
André Platzer

Lecture Notes on Foundations of
Cyber-Physical Systems

15-424/624/824 Foundations of Cyber-Physical Systems

http://lfcps.org/course/fcps17.html

Chapter 9
Reactions & Delays

Synposis Time-triggered control systems are an important control paradigm. Event-
triggered controllers focus on correct responses for appropriate events that are as-
sumed to be detected perfectly, which simplifies their design and analysis but makes
them hard to implement. Time-triggered controllers, instead, focus on reacting to
changes within certain reaction delays. Implementations become more straightfor-
ward using controllers that repeatedly execute within a certain maximum time pe-
riod, or execute periodically with at least a certain frequency. While time-triggered
models can be easier to develop than event-triggered control models, the additional
effects of reaction delays complicate the control logic and safety arguments.

9.1 Introduction

Chapter 7 explained the central proof principle for loops using invariants. Chapter 8
studied the important feedback mechanism of event-triggered control and made cru-
cial use of invariants for rigorously reasoning about event-triggered control loops.
Those invariants uncovered important subtleties with events that could be easily
missed. In Chap. 8, we, in fact, already noticed these subtleties thanks to our “safety
first” approach to CPS design, which guided us to exercise the scrutiny of Cartesian
Doubt on the CPS model before even beginning a proof.

But, even if the final answer for the event-triggered controller for ping pong balls
was rather clear and systematic, event-triggered control had an unpleasantly large
number of modeling subtleties in store for us. Even in the end, event-triggered con-
trol has a rather high level of abstraction, because it assumes that all events would
be detected perfectly and right away with continuous sensing. The event-triggered
model has x≤ 5 as a hard limit in the evolution domain constraint of the differential
equation to ensure that the event 4 ≤ x ≤ 5 would never ever be missed as the ball
is rushing upwards.

As soon as we want to implement such a perfect event detection, it becomes clear
that real controller implementations can only perform discrete sensing, i.e. check-

247

248 9 Reactions & Delays

ing sensor data every once in a while at certain discrete points in time, whenever
new measurements come from the sensor and when the controller had a chance to
check whether the measurement is about to exceed height 5. Most controller imple-
mentations would, thus, only end up checking for an event every once in a while,
whenever the controller happens to run, rather than permanently as event-triggered
controllers pretend.

This chapter, thus, focuses on the second important paradigm for making cy-
ber interface with physics to form cyber-physical systems. The paradigm of time-
triggered control, which uses periodic actions to affect the behavior of the system
only at discrete points in time with certain frequencies. This is to be contrasted with
the paradigm from Chap. 8 of event-triggered control, where responses to events
dominate the behavior of the system and an action is taken whenever one of the
events is observed. Both paradigms play an equally important role in classical em-
bedded systems and both paradigms arise naturally from an understanding of the
hybrid program principle for CPS.

Based on the understanding of loops from Chap. 7, the most important learning
goals of this chapter are:

Modeling and Control: This chapter provides a number of crucial lessons for
modeling CPS and designing their controls. We develop an understanding of
time-triggered control, which is an important design paradigm for control loops
in CPS. This chapter studies ways of developing models and controls corre-
sponding to this feedback mechanism, which is easier to implement but will
turn out to be surprisingly subtle to control. Knowing and contrasting both
event-triggered and time-triggered feedback mechanisms helps with identify-
ing relevant dynamical aspects in CPS coming from events and reaction delays.
This chapter focuses on CPS models assuming discrete sensing, i.e. sensing at
(nondeterministically chosen) discrete points in time.

Computational Thinking: This chapter uses the rigorous reasoning approach from
Chapters 5 and 7 to study CPS models with time-triggered control. As a running
example, the chapter continues to develop the extension from bouncing balls to
ping pong balls, now using time-triggered control. We again add control de-
cisions to the bouncing ball, turning it into a ping pong ball, which retains the
intuitive simplicity of the bouncing ball, while enabling us to develop generaliz-
able lessons about how to design time-triggered control systems correctly. The
chapter will crucially study invariants and show a development of the powerful
technique of design-by-invariant in a concrete example.

CPS Skills: This chapter develops an understanding for the semantics of time-
triggered control. This understanding of the semantics will guide our intuition
of the operational effects of time-triggered control and especially the impact
it has on finding correct control constraints. Finally, the chapter studies some
aspects of higher-level model-predictive control.

9.2 Delays in Control 249

CT

M&C CPS

using loop invariants
design time-triggered control
design-by-invariant

modeling CPS
designing controls
time-triggered control
reaction delays
discrete sensing

semantics of time-triggered control
operational effect
finding control constraints
model-predictive control

9.2 Delays in Control

Event-triggered control is a useful and intuitive model matching our expectation
of having controllers react in response to certain critical conditions or events that
necessitate intervention by the controller. Yet, one of its difficulties is that event-
triggered control with its continuous sensing assumption can be hard or impossible
to implement in reality. On a higher level of abstraction, it is very intuitive to design
controllers that react to certain events and change the control actuation in response
to what events have happened. Closer to the implementation, this turns out to be dif-
ficult, because actual computer control algorithms do not actually run all the time,
only sporadically every once in a while, albeit sometimes very often. Implementing
event-triggered control faithfully would, in principle, requires permanent continu-
ous monitoring of the state to check whether an event has happened. That is not
particularly realistic, because fresh sensor data will only be available every once in
a while, and controller implementations will only run at certain discrete points in
time causing delays in processing. Actuators may sometimes also take quite some
time to get going. Think of the reaction time it takes you to turn the insight “I want
to hit this ping pong ball there” into action so that your ping pong paddle will actu-
ally hit the ping pong ball. Sometimes the ping pong paddle acts early, sometimes
late, see Fig. 9.1. Or think of the time it takes to react to the event “the car in front
of me is turning on its red backlights” by appropriately applying the brakes.

Back to the drawing desk. Let us reconsider the original dL formula (8.3) for the
ping pong ball (Fig. 9.1) that we started out from for designing the event-triggered
version in (8.7).

0≤ x∧ x≤ 5∧ v≤ 0∧g > 0∧1≥ c≥ 0∧ f ≥ 0→[(
{x′ = v,v′ =−g&x≥ 0};
if(x = 0)v :=−cvelse if(4≤ x≤ 5)v :=− f v

)∗]
(0≤ x≤ 5)

(8.3)

250 9 Reactions & Delays

Fig. 9.1 Sample trajectory of
a ping pong ball (plotted as
position over time) with the
indicated ping pong paddle
actuation range, sometimes
actuating early, sometimes
late

This simplistic formula (8.3) turned out not to be valid, because its differential
equation was not guaranteed to be interrupted when the event 4 ≤ x ≤ 5 happens.
Consequently, (8.3) needs some other evolution domain constraint to make sure all
continuous evolutions are stopped at some point for the control to have a chance to
react to situation changes. Yet, it should not be something like . . .&x≤ 5 as in (8.7),
because continuously monitoring for x≤ 5 requires permanent continuous sensing
of the height, which is difficult to implement.

Note 49 (Physical versus controller events) The event x = 0 in the (physics)
controller as well as the (physics) evolution domain constraint x≥ 0 for de-
tecting the event x = 0 are perfectly justified in the bouncing ball and ping
pong ball models, because both represent physics. Physics is very well ca-
pable of keeping a ball above the ground, no matter how much checking for
x = 0 it takes to make that happen. The ball does not suddenly fall through the
ground because physics looked the other way and forgot to check its evolution
domain constraint x≥ 0. In our controller code, however, we need to exercise
care when modeling events and their reactions. The controller implementa-
tions will not have the privilege of running all the time, which only physics
possesses. Cyber happens every once in a while (even if it may execute quite
quickly and quite frequently), while physics happens all the time. Controllers
cannot sense and compute and act literally all the time.

How else could the continuous evolution of physics be interrupted to make sure
the controller actually runs? By bounding the amount of time that physics is allowed
to evolve before running the controller again. Before we can talk about time, the
model needs to be changed to include some variable, let’s call it t, that reflects the
progress of time with a differential equation t ′ = 1.

0≤ x∧ x≤ 5∧ v≤ 0∧g > 0∧1≥ c≥ 0∧ f ≥ 0→[(
{x′ = v,v′ =−g, t ′ = 1&x≥ 0∧ t ≤ 1};
if(x = 0)v :=−cvelse if(4≤ x≤ 5)v :=− f v

)∗]
(0≤ x≤ 5)

(9.1)

9.2 Delays in Control 251

Of course, the semantics of hybrid programs included some notion of time already,
but it was inaccessible in the program itself because the duration r of differential
equations was not a state variable that the model could read (Definition ??). No
problem, (9.1) simply added a time variable t that evolves along the differential
equation t ′ = 1 just like time itself does. In order to bound the progress of time by
1, the evolution domain includes . . .& t ≤ 1 and declares that the clock variable t
evolves with time as t ′ = 1.

Oops, that does not actually quite do it, because the HP in (9.1) restricts the
evolution of the system so that it will never ever evolve beyond time 1, no matter
how often the loop repeats. It imposes a global bound on the progress of time. That
is not what we meant to say. Rather, we wanted the duration of each individual
continuous evolution limited to be at most one second. The trick is to reset the clock
t to zero by a discrete assignment t :=0 before the continuous evolution starts:

0≤ x∧ x≤ 5∧ v≤ 0∧g > 0∧1≥ c≥ 0∧ f ≥ 0→[(
t :=0;{x′ = v,v′ =−g, t ′ = 1&x≥ 0∧ t ≤ 1};
if(x = 0)v :=−cvelse if(4≤ x≤ 5)v :=− f v

)∗]
(0≤ x≤ 5)

(9.2)

In order to bound the duration by 1, the evolution domain includes . . .& t ≤ 1 and
the variable t is reset to 0 by t :=0 right before the differential equation. Hence, t
represents a local clock measuring how long the evolution of the differential equa-
tion was. Its bound of 1 ensures that physics gives the controller a chance to react
at least once per second. The system could stop the continuous evolution more of-
ten and earlier, because this model has no lower bound on t. Even if possible, it is
inadvisable to constrain the model unnecessarily by lower bounds on the duration.

Before going any further, let’s take a step back to notice an annoyance in the way
the control in (9.2) was written. It is written in the style that the original bounc-
ing ball and the event-triggered ping pong ball were phrased: continuous dynamics
followed by control. That has the unfortunate effect that (9.2) lets physics happen
before control does anything, which is not a very safe start. In other words, the initial
condition would have to be modified to assume the initial control choice was fine.
That would duplicate part of the control into the assumptions on the initial state. In-
stead, let’s switch the statements from plant;ctrl to ctrl;plant to make sure control
always happens before physics does anything.

0≤ x∧ x≤ 5∧ v≤ 0∧g > 0∧1≥ c≥ 0∧ f ≥ 0→[(
if(x = 0)v :=−cvelse if(4≤ x≤ 5)v :=− f v;

t :=0;{x′ = v,v′ =−g, t ′ = 1&x≥ 0∧ t ≤ 1}
)∗]

(0≤ x≤ 5)

(9.3)

Now that dL formula (9.3) has an upper bound on the time it takes between two
subsequent control actions, is it valid? If so, which invariant can be used to prove
it? If not, which counterexample shows its invalidity?

Before you read on, see if you can find the answer for yourself.

252 9 Reactions & Delays

Fig. 9.2 Sample trajectory of
a time-triggered ping pong
ball (as position over time),
missing the first event

Even though (9.3) ensures a bound on how long it may take at most until the
controller inspects the state and reacts, there is still a fundamental issue with (9.3).
We can try to prove (9.3) and inspect the non-provable cases in the proof to find out
what the issue is. Or we can just think about what could go wrong. The controller of
(9.3) runs at least after one second (hence at least once per second) and then checks
whether 4≤ x≤ 5. But if 4≤ x≤ 5 was not true when the controller ran last, there is
no guarantee that this event will be detected reliably when the controller runs next.
In fact, the ball might very well have been at x = 3 at the last controller run, then
evolved continuously to x = 6 in a second and missed the event 4≤ x≤ 5 that it was
supposed to detect (Exercise 9.2); see Fig. 9.2. Worse than that, the ping pong ball
has then not only missed the exciting event 4≤ x≤ 5 but already became unsafe.

Similarly, driving a car would be unsafe if you would only open your eyes once
a second and monitor whether there is a car right in front of you. Too many things
could have happened in between that should have prompted you to brake.

9.2.1 The Impact of Delays on Event Detection

How can this problem with formula (9.3) be solved? How can the CPS model make
sure the controller does not miss its time to take action? Waiting until 4 ≤ x ≤ 5
holds true is not guaranteed to be the right course of action for the controller.

Before you read on, see if you can find the answer for yourself.

The problem with (9.3) is that its controller is unaware of its own delay. It does
not take into account how the ping pong ball could move further before it gets a
chance to react next. If the ball is already close to the ping pong paddle’s intended
range of actuation, then the controller had better take action already if it is not sure
whether it can still safely wait to take action till next time the time-triggered con-
troller runs.

9.2 Delays in Control 253

Note 50 (Delays may miss events) Delays in controller reactions may cause
events to be missed that they were supposed to monitor. When that happens,
there is a discrepancy between an event-triggered understanding of a CPS
and the real time-triggered implementation. Delays may make controllers miss
events especially when slow controllers monitor events in comparably small
regions for a fast moving system. This relationship deserves special attention
to make sure the impact of delays on a system controller cannot make it unsafe.

It is often a good idea to first understand and verify an event-triggered
design of a CPS controller to identify correct responses to the respective events
and subsequently refine it to a time-triggered controller to analyze and verify
that CPS in light of its reaction time. Discrepancies in this analysis hint at
problems that event-triggered designs will likely experience at runtime and
they indicate a poor event abstraction. Controllers need to be aware of their
own delays to foresee what they might otherwise miss.

The controller would be in trouble if x > 5 might already hold in its next control
cycle after the continuous evolution, which will be outside the operating range of
the ping pong paddle (and already unsafe). Due to the evolution domain constraint,
the continuous evolution can take at most 1 time unit, after which the ball will be
at position x+v− g

2 as previous chapters already showed by solving the differential
equation. Choosing gravity g = 1 to simplify the math, the controller would be in
trouble in the next control cycle after 1 second which would take the ball to position
x+ v− 1

2 > 5 if x > 5 1
2 − v holds now.

9.2.2 Model-predictive Control Basics

The idea is to make the controller now act based on how it predicts the state might
have evolved until the next control cycle (this is a very simple example of model-
predictive control because the controller acts based on what its model predicts).
Chap. 8 already discovered for the event-triggered case that the controller only wants
to trigger the ping pong paddle action if the ball is still flying up, not if it is already
on its way down. Making (9.3) aware of the future in this way leads to:

0≤ x∧ x≤ 5∧ v≤ 0∧g = 1 > 0∧1≥ c≥ 0∧ f ≥ 0→[(
if(x = 0)v :=−cvelse if((x > 5

1
2
− v)∧ v≥ 0)v :=− f v;

t :=0;{x′ = v,v′ =−g, t ′ = 1&x≥ 0∧ t ≤ 1}
)∗]

(0≤ x≤ 5)

(9.4)

Is conjecture (9.4) about its future-aware controller valid? If so, which invariant
can be used to prove it? If not, which counterexample shows its invalidity?

Before you read on, see if you can find the answer for yourself.

254 9 Reactions & Delays

The controller in formula (9.4) has been designed based on the prediction that
the future may evolve for 1 time unit. If an action will no longer be possible in 1
time unit, because the event x ≤ 5 has passed in that future time instant, then the
controller in (9.4) takes action right now already. That is a good start. The issue
with that approach, however, is that there is no guarantee at all that the ping pong
ball will fly for exactly 1 time unit before the controller is asked to act again (and
the postcondition is checked). The controller in (9.4) checks whether the ping pong
ball could be too far up after one time unit and does not intervene unless that is the
case. Yet, what if the ball only flies for 1

2 time units? Clearly, if the ball will be safe
after 1 time unit, which is what the controller in (9.4) checks, it will also be safe
after just 1

2 time unit, right?

Before you read on, see if you can find the answer for yourself.

Wrong! The ball may well be below height 5 again after 1 time unit but still could
have been above 5 in between the current point of time and the time that is 1 time
unit from now. Then the safety of the controller will be a mere rope of sand, because
it will have a false sense of safety after having checked what happens 1 time unit
from now, in complete ignorance of whether it was safe until then. Such trajectories
are shown in Fig. 9.3 from the same initial state and the same controller, just with
different sampling periods. What a bad controller design if its behavior depends on
the sampling period. But worse than that, such a bouncing ball would not be safe
if it has been above 5 in between two sampling points. After all, the bouncing ball
follows a ballistic trajectory which first climbs and then falls.

Fig. 9.3 Sample trajectory of a time-triggered ping pong ball (as position over time), missing
different events with different sampling periods

9.2 Delays in Control 255

9.2.3 Design by Invariant

In order to get to the bottom of this, we need a quantity that tells us what the ball
will do at all times, without mentioning that time variable explicitly, because we
could hardly have the controller check its safety predictions at all times 0, 0.1, 0.25,
0.5, 0.786 . . . , of which there are infinitely many anyhow.

Come to think of it, we were already investigating what we can say about bounc-
ing balls independently of the time when we were designing loop invariants for its
proof in Sect. 7.6:

2gx = 2gH− v2∧ x≥ 0∧ (c = 1∧g > 0) (7.10)

This formula was proved to be an invariant of the bouncing ball, which means it
holds true always while the bouncing ball is bouncing around. Invariants are the
most crucial information about the behavior of a system that we can rely on all the
time. Since (7.10) is only an invariant of the bouncing dynamics not the ping pong
ball, it, of course, only holds until the ping pong paddle hits, which changes the
control. But until the ping pong paddle is used, (7.10) summarizes concisely all we
need to know about the state of the bouncing ball at all times. Of course, (7.10) is an
invariant of the bouncing ball, but it still needs to be true initially. The easiest way to
make that happen is to assume (7.10) in the beginning of the ping pong ball’s life.1

Because (7.10) only conducted the proof of the bouncing ball invariant (7.10) for the
case c = 1 to simplify the arithmetic, the ping pong ball now adopts this assumption
as well. To simplify the arithmetic and arguments, let us also adopt the assumption
f = 1 in addition to c = 1∧g = 1 for the proofs.

Substituting safety-critical height 5 for H in the invariant (7.10) for this instance
of parameter choices leads to a condition when the energy exceeds safe height 5:

2x > 2 ·5− v2 (9.5)

as an indicator for the fact that the ball might end up climbing too high, because its
energy would allow it to. Adding this condition (9.5) to the controller (9.4) leads to:

2x = 2H− v2∧0≤ x∧ x≤ 5∧ v≤ 0∧g = 1 > 0∧1 = c≥ 0∧1 = f ≥ 0→[(
if(x = 0)v :=−cvelse if((x > 5

1
2
− v∨2x > 2 ·5− v2)∧ v≥ 0)v :=− f v;

t :=0;{x′ = v,v′ =−g, t ′ = 1&x≥ 0∧ t ≤ 1}
)∗]

(0≤ x≤ 5)
(9.6)

The bouncing ball invariant (7.10) is now also assumed to hold in the initial state.

1 Note that H is a variable that does not need to coincide with the upper height limit 5 like it did in
the case of the bouncing ball, because the ping pong ball has more control at its fingertips. In fact,
the most interesting case is if H > 5 in which case the ping pong ball will only stay safe because
of its control. One way to think of H is as an indicator for the energy of the ball showing how high
it might jump up if it would not be for all its interaction with the ground and the ping pong paddle.

256 9 Reactions & Delays

Is dL formula (9.6) about its time-triggered controller valid? As usual, use an
invariant or a counterexample for justification.

Before you read on, see if you can find the answer for yourself.

Formula (9.6) is “almost valid”. But it is still not valid for a very subtle reason.
It is great to have the help of proofs to catch those subtle issues. The controller in
(9.6) takes action for two different conditions on the height x. However, the ping
pong paddle controller actually only runs in (9.6) if the ball is not at height x = 0,
otherwise ground control takes action of reversing the direction of the ball. Now, if
the ball is flat on the floor already (x = 0) yet its velocity so incredibly high that it
will rush past height 5 in less than 1 time unit, then the ping pong paddle controller
will not even have had a chance to react before it is too late, because it does not
execute on the ground according to (9.6); see Fig. 9.4.

Fig. 9.4 Sample trajectory of
a time-triggered ping pong
ball (as position over time),
failing to control on the
ground

9.2.4 Sequencing and Prioritizing Reactions

Fortunately, these thoughts already indicate how the problem with multiple control
actions can be fixed. We turn the nested if-then-else cascade into a sequential com-
position of two separate if-then statements that will ensure the ping pong paddle
controller to run even if the bouncing ball is still on the ground (Exercise 9.3).

2x = 2H− v2∧0≤ x∧ x≤ 5∧ v≤ 0∧g = 1 > 0∧1 = c≥ 0∧1 = f ≥ 0→[(
if(x = 0)v :=−cv ; if((x > 5

1
2
− v∨2x > 2 ·5− v2)∧ v≥ 0)v :=− f v;

t :=0;{x′ = v,v′ =−g, t ′ = 1&x≥ 0∧ t ≤ 1}
)∗]

(0≤ x≤ 5)
(9.7)

Now, is formula (9.7) finally valid, please? If so, using which invariant? Other-
wise, show a counterexample.

9.2 Delays in Control 257

Before you read on, see if you can find the answer for yourself.

Yes, formula (9.7) is valid. What invariant can be used to prove formula (9.7)?
Formula (9.7) is valid, which, for g= c= f = 1, can be proved with this invariant:

2x = 2H− v2∧ x≥ 0∧ x≤ 5 (9.8)

This invariant instantiates the general bouncing ball invariant (7.10) for the present
case of parameter choices and augments it with the desired safety constraint x≤ 5.

Yet, is the controller in (9.7) useful? That is where the problem lies now. The
condition (9.5) that is the second disjunct in the controller of (9.7) checks whether
the ping pong ball could possibly ever fly up all the way to height 5. If this is ever
true, it might very well be true long before the bouncing ball even approaches the
critical control cycle where a ping pong paddle action needs to be taken. In fact, if
(9.5) is ever true, it will also be true in the very beginning. After all, the formula
(7.10), from which condition (9.5) derived, is an invariant, so always true for the
bouncing ball. What would that mean?

That would cause the controller in (9.7) to take action right away at the mere
prospects of the ball ever being able to climb way up high, even if the ping pong
ball is still close to the ground and pretty far away from the last triggering height 5.
That would make the ping pong ball quite safe, since (9.7) is a valid formula. But
it would also make it rather conservative and would not allow the ping pong ball to
bounce around nearly as much as it would have loved to. It would make the bouncing
ball lie flat on the ground, because of an overly anxious ping pong paddle. That is
a horrendously acrophobic bouncing ball if it never even starts bouncing around in
the first place. And the model would even require the (model) world to end, because
there can be no progress beyond the point in time where the ball gets stuck on the
ground. How can the controller in (9.7) be modified to resolve this problem?

Fig. 9.5 Sample trajectory of
a time-triggered ping pong
ball (as position over time),
stuck on the ground

Before you read on, see if you can find the answer for yourself.

The idea is to restrict the use of the second if-then disjunct (9.5) in (9.7) to
slow velocities in order to make sure it only applies to the occasions that the first

258 9 Reactions & Delays

Expedition 9.1 (Zeno paradox)

There is something quite surprising about how (9.7) may cause the time to
freeze. But, come to think of it, time did already freeze in mere bouncing balls.

The duration between two hops on the ground in a bouncing ball keeps on
decreasing rapidly. If, for simplicity, the respective durations are 1, 1

2 ,
1
4 ,

1
8 , . . .,

then these durations sum to:

∞

∑
i=0

1
2i =

1
1− 1

2

= 2

which shows that the bouncing ball model will make the (model) world freeze
almost to a complete stop, because it can never reach time 2 nor any time
after. The bouncing ball model disobeys what is called divergence of time, i.e.
that the real time keeps diverging to ∞. The reason this model prevents time
from progressing beyond 2is that the bouncing ball model keeps on switching
directions on the ground more and more frequently. This may be very natural
for bouncing balls, but can cause subtleties and issues in other control systems
if they switch infinitely often in finite time.

The name Zeno paradox comes from the Greek philosopher Zeno (ca. 490–
430 BC) who found a paradox when fast runner Achilles gives the slow Tor-
toise a head start of 100 meters in a race: In a race, the quickest runner can
never overtake the slowest, since the pursuer must first reach the point whence
the pursued started, so that the slower must always hold a lead. – recounted in
Aristotle, Physics VI:9, 239b15

Pragmatic solutions for the Zeno paradox in bouncing balls add a statement
to the model that make the ball stop when the remaining velocity on the ground
is too small. For example:

if(x = 0∧−0.1 < v <−0.1)(v :=0;x′ = 0)

This statement switches to a differential equation that does not change position
but, unlike the differential equation x′ = v,v′ =−g&x≥ 0 in the bouncing ball,
can be followed for any duration when x = 0∧ v = 0.

9.2 Delays in Control 259

controller disjunct x > 5 1
2 − v misses, because the ball will have been above height

5 in between. Only with slow velocities will the ball ever move so slowly that it is
near its turning point to begin its descent and start falling down again before 1 time
unit. And only then could the first condition miss out on the ball being able to evolve
above 5 before 1 time unit. When is a velocity slow in this respect?

For the ball to turn around and descend, it first needs to reach velocity v = 0 by
continuity (during the flying phase) on account of the mean-value theorem. In grav-
ity g = 1 the ball can reach velocity 0 within 1 time unit exactly when its velocity
was v < 1 before the differential equation, because the velocity changes according
to v(t) = v−gt. Consequently, adding a conjunct v < 1 to the second disjunct in the
controller makes sure that the controller only checks for turnaround when it might
actually happen during the next control cycle.

2x = 2H− v2∧0≤ x∧ x≤ 5∧ v≤ 0∧g = 1 > 0∧1 = c≥ 0∧1 = f ≥ 0→[(
if(x = 0)v :=−cv; if((x > 5

1
2
− v∨2x > 2 ·5− v2∧ v < 1)∧ v≥ 0)v :=− f v;

t :=0;{x′ = v,v′ =−g, t ′ = 1&x≥ 0∧ t ≤ 1}
)∗]

(0≤ x≤ 5)
(9.9)

This dL formula is valid and provable with the same invariant (9.8) that was
already used to prove (9.7). It has a much more aggressive controller than (9.7),
though, so it is more fun for the ping pong ball to bounce around with it.

Note 51 (Design by invariant) Designing safe controller actions by follow-
ing the system invariant is a great idea. After having identified an invariant for
the bare-bones system (such as the bouncing ball), the remainder of the con-
trol actions can be designed safely by ensuring that each of them preserves the
invariant. For example, the ping pong paddle is used if the ball might violate
the invariant. Some care is needed to avoid limiting the system unnecessarily.
The reaction time determines which control cycle has the last chance to act to
keep the invariant maintained.

9.2.5 Time-triggered Verification

The easiest way of proving that dL formula (9.9) is valid is to show that the invariant
(9.8) holds after every line of code. Formally, this reasoning by lines corresponds
to a number of uses of the generalization proof rule MR from Lemma 7.9 to show
that the invariant (9.8) remains true after each line if it was true before. The first
statement if(x = 0)v :=−cv does not change the truth-value of (9.8), i.e.

2x = 2H− v2∧ x≥ 0∧ x≤ 5→ [if(x = 0)v :=−cv](2x = 2H− v2∧ x≥ 0∧ x≤ 5)

260 9 Reactions & Delays

is valid, because, when c = 1, the statement can only change the sign of v and (9.8)
is independent of signs, because the only occurrence of v satisfies (−v)2 = v2. Simi-
larly, the second statement if((x > 5 1

2 − v∨2x > 2 ·5− v2∧ v < 1)∧ v≥ 0)v :=− f v
does not change the truth-value of (9.8), i.e.

2x = 2H− v2∧ x≥ 0∧ x≤ 5→

[if((x > 5
1
2
− v∨2x > 2 ·5− v2∧ v < 1)∧ v≥ 0)v :=− f v]

(2x = 2H− v2∧ x≥ 0∧ x≤ 5)

is valid, because, at least for f = 1, the second statement can also only change the
sign of v, which is irrelevant for the truth-value of (9.8). Finally, the relevant parts
of (9.8) are a special case of (7.10), which has already been shown to be an invariant
for the bouncing ball differential equation in (7.10) and, thus, continues to be an
invariant when adding a clock t ′ = 1& t ≤ 1, which does not occur in (9.8). The
additional invariant x≤ 5 that (9.8) has compared to (7.10) is easily taken care off
using the corresponding knowledge about H.

Note 52 (Time-triggered control) One common paradigm for designing con-
trollers is time-triggered control, in which controllers run periodically or
pseudo-periodically with certain frequencies to inspect the state of the system.
Time-triggered systems are closer to implementation than event-triggered con-
trol. They can be harder to build, however, because they invariably require the
designer to understand the impact of delay on control decisions. That impact
is important in reality, however, and, thus, effort invested in understanding the
impact of time delays usually pays off in designing a safer system that is robust
to bounded time delays.

Partitioning the hybrid program in the verified dL formula (9.9) into the parts that
come from physics (typographically marked like physics) and the parts that come
from control (typographically marked like control) leads to:

Proposition 9.1 (Time-triggered ping pong is safe). This dL formula is valid:

2x = 2H− v2∧0≤ x∧ x≤ 5∧ v≤ 0∧g = 1 > 0∧1 = c≥ 0∧1 = f ≥ 0→[(
if(x = 0)v :=−cv; if((x > 5

1
2
− v∨2x > 2 ·5− v2∧ v < 1)∧ v≥ 0)v :=− f v;

t :=0;{x′ = v,v′ =−g, t ′ = 1&x≥ 0∧ t ≤ 1}
)∗]

(0≤ x≤ 5)
(9.9)

Part of the differential equation, namely t ′ = 1, comes from the controller, be-
cause it corresponds to putting a clock on the controller and running it with at least
the sampling frequency 1 (coming from the evolution domain constraint t ≤ 1).

9.3 Summary 261

9.3 Summary

This chapter studied time-triggered control, which, together with event-triggered
control from Chap. 8, is an important principle for designing feedback mechanisms
in CPS and embedded systems. The chapter illustrated the most important aspects
for a running example of a ping pong ball. Despite or maybe even because of its sim-
plicity, the ping pong ball was an instructive source for the most important subtleties
involved with time-triggered control decisions. Getting time-triggered controllers
correct requires predictions about how the system state might evolve over short pe-
riods of time (one control cycle). The effects and subtleties of time-triggered actions
in control were sufficiently subtle to merit focusing on a simple intuitive case.

Unlike event-triggered control, which assumes continuous sensing, time-triggered
control is more realistic by only assuming the availability and processing of sensor
data at discrete instants of time (discrete sensing). Time-triggered system models
avoid the modeling subtleties that events tend to cause for the detection of events.
It is, thus, often much easier to get the models right and implementable for time-
triggered systems than it is for event-triggered control. The price is that the burden
of event-detection is then brought to the attention of the CPS programmer, whose
time-triggered controller will now have to ensure it predicts and detects events early
enough before it is too late to react to them. That is what makes the time-triggered
controllers more difficult to get correct, but is also crucial because important aspects
of reliable event detection may otherwise be brushed under the rug, which does not
help the final CPS become any safer either.

CPS design often begin by pretending the idealized world of event-triggered con-
trol (if the controller is not even safe when events are checked and responded to con-
tinuously, it is broken already) and then subsequently morphing the event-triggered
controller into a time-triggered controller. This second step then often indicates ad-
ditional subtleties that were missed in the event-triggered designs. The additional
insights gained in time-triggered controllers are crucial whenever the system reacts
slowly or whenever it reacts fast but needs a high precision in event detection to
remain safe. For example, the reaction time for ground control decisions to reach a
rover on Mars are so prohibitively large that they could hardly be ignored. Reaction
times in a surgical robotics system that is running at, say, 55Hz, are still crucial even
if the system is moving slow and reacting fast, because the required precision of the
system is in the sub-millimeter range [1]. But reaction times will have less of an
impact for parking a slowly moving car somewhere in an empty football stadium.

Overall, the biggest issues with event-triggered control, besides sometimes being
hard to implement, are the subtleties involved in properly modeling event detection
without accidentally defying the laws of physics in pursuit of an event. But control-
ling event-triggered systems is reasonably straight-forward as long as the events are
chosen well. In contrast, finding a model is comparably canonical in time-triggered
control, but identifying appropriately safe controller constraints takes a lot more
thought, leading, however, to important insights about the system at hand. It is pos-
sible to provide the best of both worlds by reducing the safety proof of an (imple-

262 9 Reactions & Delays

mentable) time-triggered controller to the (easier) safety proof of an event-triggered
controller along with corresponding compatibility conditions [2, 3].

Exercises

9.1. The HP in (9.3) imposes an upper bound on the duration of a continuous evolu-
tion. How can you impose an upper bound 1 and a lower bound 0.5? Is there relevant
safety-critical behavior in the system that is then no longer considered?

9.2. Give an initial state for which the controller in (9.3) would skip over the event
without noticing it.

9.3. What would happen if the controller in (9.7) uses the ping pong paddle while
the ball is still on the ground? To what physical phenomenon does that correspond?

9.4. The formula (9.9) with the time-triggered controller of reaction time at most 1
time unit is valid. Yet, if a ball is let loose ever so slightly above ground with a very
fast negative velocity, couldn’t it possibly bounce back and exceed the safe height
5 faster than the reaction time of 1 time unit? Does that mean the formula ought to
have been falsifiable? No! Identify why and give a physical interpretation.

9.5. The controller in (9.9) ran at least once a second. How can you change the
model and controller so that it runs at least twice a second? What changes can you
do in the controller to reflect that increased frequency? How do you need to change
(9.9) if the controller only runs at least once every two seconds? Which of those
changes are safety-critical, which are not?

9.6. What happens if we misread the binding precedences and think the condition
v < 1 is added to both disjuncts in the controller in (9.9)?

2x = 2H− v2∧0≤ x∧ x≤ 5∧ v≤ 0∧g = 1 > 0∧1 = c≥ 0∧1 = f ≥ 0→[(
if(x = 0)v :=−cv; if((x > 5

1
2
− v∧ v < 1∨2x > 2 ·5− v2∧ v < 1)∧ v≥ 0)v :=− f v;

t :=0;{x′ = v,v′ =−g, t ′ = 1&x≥ 0∧ t ≤ 1}
)∗]

(0≤ x≤ 5)

Is the resulting formula still valid? Find an invariant or counterexample.

9.7. Conduct a sequent proof proving the validity of dL formula (9.9). Is it easier to
follow a direct proof or is it easier to use the generalization rule MR for the proof?

9.8. The event-triggered controller we designed in Chap. 8 monitored the event 4≤
x ≤ 5. The time-triggered controller in Sect. 9.2, however, ultimately only took the
upper bound 5 into account. How and under which circumstances can you modify
the controller so that it really only reacts for the event 4 ≤ x ≤ 5 rather than under
all circumstances where the ball is in danger of exceeding 5?

9.3 Summary 263

9.9. Devise a controller that reacts if the height changes by 1 when comparing the
height before the continuous evolution to the height after. Can you make it safe?
Can you implement it? Is it an event-triggered or a time-triggered controller? How
does it compare to the controllers developed in this chapter?

9.10. The ping pong ball proof relied on the parameter assumptions g = c = f = 1
for mere convenience of the resulting arithmetic. Develop a time-triggered model,
controller, invariant, and proof for the general ping pong ball without these unnec-
essarily strong assumptions.

9.11. Show that the ping pong ball (9.9) can also be proved safe using just the invari-
ant 0 ≤ x ≤ 5 (possibly including assumptions on constants such as g > 0). Which
assumptions on the initial state does this proof crucially depend on?

9.12 (*). Design a variation of the time-triggered controller for the ping pong ball
that is allowed to use the ping pong paddle within height 4≤ x≤ 5 but has a relaxed
safety condition that accepts 0 ≤ x ≤ 2 · 5. Make sure to only force the use of the
ping pong paddle when necessary. Find an invariant and conduct a proof.

References

1. Kouskoulas, Y., Renshaw, D. W., Platzer, A. & Kazanzides, P. Certifying the
Safe Design of a Virtual Fixture Control Algorithm for a Surgical Robot in
HSCC (eds Belta, C. & Ivancic, F.) (ACM, 2013), 263–272. doi:10.1145/
2461328.2461369.

2. Loos, S. M. Differential Refinement Logic PhD thesis (Computer Science De-
partment, School of Computer Science, Carnegie Mellon University, 2016).

3. Loos, S. M. & Platzer, A. Differential Refinement Logic in LICS (eds Grohe,
M., Koskinen, E. & Shankar, N.) (ACM, 2016), 505–514. doi:10.1145/
2933575.2934555.

http://dx.doi.org/10.1145/2461328.2461369
http://dx.doi.org/10.1145/2461328.2461369
http://dx.doi.org/10.1145/2933575.2934555
http://dx.doi.org/10.1145/2933575.2934555

	Cyber-Physical Systems: Overview
	Introduction
	Cyber-Physical Systems Analysis by Example
	Application Domains
	Significance
	The Importance of Safety

	Hybrid Systems versus Cyber-Physical Systems
	Multi-dynamical Systems
	How to Learn about Cyber-Physical Systems
	Computational Thinking for Cyber-Physical Systems
	Learning Objectives
	Structure of This Book
	Summary
	References

	Part I Elementary Cyber-Physical Systems
	Differential Equations & Domains
	Introduction
	Differential Equations as Models of Continuous Physical Processes
	The Meaning of Differential Equations
	A Tiny Compendium of Differential Equation Examples
	Domains of Differential Equations
	Syntax of Continuous Programs
	Continuous Programs
	Terms
	First-order Formulas

	Semantics of Continuous Programs
	Terms
	First-order Formulas
	Continuous Programs

	Summary
	Appendix
	Existence Theorems
	Existence and Uniqueness Theorems
	Linear Differential Equations with Constant Coefficients
	Continuation and Continuous Dependency

	Exercises
	References

	Choice & Control
	Introduction
	A Gradual Introduction to Hybrid Programs
	Discrete Change in Programs
	Compositions of Programs
	Decisions in Hybrid Programs
	Choices in Hybrid Programs
	Tests in Hybrid Programs
	Repetitions in Hybrid Programs

	Hybrid Programs
	Syntax
	Semantics

	Hybrid Program Design
	A Matter of Choice
	Patternology?

	Summary
	Exercises
	References

	Safety & Contracts
	Introduction
	A Gradual Introduction to CPS Contracts
	The Adventures of Quantum the Bouncing Ball
	How Quantum Discovered a Crack in the Fabric of Time
	How Quantum Learned to Deflate
	Postcondition Contracts for CPS
	Precondition Contracts for CPS

	Logical Formulas for Hybrid Programs
	Differential Dynamic Logic
	Syntax
	Semantics

	CPS Contracts in Logic
	Identifying Requirements of a CPS
	Summary
	Appendix
	Intermediate Conditions for a Proof of Sequential Compositions
	A Proof of Choice
	A Proof of Tests

	Exercises
	References

	Dynamical Systems & Dynamic Axioms
	Introduction
	Intermediate Conditions for CPS
	Dynamic Axioms for Dynamical Systems
	Nondeterministic Choices
	Soundness
	Assignments
	Differential Equations
	Tests
	Sequential Compositions
	Loops

	A Proof of a Short Bouncing Ball
	Summary
	Appendix
	Modal Modus Ponens has Implications on Boxes
	Vacuous State Change If Nothing Relevant Ever Changes
	Gödel Generalizes Validities into Boxes
	Monotonicity of Postconditions
	Of Free and Bound Variables
	Free and Bound Variable Analysis

	Exercises
	References

	Truth & Proof
	Introduction
	Truth and Proof
	Sequents
	Proofs
	Propositional Proof Rules
	Soundness
	Proofs with Dynamics
	Quantifier Proof Rules

	Derived Proof Rules
	A Sequent Proof for a Non-Bouncing Ball
	Real Arithmetic
	Real Quantifier Elimination
	Instantiating Real Arithmetic
	Weakening Real Arithmetic
	Structural Proof Rules
	Substituting Equations
	Abbreviating Terms
	Creatively Cutting Real Arithmetic

	Summary
	Exercises
	References

	Control Loops & Invariants
	Introduction
	Control Loops
	Induction for Loops
	Induction Axioms for Loops
	Induction Rule for Loops
	Loop Invariants
	Contextual Soundness Requirements

	Operational Effect of Loop Invariants
	Invariants for Sequential or Nondeterministical Compositions
	A Proof of a Happily Repetitive Bouncing Ball
	Splitting Postconditions
	Operational Intuition of Loop Invariants
	Summary
	Appendix
	Loops of Proofs
	Breaking Loops of Proofs
	Invariant Proofs of Loops
	Alternative Forms of the Induction Axiom

	Exercises
	References

	Events & Responses
	Introduction
	The Need for Control
	Events in Control
	Event Detection
	Dividing Up Physics
	Event Firing
	Event-Triggered Verification
	Event-Triggered Control Paradigm
	Physics versus Control Distinctions

	Summary
	Exercises
	References

	Reactions & Delays
	Introduction
	Delays in Control
	The Impact of Delays on Event Detection
	Model-predictive Control Basics
	Design by Invariant
	Sequencing and Prioritizing Reactions
	Time-triggered Verification

	Summary
	Exercises
	References

	Part II Differential Equations Analysis
	Differential Equations & Differential Invariants
	Introduction
	A Gradual Introduction to Differential Invariants
	Global Descriptive Power of Local Differential Equations
	Differential Equations vs. Loops
	Intuition of Differential Invariants
	Deriving Differential Invariants
	The Meaning of Prime

	The Real Meaning of Primes: Differentials
	Differential Substitution Lemmas
	Differential Invariant Terms
	A Differential Invariant Proof by Generalization
	Example Proofs
	Differential Invariant Terms and Invariant Functions
	Summary
	Exercises
	References

	Differential Equations & Proofs
	Introduction
	Recap: Ingredients for Differential Equation Proofs
	Differential Weakening
	Differential Invariant Terms
	Operations in Differential Invariants
	Equational Differential Invariants
	Differential Invariant Inequalities
	Disequational Differential Invariants
	Conjunctive Differential Invariants
	Disjunctive Differential Invariants

	Differential Invariants
	Example Proofs
	Assuming Invariants
	Differential Cuts
	Differential Weakening Again
	Summary
	Appendix: Proving Aerodynamic Bouncing Balls
	Exercises
	References

	Ghosts & Differential Ghosts
	Introduction
	Recap
	Arithmetic Ghosts
	Nondeterministic Assignments & Ghosts of Choice
	Differential-algebraic Ghosts
	Discrete Ghosts
	Proving Bouncing Balls with Sneaky Solutions
	Exploiting Differential Ghosts for Falling Balls
	Differential Ghosts
	Substitute Ghosts
	Summary
	Appendix: Axiomatic Ghosts
	Exercises
	References

	Differential Invariants & Proof Theory
	Introduction
	Recap
	Comparative Deductive Study: Relativity Theory for Proofs
	Equivalences of Differential Invariants
	Differential Invariants & Arithmetic
	Differential Invariant Equations
	Equational Incompleteness
	Strict Differential Invariant Inequalities
	Differential Invariant Equations as Differential Invariant Inequalities
	Differential Invariant Atoms
	Summary
	Appendix: Curves Playing with Norms and Degrees
	Exercises
	References

	Part III Adversarial Cyber-Physical Systems
	Hybrid Systems & Games
	Introduction
	Choices & Nondeterminism
	Control & Dual Control
	Hybrid Games
	Differential Game Logic
	Demon's Controls
	An Informal Operational Game Semantics
	Summary
	Exercises
	References

	Winning Strategies & Regions
	Introduction
	Semantics
	Winning Regions
	Advance Notice Repetitions
	-Strategic Semantics
	Inflationary Semantics
	There and Back Again Game
	Summary
	Exercises
	References

	Winning & Proving Hybrid Games
	Introduction
	Characterizing Winning Repetitions Implicitly
	Semantics of Hybrid Games
	Determinacy
	Hybrid Game Axioms
	Relating Differential Game Logic and Differential Dynamic Logic
	Exercises
	References

	Game Proofs & Separations
	Introduction
	Recap: Semantics of Hybrid Games
	Hybrid Game Proofs
	Soundness
	Separating Axioms
	Repetitive Diamonds – Convergence vs. Iteration
	Exercises
	References

	Part IV Real Arithmetic
	Virtual Substitution & Real Equations
	Introduction
	Framing the Miracle
	Quantifier Elimination
	Homomorphic Normalization for Quantifier Elimination
	Substitution Base
	Term Substitutions

	Square Root Substitutions for Quadratics
	Optimizations
	Summary
	Appendix: Real Algebraic Geometry
	Exercises
	References

	Virtual Substitution & Real Arithmetic
	Introduction
	Recap: Square Root Substitutions for Quadratics
	Infinity Substitution
	Infinitesimal Substitutions
	Quantifier Elimination by Virtual Substitution
	Summary
	Appendix: Semialgebraic Geometry
	Exercises
	References

