oxford Programming Research Group, 1971).
18. Teubner-Taschenbuch der Mathematik (ed Zeidler, E.) doi:10.1007/978-

3-322-96781-7 (Teubner, 2003).

http://dx.doi.org/10.1007/s10817-016-9385-1
http://dx.doi.org/10.1007/978-3-322-96781-7
http://dx.doi.org/10.1007/978-3-322-96781-7

	Cyber-Physical Systems: Overview
	Introduction
	Cyber-Physical Systems Analysis by Example
	Application Domains
	Significance
	The Importance of Safety

	Hybrid Systems versus Cyber-Physical Systems
	Multi-dynamical Systems
	How to Learn about Cyber-Physical Systems
	Computational Thinking for Cyber-Physical Systems
	Learning Objectives
	Structure of This Book
	Summary
	References

	Part I Elementary Cyber-Physical Systems
	Differential Equations & Domains
	Introduction
	Differential Equations as Models of Continuous Physical Processes
	The Meaning of Differential Equations
	A Tiny Compendium of Differential Equation Examples
	Domains of Differential Equations
	Syntax of Continuous Programs
	Continuous Programs
	Terms
	First-order Formulas

	Semantics of Continuous Programs
	Terms
	First-order Formulas
	Continuous Programs

	Summary
	Appendix
	Existence Theorems
	Existence and Uniqueness Theorems
	Linear Differential Equations with Constant Coefficients
	Continuation and Continuous Dependency

	Exercises
	References

	Choice & Control
	Introduction
	A Gradual Introduction to Hybrid Programs
	Discrete Change in Programs
	Compositions of Programs
	Decisions in Hybrid Programs
	Choices in Hybrid Programs
	Tests in Hybrid Programs
	Repetitions in Hybrid Programs

	Hybrid Programs
	Syntax
	Semantics

	Hybrid Program Design
	A Matter of Choice
	Patternology?

	Summary
	Exercises
	References

	Safety & Contracts
	Introduction
	A Gradual Introduction to CPS Contracts
	The Adventures of Quantum the Bouncing Ball
	How Quantum Discovered a Crack in the Fabric of Time
	How Quantum Learned to Deflate
	Postcondition Contracts for CPS
	Precondition Contracts for CPS

	Logical Formulas for Hybrid Programs
	Differential Dynamic Logic
	Syntax
	Semantics

	CPS Contracts in Logic
	Identifying Requirements of a CPS
	Summary
	Appendix
	Intermediate Conditions for a Proof of Sequential Compositions
	A Proof of Choice
	A Proof of Tests

	Exercises
	References

	Dynamical Systems & Dynamic Axioms
	Introduction
	Intermediate Conditions for CPS
	Dynamic Axioms for Dynamical Systems
	Nondeterministic Choices
	Soundness
	Assignments
	Differential Equations
	Tests
	Sequential Compositions
	Loops

	A Proof of a Short Bouncing Ball
	Summary
	Appendix
	Modal Modus Ponens has Implications on Boxes
	Vacuous State Change If Nothing Relevant Ever Changes
	Gödel Generalizes Validities into Boxes
	Monotonicity of Postconditions
	Of Free and Bound Variables
	Free and Bound Variable Analysis

	Exercises
	References

	Truth & Proof
	Introduction
	Truth and Proof
	Sequents
	Proofs
	Propositional Proof Rules
	Soundness
	Proofs with Dynamics
	Quantifier Proof Rules

	Derived Proof Rules
	A Sequent Proof for a Non-Bouncing Ball
	Real Arithmetic
	Real Quantifier Elimination
	Instantiating Real Arithmetic
	Weakening Real Arithmetic
	Structural Proof Rules
	Substituting Equations
	Abbreviating Terms
	Creatively Cutting Real Arithmetic

	Summary
	Exercises
	References

	Control Loops & Invariants
	Introduction
	Control Loops
	Induction for Loops
	Induction Axioms for Loops
	Induction Rule for Loops
	Loop Invariants
	Contextual Soundness Requirements

	Operational Effect of Loop Invariants
	Invariants for Sequential or Nondeterministical Compositions
	A Proof of a Happily Repetitive Bouncing Ball
	Splitting Postconditions
	Operational Intuition of Loop Invariants
	Summary
	Appendix
	Loops of Proofs
	Breaking Loops of Proofs
	Invariant Proofs of Loops
	Alternative Forms of the Induction Axiom

	Exercises
	References

	Events & Responses
	Introduction
	The Need for Control
	Events in Control
	Event Detection
	Dividing Up Physics
	Event Firing
	Event-Triggered Verification
	Event-Triggered Control Paradigm
	Physics versus Control Distinctions

	Summary
	Exercises
	References

	Reactions & Delays
	Introduction
	Delays in Control
	The Impact of Delays on Event Detection
	Model-predictive Control Basics
	Design by Invariant
	Sequencing and Prioritizing Reactions
	Time-triggered Verification

	Summary
	Exercises
	References

	Part II Differential Equations Analysis
	Differential Equations & Differential Invariants
	Introduction
	A Gradual Introduction to Differential Invariants
	Global Descriptive Power of Local Differential Equations
	Intuition for Differential Invariants
	Deriving Differential Invariants

	Differentials
	Syntax
	Semantics of Differential Symbols
	Semantics of Differential Terms
	Derivation Lemma
	Differential Lemma
	Differential Invariant Term Axiom
	Differential Substitution Lemmas

	Differential Invariant Terms
	A Differential Invariant Proof by Generalization
	Example Proofs
	Summary
	Appendix
	Differential Equations vs. Loops
	Derivation Operators
	Differential Invariant Terms and Invariant Functions

	Exercises
	References

	Differential Equations & Proofs
	Introduction
	Recap: Ingredients for Differential Equation Proofs
	Differential Weakening
	Operations in Differential Invariants
	Equational Differential Invariants
	Differential Invariant Proof Rule
	Differential Invariant Inequalities
	Disequational Differential Invariants
	Conjunctive Differential Invariants
	Disjunctive Differential Invariants

	Differential Invariants
	Example Proofs
	Assuming Invariants
	Differential Cuts
	Differential Weakening Again
	Summary
	Appendix: Proving Aerodynamic Bouncing Balls
	Exercises
	References

	Ghosts & Differential Ghosts
	Introduction
	Recap
	Arithmetic Ghosts
	Nondeterministic Assignments & Ghosts of Choice
	Differential-algebraic Ghosts
	Discrete Ghosts
	Proving Bouncing Balls with Sneaky Solutions
	Exploiting Differential Ghosts for Falling Balls
	Differential Ghosts
	Substitute Ghosts
	Summary
	Appendix: Axiomatic Ghosts
	Exercises
	References

	Differential Invariants & Proof Theory
	Introduction
	Recap
	Comparative Deductive Study: Relativity Theory for Proofs
	Equivalences of Differential Invariants
	Differential Invariants & Arithmetic
	Differential Invariant Equations
	Equational Incompleteness
	Strict Differential Invariant Inequalities
	Differential Invariant Equations as Differential Invariant Inequalities
	Differential Invariant Atoms
	Summary
	Appendix: Curves Playing with Norms and Degrees
	Exercises
	References

	Part III Adversarial Cyber-Physical Systems
	Hybrid Systems & Games
	Introduction
	Choices & Nondeterminism
	Control & Dual Control
	Hybrid Games
	Differential Game Logic
	Demon's Controls
	An Informal Operational Game Semantics
	Summary
	Exercises
	References

	Winning Strategies & Regions
	Introduction
	Semantics
	Winning Regions
	Advance Notice Repetitions
	-Strategic Semantics
	Inflationary Semantics
	There and Back Again Game
	Summary
	Exercises
	References

	Winning & Proving Hybrid Games
	Introduction
	Characterizing Winning Repetitions Implicitly
	Semantics of Hybrid Games
	Determinacy
	Hybrid Game Axioms
	Relating Differential Game Logic and Differential Dynamic Logic
	Exercises
	References

	Game Proofs & Separations
	Introduction
	Recap: Semantics of Hybrid Games
	Hybrid Game Proofs
	Soundness
	Separating Axioms
	Repetitive Diamonds – Convergence vs. Iteration
	Exercises
	References

	Part IV Real Arithmetic
	Virtual Substitution & Real Equations
	Introduction
	Framing the Miracle
	Quantifier Elimination
	Homomorphic Normalization for Quantifier Elimination
	Substitution Base
	Term Substitutions

	Square Root Substitutions for Quadratics
	Optimizations
	Summary
	Appendix: Real Algebraic Geometry
	Exercises
	References

	Virtual Substitution & Real Arithmetic
	Introduction
	Recap: Square Root Substitutions for Quadratics
	Infinity Substitution
	Infinitesimal Substitutions
	Quantifier Elimination by Virtual Substitution
	Summary
	Appendix: Semialgebraic Geometry
	Exercises
	References

