
André Platzer

Lecture Notes on Foundations of
Cyber-Physical Systems

15-424/624/824 Foundations of Cyber-Physical Systems

http://lfcps.org/course/fcps17.html

Chapter 3
Choice & Control

Synposis This chapter develops the central dynamical systems model for describ-
ing the behavior of cyber-physical systems with a programming language. It com-
plements the previous understanding of continuous dynamics with an understand-
ing of the discrete dynamics caused by choices and controls in cyber-physical sys-
tems. The chapter interfaces the continuous dynamics of differential equations with
the discrete dynamics of conventional computer programs by directly integrating
differential equations with discrete programming languages. This leverages well-
established programming language constructs around elementary discrete and con-
tinuous statements to obtain hybrid programs as a core programming language for
cyber-physical systems. In addition to embracing differential equations, semantical
generalizations to mathematical reals as well as operators for nondeterminism are
important to make hybrid programs appropriate for cyber-physical systems.

3.1 Introduction

Chapter 2 saw the beginning of cyber-physical systems, yet emphasized only their
continuous part in the form of differential equations x′ = f (x). The sole interface
between continuous physical capabilities and cyber capabilities was by way of their
evolution domain. The evolution domain Q in a continuous program x′ = f (x)&Q
imposes restrictions on how far or how long the system can evolve along that differ-
ential equation. Suppose a continuous evolution has succeeded, and the system stops
following its differential equation, e.g., because the state would otherwise leave the
evolution domain Q if it had kept going. Then what happens now? How does the
cyber part take control? How do we describe what the cyber elements compute af-
terwards? What descriptions explain how cyber interacts with physics?

An overall understanding of a CPS ultimately requires an understanding of the
joint model with both its discrete dynamics and its continuous dynamics. It takes
both to understand, for example, what effect a discrete car controller has, via its
engine and steering actuators, on the continuous physical motion of a car down

59

60 3 Choice & Control

the road. Continuous programs are powerful for modeling continuous processes,
such as continuous motion. They cannot—on their own—model discrete changes
of variables, however.1 Such discrete state change helps understand the impact of
computer decisions on cyber-physical systems, in which computation decides to,
say, stop speeding up and apply the brakes instead. During the evolution along a
differential equation, such as x′ = v,v′ = a for accelerated motion along a straight
line, all variables change continuously over time, because the solution of a differ-
ential equation is (sufficiently) smooth. Discontinuous change of variables, such as
a change of acceleration from a = 2 to a = −6, instead, needs a discrete change
of state resulting from how computers compute decisions one step at a time. What
could be a model for describing such discrete changes in a system?

Discrete change can be described by different models. The most prominent ones
are conventional programming languages, in which everything takes effect one dis-
crete step at a time, just like computer processors operate one clock cycle at a time.

CPSs combine cyber and physics, though. In CPS, we do not program comput-
ers, but program cyber-physical systems instead. We program the computers that
control the physics, which requires programming languages for CPSs to involve
physics, and integrate differential equations seamlessly with discrete computer op-
erations. The basic idea is that its discrete statements are executed by a computer
processor, while its continuous statements are handled by the physical elements,
such as wheels, engines, or brakes. CPS programs need a mix of both, though, to
accurately describe the combined discrete and continuous dynamics.

Does it matter which discrete programming language we choose to enrich with
the continuous statements from Chap. 2? It could be argued that the hybrid aspects
are more important for CPS than the discrete language. After all, there are many
conventional programming languages that are Turing-equivalent, i.e. that compute
the same functions [2, 7, 23]. Yet there are numerous significant differences even
among discrete programming languages that make some more desirable than others
[5]. For the particular purposes of CPS, we will identify additional desired features.
We will develop what we need as we go, culminating in the programming language
of hybrid programs [13–18], which plays a fundamental role in this book.

Other areas such as automata theory and the theory of formal languages [7] or
Petri nets [12] also provide models of discrete change. There are ways of augment-
ing these models with differential equations as well [1, 3, 11]. But programming
languages are uniquely positioned to extend their virtues of built-in composition-
ality. Just as the meaning and effect of a conventional program is a function of its
pieces, the meaning and operation of a hybrid program is also a function of its parts.

The most important learning goals of this chapter are:

Modeling and Control: This chapter plays a crucial role in understanding and de-
signing models of CPSs. We develop an understanding of the core principles
behind CPS by studying how discrete and continuous dynamics are combined

1 There is a much deeper sense [17] in which continuous dynamics and discrete dynamics have
surprising similarities regardless. But even so, these similarities rest on the foundations of hybrid
systems, which we need to understand first.

3.2 A Gradual Introduction to Hybrid Programs 61

and interact to model cyber and physics, respectively. We see the first example
of how to develop models and controls for a simple CPS. Even if subsequent
chapters will blur the overly simplistic categorization of cyber=discrete versus
physics=continuous, it is useful to equate them for now, because cyber, com-
putation, and decisions quickly lead to discrete dynamics, while physics natu-
rally gives rise to continuous dynamics. Later chapters will discover that some
physical phenomena are better modeled with discrete dynamics, while some
controller aspects also have a manifestation in continuous dynamics.

Computational Thinking: We introduce and study the important phenomenon of
nondeterminism, which is crucial for developing faithful models of a CPS’s en-
vironment and helpful for developing effective models of the CPS itself. We
emphasize the importance of abstraction, which is an essential modular orga-
nization principle in CPS as well as all other parts of computer science. We
capture the core aspects of CPS in the programming language of hybrid pro-
grams.

CPS Skills: We develop an intuition for the operational effects of CPS. And we
will develop an understanding for the semantics of the programming language
of hybrid programs, which is the CPS model that this textbook is based on.

CT

M&C CPS

nondeterminism
abstraction
programming languages for CPS
semantics
compositionality

models
core principles
discrete+continuous

operational effect
operational precision

3.2 A Gradual Introduction to Hybrid Programs

This section gradually introduces the operations that hybrid programs provide one
step at a time. Its emphasis is on their motivation and an intuitive development
before subsequent sections provide a comprehensive view.

62 3 Choice & Control

3.2.1 Discrete Change in Programs

Discrete change immediately happens in computer programs when they assign a
new value to a variable. The statement x :=e assigns the value of term e to variable
x by evaluating the term e and assigning the result to the variable x. It leads to a
discrete, discontinuous change, because the value of x does not vary smoothly but
radically when suddenly assigning the value of e to x, which causes an instantaneous
discrete jump in the value of x.

Fig. 3.1 An illustration of the
behavior of an instantaneous
discrete change at time = 0

t

x

0

ω

ν

This gives us a discrete model of change, x :=e, in addition to the continuous
model of change, x′ = f (x)&Q, from the Chap. 2. We can now model systems that
are either discrete or continuous. Yet, how can we model proper CPS that combine
cyber and physics with one another and that, thus, simultaneously combine discrete
and continuous dynamics? We need such hybrid behavior every time a system has
both continuous dynamics (such as the continuous motion of a car down the street)
in addition to discrete dynamics (such as shifting gears).

3.2.2 Compositions of Programs

One way how cyber and physics can interact is if a computer provides input to
physics. Physics may mention variables like a for acceleration and the computer
program sets its value depending on whether the computer program wants to accel-
erate or brake. That is, cyber could set the values of actuators that affect physics.

In this case, cyber and physics interact in such a way that the cyber part first does
something and physics then follows. Such a behavior corresponds to a sequential
composition (α;β) in which first the HP α on the left of the sequential composition
operator (;) runs and, when it’s done, the HP β on the right of operator ; runs. The
following HP2

a :=a+1; {x′ = v,v′ = a} (3.1)

2 Note that the parentheses around the differential equation are redundant and will often be left out
in the textbook or in scientific papers. HP (3.1) would be written a :=a+1; x′ = v,v′ = a. Round
parentheses are often used in theoretical developments, while braces are useful to disambiguate in
bigger CPS applications.

3.2 A Gradual Introduction to Hybrid Programs 63

will first let cyber perform a discrete change of setting acceleration variable a to
a+1 and then let physics follow the differential equation3 x′′ = a, which describes
accelerated motion of the point x along a straight line. The overall effect is that
cyber instantly increases the value of acceleration variable a and physics then lets
x evolve continuously with that acceleration a (increasing velocity v continuously
with derivative a). HP (3.1) models a situation where the desired acceleration is
commanded once to increase and the robot then moves with that fixed acceleration;
see Fig. 3.2. The sequential composition operator (;) has the same effect that it has
in programming languages like Java. It separates statements that are to be executed
sequentially one after the other. If you look closely, you will find a minor subtle
difference, because programming languages like Java or C expect ; at the end of ev-
ery statement, not just in between sequentially composed statements. This syntactic
difference is inconsequential, and a common treat of mathematical programming
languages.

1 2 3 4 5 6 7
t

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

a

1 2 3 4 5 6 7
t

-2

0

2

4

6

v

m

1 2 3 4 5 6 7
t

-2

0

2

4

6

8

10

x

Fig. 3.2 Fixed acceleration a (left), velocity v (middle), and position x (right) change over time t

The HP in (3.1) executes control (it sets the acceleration for physics), but it has
very little choice. Actually no choice at all. So only if the CPS is very lucky will an
increase in acceleration be the right action to remain safe forever. Quite likely, the
robot will have to change its mind ultimately, which is what we investigate next.

But first observe that the constructs we saw so far, assignments, sequential com-
positions, and differential equations already suffice to exhibit typical hybrid systems
dynamics. The behavior shown in Fig. 3.3 could be exhibited by the hybrid program:

a :=−2; {x′ = v,v′ = a};
a :=0.25; {x′ = v,v′ = a};
a :=−2; {x′ = v,v′ = a};
a :=0.25; {x′ = v,v′ = a};
a :=−2; {x′ = v,v′ = a};
a :=0.25; {x′ = v,v′ = a}

Can you already spot a question that comes up about how exactly we run this pro-
gram? We will postpone the formulation and answer to this question to Sect. 3.2.6.

3 We frequently use x′′ = a as an abbreviation for x′ = v,v′ = a, even if x′′ is not officially permitted
in KeYmaera X.

64 3 Choice & Control

1 2 3 4 5 6 7
t

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

a

1 2 3 4 5 6 7
t

-2

0

2

4

6

v

m

1 2 3 4 5 6 7
t

-2

0

2

4

6

8

10

x

Fig. 3.3 Acceleration a (left), velocity v (middle), and position x (right) change over time t, with a
piecewise constant acceleration changing discretely at instants of time while velocity and position
change continuously over time.

3.2.3 Decisions in Hybrid Programs

In general, a CPS will have to check conditions on the state to see which action to
take. Otherwise the CPS could not possibly be safe and, quite likely, will also not
take the right turns to get to its goal. One way of programming these conditions is
the use of an if-then-else statement, as in classical discrete programs.

if(v < 4)a :=a+1elsea :=−b;
{x′ = v,v′ = a} (3.2)

This HP will check the condition v < 4 to see if the current velocity is still less than
4. If it is, then a will be increased by 1. Otherwise, a will be set to −b for some
braking deceleration constant b > 0. Afterwards, i.e. when the if-then-else state-
ment in the first line has run to completion, the HP will again evolve x continuously
with acceleration a along a differential equation in the second line.

The HP (3.2) takes only the current velocity into account to reach a decision on
whether to accelerate or brake. That is usually not enough information to guarantee
safety, because a robot doing that would be so fixated on achieving its desired speed
that it would happily speed into any walls or other obstacles along the way. Conse-
quently, programs that control robots also take other state information into account,
for example sufficient distance x−m to an obstacle m from the robot’s position x:

if(x−m > s)a :=a+1elsea :=−b;
{x′ = v,v′ = a} (3.3)

Whether that is safe depends on the choice of the required safety distance s. Con-
trollers could also take both distance and velocity into account for the decision:

if(x−m > s∧ v < 4)a :=a+1elsea :=−b;
{x′ = v,v′ = a} (3.4)

3.2 A Gradual Introduction to Hybrid Programs 65

Note 9 (Iterative design) To design serious controllers, you will usually de-
velop a series of increasingly more intelligent controllers for systems that face
increasingly challenging environments. Designing controllers for robots or
other CPSs is a serious challenge. You will want to start with simple con-
trollers for simple circumstances and only move on to more advanced chal-
lenges when you have fully understood and mastered the previous controllers,
what behavior they guarantee and what functionality they are still missing. If
a controller is not even safe under simple circumstances (for example when it
only knows how to brake), it will not be safe in more complex cases either.

3.2.4 Choices in Hybrid Programs

A common feature of CPS models is that they often include only some but not
all detail about the system. For good reasons, because full detail about everything
can be overwhelming and is often a distraction from the really important aspects of
a system. A (somewhat) more complete model of (3.4) might have the following
shape, with some further formula S as an extra condition for checking whether to
actually accelerate based on battery efficiency or secondary considerations:

if(x−m > s∧ v < 4∧S)a :=a+1elsea :=−b;
{x′ = v,v′ = a} (3.5)

Consequently, (3.4) is not actually a faithful model for (3.5), because (3.4) insists
that the acceleration would always be increased just because x−m> s∧v< 4 holds,
unlike (3.5), which also checks the additional condition S. Likewise, (3.3) certainly
is no faithful model of (3.5). But it looks simpler.

How can we describe a model that is simpler than (3.5) by ignoring the details of
S yet that is still faithful to the original system? What we want this model to do is
characterize that the controller may either increase acceleration by 1 or brake. All
acceleration should certainly only happen when certain safety-critical conditions
are met. But the model should make less commitment than (3.3) about the precise
circumstances under which braking is chosen. After all, braking may sometimes
just be the right thing to do, for example when arriving at the goal. So we want a
model that allows braking under more circumstances than (3.3) without having to
model precisely under which circumstances that is. If a system with more behavior
is safe, then the actual implementation will be safe as well, because it will only ever
exercise some of the verified behavior [10]. The extra behavior in the system might,
in fact, occur in reality whenever there are minor lags or discrepancies. So it is good
to have the extra assurance that some flexibility in the execution of the system will
not break its safety guarantees.

66 3 Choice & Control

Note 10 (Abstraction) Successful CPS models often include only the relevant
aspects of the system and simplify irrelevant detail. The benefit of doing so is
that the model and its analysis becomes simpler, enabling us to focus on the
critical parts without being bogged down in tangentials. This is the power
of abstraction, probably the primary secret weapon of computer science. It
does take considerable skill, however, to find the best level of abstraction for a
system. A skill that you will continue to sharpen throughout your entire career.

Let us take the development of this model step by step. The first feature that
the controller of the model has is a choice. The controller can choose to increase
acceleration or to brake, instead. Such a choice between two actions is denoted by
the choice operator ∪ :

(a :=a+1∪a :=−b);
{x′ = v,v′ = a} (3.6)

When running this hybrid program, the first thing that happens is that the first state-
ment (before the ;) runs, which is a choice (∪) between whether to run a :=a+1 or
whether to run a :=−b. That is, the choice is whether to increase acceleration a by
1 or whether to reset a to −b for braking. After this choice (i.e. after the ; sequen-
tial composition operator), the system follows the usual differential equation x′′ = a
describing accelerated motion along a line.

Now, wait. There was a choice. Who choses? How is the choice resolved?

Note 11 (Nondeterministic ∪) The choice (∪) is nondeterministic. That is,
every time a choice α ∪ β runs, exactly one of the two choices, α or β , is
chosen to run. The choice is nondeterministic, i.e. there is no prior way of
telling which of the two choices is going to be chosen. Both outcomes are
perfectly possible and a safe system design needs to be prepared to handle
either outcome.

The HP (3.6) is a faithful abstraction [10] of (3.5), because every way how (3.5)
can run can be mimicked by (3.6) so that the outcome of (3.6) corresponds to that of
(3.5). Whenever (3.5) runs a :=a+1, which happens exactly if x−m > s∧ v < 4∧S
is true, (3.6) only needs to choose to run the left choice a :=a+1. Whenever (3.5)
runs a :=−b, which happens exactly if x−m > s∧ v < 4∧S is false, (3.6) needs to
choose to run the right choice a :=−b. So all runs of (3.5) are possible runs of (3.6).
Furthermore, (3.6) is much simpler than (3.5), because it contains less detail. It does
not mention the complicated extra condition S. Yet, (3.6) is a little too permissive,
because it suddenly allows the controller to choose a :=a+1 even when it is already
too fast or even at close distance to the obstacle. That way, even if (3.5) was a safe
controller, (3.6) is still unsafe, and, thus, not a very suitable abstraction.

3.2 A Gradual Introduction to Hybrid Programs 67

3.2.5 Tests in Hybrid Programs

In order to build a faithful yet not overly permissive abstraction of (3.5), we need to
restrict the permitted choices in (3.6) so that there is enough flexibility, but only so
much that the acceleration choice a :=a+1 can only be chosen when it is safe to
do so. The way to do that is to use tests on the current state of the system.

A test ?Q is a statement that checks the truth-value of a first-order formula Q
of real arithmetic in the current state. If Q holds in the current state, then the test
passes, nothing happens, yet the HP continues to run normally. If, instead, Q does
not hold in the current state, then the test fails, and the system execution is aborted
and discarded. That is, when ω is the current state, then ?Q runs successfully without
changing the state when ω ∈ [[Q]]. Otherwise, i.e. if ω 6∈ [[Q]], the run of ?Q is aborted
and not considered any further, because it did not play by the rules of the system.

Of course, it can be difficult to figure out which control choice is safe under
what circumstances, and the answer also depends on whether the safety goal is to
limit speed or to remain at a safe distance from other obstacles. For the model in
this chapter, we simply pretend v < 4 would be the appropriate safety condition and
revisit the question of how to design and explain such conditions in later chapters.

The test statement can be used to change (3.6) so that it allows acceleration only
when v < 4, while braking is still allowed always:(

(?v < 4; a :=a+1)∪a :=−b
)
;

{x′ = v,v′ = a} (3.7)

The first statement of (3.7) is a choice (∪) between (?v < 4; a := a+ 1) and a :=
−b. All choices in hybrid programs are nondeterministic, so any outcome is always
possible. In (3.7), this means that the left choice can always be chosen, just as well
as the right one. The first statement that happens in the left choice, however, is the
test ?v < 4, which the system run has to pass in order to be able to continue. In
particular, if v < 4 is indeed true in the current state, then the system passes that
test ?v < 4 and the execution proceeds to after the sequential composition (;) to run
a :=a+1. If v < 4 is false in the current state, however, the system fails the test
?v < 4 and that run is aborted and discarded. The right option to brake is always
available, because it does not involve any tests to pass.

Note 12 (Discarding failed runs) System runs that fail tests ?Q are discarded
and not considered any further, because a failed run did not play by the rules
of the system. It is as if those failed system execution attempts had never hap-
pened. Even if one execution attempt fails, other runs may still be successful.
Operationally, you can imagine finding them by backtracking through all the
possible choices in the system run and taking alternative choices instead.

In principle, there are always two choices when running (3.7). Yet, which ones
actually run successfully depends on the current state. If the current state is at a far

68 3 Choice & Control

distance from the obstacle (so the test ?v < 4 will succeed), then both options of
accelerating and braking are possible and can execute successfully. Otherwise, only
the braking choice executes, because trying the left choice will fail its test ?v < 4
and be discarded. Both choices formally exist but only one will succeed in that case.

Note 13 (Successful runs) Notice that only successfully executed runs of HPs
will be considered, all others discarded because they did not play by the rules.
For example, ?v < 4; a :=a+1 can only run in states where v < 4, otherwise
there are no runs of this HP. Failed runs are discarded entirely, so the HP
a :=a+1; ?v < 4 can also only run in states where v < 4, in particular, accel-
eration a will never successfully be increased by this HP. Operationally, you
can imagine running the HP step by step and rolling all its changes back if any
test ever fails. Contrast this with the HP a :=a+1; ?a < 6, which increments
the acceleration and subsequently tests whether a is less than 6. This HP can
only run successfully from initial states with acceleration at most 5, because
their value at the test after the increment will then pass the test ?a < 6.

Comparing (3.7) with (3.5), we see that (3.7) is a faithful abstraction of the more
complicated (3.5), because all runs of (3.5) can be mimicked by (3.7). Yet, unlike the
intermediate guess (3.6), the improved HP (3.7) still retains the critical information
that acceleration is only allowed by (3.5) when v < 4. Unlike (3.5), (3.7) does not
restrict the cases where acceleration can be chosen to those that also satisfy v <
4∧S. Hence, (3.7) is more permissive than (3.5). But (3.7) is also simpler and only
contains crucial information about the controller. Hence, (3.7) is a more abstract
faithful model of (3.5) that retains just the relevant detail. Studying the abstract (3.7)
instead of the more concrete (3.5) has the advantage that only relevant details need
to be understood while irrelevant aspects can be ignored. It also has the additional
advantage that a safety analysis of the more abstract (3.7), which allows lots of
behavior, will imply safety of the special concrete case (3.5) but also implies safety
of other implementations of (3.7). For example, replacing S by a different condition
in (3.5) still gives a special case of (3.7). So if all behavior of (3.7) is safe, all
behavior of that different replacement will already be safe. With a single verification
result about a more general, more abstract system, we can verify a whole class of
systems rather than just one particular system. This important phenomenon [10] will
be investigated in more detail in later parts of the course.

Of course, which details are relevant and which ones can be simplified depends
on the analysis question at hand, a question that we will be better equipped to an-
swer in a later chapter. For now, suffice it to say that (3.7) has the relevant level of
abstraction for our purposes.

Note 14 (Broader significance of nondeterminism) Nondeterminism comes
up in the above cases for reasons of abstraction and for focusing the system
model on the most critical aspects of the system while suppressing irrelevant

3.2 A Gradual Introduction to Hybrid Programs 69

detail. This simplification is an important reason for introducing nondetermin-
ism in system models, but there are other important reasons as well. Whenever
a system includes models of its environment, nondeterministic models are cru-
cial, because there is often just a partial understanding of what the environ-
ment will do. A car controller for example, will not always know for sure what
other cars or pedestrians in its environment will do, exactly, so that nondeter-
ministic models are the only faithful representations.

Note the notational convention that sequential composition ; binds stronger than
nondeterministic choice∪ so we can leave parentheses out without changing (3.7):(

?v < 4; a :=a+1∪a :=−b
)
;

{x′ = v,v′ = a} (3.7*)

3.2.6 Repetitions in Hybrid Programs

The hybrid programs above were interesting, but only allowed the controller to
choose what action to take at most once. All controllers so far inspected the state
in a test or in an if-then-else condition and then chose what to do once, just to let
physics take control subsequently by following a differential equation. That makes
for rather short-lived controllers. They have a job only once in their lives. And most
decisions they reach may end up being bad ones at some point. Say, one of those
controllers, e.g. (3.7), inspects the state and finds it still okay to accelerate. If it
chooses a :=a+1 and then lets physics move with the differential equation x′′ = a,
there will probably come a time at which acceleration is no longer such a great idea.
But the controller of (3.7) has no way to change its mind, because it has no more
choices and cannot exercise any control anymore.

If the controller of (3.7) is supposed to be able to make a second control choice
later after physics has followed the differential equation for a while, then (3.7) can
simply be sequentially composed with itself:(

(?v < 4; a :=a+1)∪a :=−b
)
;

{x′ = v,v′ = a};(
(?v < 4; a :=a+1)∪a :=−b

)
;

{x′ = v,v′ = a}

(3.8)

In (3.8), the cyber controller can first choose to accelerate or brake (depending on
whether v < 4 is true in the present state), then physics evolves along differential
equation x′′ = a for some while, then the controller can again choose whether to
accelerate or brake (depending on whether v < 4 is true in the state reached then),
and finally physics again evolves along x′′ = a.

For a controller that is supposed to be allowed to have a third control choice,
copy&paste replication would again help:

70 3 Choice & Control(
(?v < 4; a :=a+1)∪a :=−b

)
;

{x′ = v,v′ = a};(
(?v < 4; a :=a+1)∪a :=−b

)
;

{x′ = v,v′ = a};(
(?v < 4; a :=a+1)∪a :=−b

)
;

{x′ = v,v′ = a}

(3.9)

But this is neither a particularly concise nor a particularly useful modeling style.
What if a controller could need 10 control decisions or 100? Or what if there is no
way of telling ahead of time how many control decisions the cyber part will have to
take to reach its goal? Think of how many control decisions you might need when
driving in a car from the East Coast to the West Coast. Do you know that ahead of
time? Even if you do, do you want to model a system by explicitly replicating its
controller that often?

Note 15 (Repetition) As a more concise and more general way of describing
repeated control choices, hybrid programs allow for the repetition operator
∗, which works like the star operator in regular expressions, except that it
applies to a hybrid program α as in α∗. It repeats α any number n ∈ N of
times, including 0, by a nondeterministic choice.

The programmatic way of summarizing (3.7), (3.8), (3.9) and the infinitely many
more n-fold replications of (3.7) for any n ∈ N, is by using a repetition operator:((

(?v < 4; a :=a+1)∪a :=−b
)
;

{x′ = v,v′ = a}
)∗ (3.10)

This HP can repeat (3.7) any number of times (0,1,2,3,4,. . .). Of course, it would not
be very meaningful to repeat a loop half a time or minus 5 times, so the repetition
count n ∈ N still has to be some natural number.

But how often does a nondeterministic repetition like (3.10) repeat then? That
choice is again nondeterministic.

Note 16 (Nondeterministic ∗) Repetition (∗) is nondeterministic. That is, pro-
gram α∗ can repeat α any number (n ∈ N) of times. The choice how often to
run α is nondeterministic, i.e. there is no prior way of telling how often α will
be repeated.

Yet, hold on, every time the loop in (3.10) is run, how long does the continuous
evolution along {x′ = v,v′ = a} in that loop iteration take? Or, actually, even in the
loop-free (3.8), how long does the first x′′ = a take before the controller has its
second control choice? How long did the continuous evolution take in (3.7) even?

3.3 Hybrid Programs 71

There is a choice even in following a differential equation! However determin-
istic the solution of the differential equation itself may be. Even if the solution of
the differential equation is unique (which it is in sufficiently smooth cases that we
consider according to Chap. 2), it is still a matter of choice how long to follow that
solution. The choice is, as always in hybrid programs, nondeterministic.

Note 17 (Nondeterministic x′ = f (x)) The duration of evolution of a differ-
ential equation (x′ = f (x)&Q) is nondeterministic (except that the evolution
can never be so long that the state leaves Q). That is, x′ = f (x)&Q can follow
the solution of x′ = f (x) any amount of time (0 ≤ r ∈ R) within the interval
of existence of the solution. The choice how long to follow x′ = f (x) is non-
deterministic, i.e. there is no prior way of telling how often x′ = f (x) will be
repeated (except that it can never leave Q).

3.3 Hybrid Programs

Based on the above gradual motivation, this section formally defines the program-
ming language of hybrid programs [15, 17], in which all of the operators motivated
above are allowed.

3.3.1 Syntax of Hybrid Programs

Formal grammars have worked well to define the syntax of terms e and first-order
logic formulas Q in Chap. 2, which is why we continue to use a grammar to define
the syntax of hybrid programs.

Definition 3.1 (Hybrid program). HPs are defined by the following gram-
mar (α,β are HPs, x is a variable, e is a term possibly containing x, e.g., a
polynomial in x, and Q is a formula of first-order logic of real arithmetic):

α,β ::= x :=e | ?Q | x′ = f (x)&Q | α ∪β | α;β | α∗

The first three cases are called atomic HPs, the last three compound HPs, because
they are built out of smaller HPs. The assignment x :=e instantaneously changes
the value of variable x to the value of e with a discrete state change. The differential
equation x′ = f (x)&Q follows a continuous evolution along the differential equa-
tion x′ = f (x) for any amount of time but restricted to the domain of evolution Q,
where x′ denotes the time-derivative of x. It goes without saying that x′ = f (x)&Q
is an explicit differential equation, so no derivatives occur in f (x) or Q. Recall that
a differential equation x′ = f (x) without an evolution domain constraint is short for
x′ = f (x)& true, since that imposes no restriction on the duration of the continuous

72 3 Choice & Control

evolution. The test action ?Q is used to define conditions. Its effect is that of a no-
op if the formula Q is true in the current state; otherwise, like an abort statement
would, it allows no transitions. That is, if the test succeeds because formula Q holds
in the current state, then the state does not change (it was only a test), and the sys-
tem execution continues normally. If the test fails because formula Q does not hold
in the current state, however, then the system execution cannot continue, is cut off,
discarded, and not considered any further since it is a failed execution attempt that
did not play by the rules of the HP.

Nondeterministic choice α ∪β , sequential composition α;β , and nondetermin-
istic repetition α∗ of programs are as in regular expressions but generalized to a
semantics in hybrid systems. Nondeterministic choice α ∪β expresses behavioral
alternatives between the runs of α and β . That is, the HP α ∪β can choose nonde-
terministically to follow the runs of HP α , or, instead, to follow the runs of HP β .
The sequential composition α;β models that the HP β starts running after HP α has
finished (β never starts if α does not terminate successfully). In α;β , the runs of α

take effect first, until α terminates (if it does), and then β continues. Observe that,
like repetitions, continuous evolutions within α can take more or less time, which
causes uncountable nondeterminism. This nondeterminism occurs in hybrid sys-
tems, because they can operate in so many different ways, which is as such reflected
in HPs. Nondeterministic repetition α∗ is used to express that the HP α repeats any
number of times, including zero times. When following α∗, the runs of HP α can
be repeated over and over again, any nondeterministic number of times (≥0).

Expedition 3.1 (Operator precedence for hybrid programs)

In practice, it is useful to save parentheses by agreeing on notational opera-
tor precedences. Unary operators (including repetition ∗) bind stronger than
binary operators and ; binds stronger than ∪ , so α;β ∪ γ ≡ (α;β)∪ γ and
α ∪β ;γ ≡ α ∪ (β ;γ). Especially, α;β ∗ ≡ α;(β ∗).

3.3.2 Semantics of Hybrid Programs

After having developed a syntax for CPS and an operational intuition for its effects,
we seek operational precision in its effects. That is, we will pursue one important
leg of computational thinking and give an unambiguous meaning to all operators of
HPs. We will do this in pursuit of the realization that the only way to be precise
about an analysis of CPS is to first be precise about the meaning of the models of
CPS. Furthermore, we will leverage another important leg of computational thinking
rooted in logic by exploiting that the right way of understanding something is to
understand it compositionally as a function of its pieces [4]. So we will give meaning
to hybrid programs by giving a meaning to each of its operators. Thereby, a meaning

3.3 Hybrid Programs 73

of a large HP is merely a function of the meaning of its pieces. This is the style of
denotational semantics for programming languages due to Scott and Stratchey [22].

There is more than one way to define the meaning of a program, including defin-
ing a denotational semantics [21], an operational semantics [21], a structural opera-
tional semantics [19], an axiomatic semantics [6, 20]. For our purposes, what is most
relevant is how a hybrid program changes the state of the system. Consequently, the
semantics of hybrid programs considers which (final) state ν is reachable by run-
ning a HP α from an (initial) state ω . Semantical models that expose more detail,
e.g., about the internal states during the run of an HP are possible [8] but can be
ignored for most purposes in this book.

Recall that a state ω : V → R is a mapping from variables to R. The set of
states is denoted S. The meaning of an HP α is given by a reachability relation
[[α]]⊆S×S on states. So (ω,ν) ∈ [[α]] means that final state ν is reachable from
initial state ω by running HP α . From any initial state ω , there might be many
states ν that are reachable because the HP α may involve nondeterministic choices,
repetitions or differential equations, so there may be many different states ν for
which (ω,ν) ∈ [[α]]. Form other initial states ω , there might be no reachable states
ν at all for which (ω,ν) ∈ [[α]]. So [[α]] is a proper relation, not a function.

HPs have a compositional semantics [14–16]. Recall from Chap. 2 that the value
of term e in ω is denoted by ω[[e]] and that S denotes the set of all states. Further,
ω ∈ [[Q]] denotes that first-order formula Q is true in state ω . The semantics of an
HP α is then defined by its reachability relation [[α]]⊆S×S. The notation α∗ for
loops comes from the notation ρ∗ for the reflexive, transitive closure of a relation ρ .
Graphical illustrations of the transition semantics of hybrid programs defined below
and possible example dynamics are depicted in Fig. 3.4. The left of Fig. 3.4 illus-
trates the generic shape of the transition structure [[α]] for transitions along various
cases of hybrid programs α from state ω to state ν . The right of Fig. 3.4 shows ex-
amples of how the value of a variable x may evolve over time t when following the
dynamics of the respective hybrid program α .

Definition 3.2 (Transition semantics of HPs). Each HP α is interpreted se-
mantically as a binary reachability relation [[α]]⊆S×S over states, defined
inductively by

1. [[x :=e]] = {(ω,ν) : ν = ω except that ν [[x]] = ω[[e]]}
That is, final state ν differs from initial state ω only in its interpretation
of the variable x, which ν changes to the value that the right-hand side e
has in the initial state ω .

2. [[?Q]] = {(ω,ω) : ω ∈ [[Q]]}
That is, the final state ω is the same as the initial state ω (no change) but
there only is such a transition if test formula Q holds in ω , otherwise no
transition is possible at all and the system is stuck because of a failed test.

3. [[x′ = f (x)&Q]] = {(ω,ν) : ϕ(0) = ω except at x′ and ϕ(r) = ν for a
solution ϕ : [0,r]→S of any duration r satisfying ϕ |= x′ = f (x)∧Q}
That is, the final state ϕ(r) is connected to the initial state ϕ(0) by a

74 3 Choice & Control

ω ν
x := e

t

x

0

ω

ν if ν(x) = ω[[e]]
and ν(z) = ω(z) for z 6= x

ω ν

x′ = f (x)&Q

t

x

Q

ν

ω

0 r
x′ = f (x)&Q

ω

?Q

if ω ∈ [[Q]]
ω

?Q
/

if ω 6∈ [[Q]]
t

x

0

ω no change if ω ∈ [[Q]]
otherwise no transition

ω

ν1

ν2

α

β

α ∪β

t

x
ω ν1

ν2

ω µ ν

α;β

α β t

x

µ

ω ν

ω ω1 ω2 ν

α∗

α α α t

x
ω ν

Fig. 3.4 Transition semantics (left) and example dynamics (right) of hybrid programs

continuous function of some duration r ≥ 0 that solves the differential
equation and satisfies Q at all times; see Definition 3.3.

4. [[α ∪β]] = [[α]]∪ [[β]]
That is, α ∪β can exactly do any of the transitions that α can do as well
as any of the transitions that β is capable of.

5. [[α;β]] = [[α]]◦ [[β]] = {(ω,ν) : (ω,µ) ∈ [[α]],(µ,ν) ∈ [[β]]}
That is, the meaning of α;β is the compositiona [[α]]◦ [[β]] of relation [[β]]
after [[α]]. Thus, α;β can do any transitions that go through any interme-
diate state µ to which α can make a transition from the initial state ω and
from which β can make a transition to the final state ν .

3.3 Hybrid Programs 75

6. [[α∗]] = [[α]]∗ =
⋃

n∈N
[[αn]] with αn+1 ≡ αn;α and α0 ≡?true.

That is, α∗ can repeat α any number of times, i.e., for any n ∈ N, α∗ can
act like the n-fold sequential composition αn ≡ α;α;α; . . . ;α︸ ︷︷ ︸

n times

would.

a The notational convention for composition of relations is flipped compared to the compo-
sition of functions. For functions f and g, the function f ◦g is the composition f after g that
maps x to f (g(x)). For relations R and T , the relation R◦T is the composition of T after R,
so first follow relation R to an intermediate state and then follow relation T to the final state.

To keep things simple, this definition uses simplifying abbreviations for differential
equations. Chapter 2 provides full detail, including the definition for differential
equation systems. The semantics of loops can also be rephrased equivalently as:

[[α∗]] =
⋃

n∈N
{(ω0,ωn) : ω0, . . . ,ωn are states such that (ωi,ωi+1) ∈ [[α]] for all i < n}

For later reference, we repeat the definition of the semantics of differential equa-
tions separately:

Definition 3.3 (Transition semantics of ODEs).

[[x′ = f (x)&Q]] =
{
(ω,ν) : ϕ(0) = ω except at x′ and ϕ(r) = ν for a solution

ϕ : [0,r]→S of any duration r satisfying ϕ |= x′ = f (x)∧Q
}

where ϕ |= x′ = f (x)∧Q, iff for all times 0≤ z≤ r: ϕ(z) ∈ [[x′ = f (x)∧Q]]

with ϕ(z)(x′) def
= dϕ(t)(x)

dt (z) and ϕ(z) = ϕ(0) except at x,x′.

The condition that ϕ(0) =ω except at x′ is explicit about the fact that the initial state
ω and the first state ϕ(0) of the continuous evolution have to be identical (except for
the value of x′, which Definition 3.3 only provides a value for along ϕ). Part I of this
book does not track the values of x′ except during continuous evolutions. But that
will change in Part II, for which Definition 3.3 is already prepared appropriately.

By plugging one transition structure pattern into another, Fig. 3.4 also illustrates
the generic shape of transition structures for more complex HPs, see Fig. 3.5 for an
illustration of (α;β)∗.

Fig. 3.5 Nested transition
semantics pattern for (α;β)∗

ω ω1 ω2 ν

(α;β)∗

α β α β α β

Observe that ?Q cannot run from an initial state ω with ω 6∈ [[Q]], especially
[[?false]] = /0. Likewise, x′ = f (x)&Q cannot run from an initial state ω with
ω 6∈ [[Q]], because no solution of any duration, not even duration 0, starting in ω

76 3 Choice & Control

will always stay in the evolution domain Q if it already starts outside Q. A nonde-
terministic choice α ∪β cannot run from an initial state from which neither α nor
β can run. Similarly, α;β cannot run from an initial state form which α cannot run,
nor from an initial state from which all final states after α make it impossible for β

to run. Assignments and repetitions can always run, e.g., by repeating 0 times.
When α denotes the HP in (3.8) on p. 69, its semantics [[α]] is a relation on states

connecting the initial to the final state along the differential equation with two con-
trol decisions according to the nondeterministic choice, one at the beginning and
one after following the first differential equation. How long is that, exactly? Well,
that’s nondeterministic, because the semantics of differential equations is such that
any final state after any permitted duration is reachable from a given initial state. So
the duration for the first differential equation in (3.8) could have been one second or
two or 424 or half a second or zero or π or any other nonnegative real number. This
would have been very different for an HP whose differential equation has an evo-
lution domain constraint, because that limits how long a continuous evolution can
take. The exact duration is still nondeterministic, but it cannot ever evolve outside
its evolution domain.

3.4 Hybrid Program Design

This section discusses some early lessons on good and bad modeling choices in
hybrid systems. As our understanding of the subject matter advances throughout
this textbook, we will find additional insights into tradeoffs and caveats. The aspects
that can easily be understood on a pure modeling level will be discussed now.

3.4.1 A Matter of Choice

If we change the HP from (3.8) and consider the following modification instead:

?v < 4; a :=a+1;
{x′ = v,v′ = a};
?v < 4; a :=a+1;
{x′ = v,v′ = a}

(3.11)

Then some behavior that was still possible in (3.8) is no longer possible for (3.11).
Let β denote the HP in (3.11), then the semantics [[β]] of β now only includes rela-
tions between initial and final states which can be reached by acceleration choices
(because there are no more braking choices in β). Note that the duration of the first
differential equation in (3.11) may suddenly be bounded, because if x keeps on ac-
celerating for too long during the first differential equation, the intermediate state

3.5 Summary 77

reached then will violate the test ?v < 4, which, according to the semantics of tests,
will fail and be discarded.

That is what makes (3.11) a bad model, because it truncates and discards behavior
that the real system would still possess. Even if the controller in the third line of
(3.11) is not prepared to handle the situation where the test ?v < 4 fails, it might fail
in reality. In that case, the controller in (3.11) simply ran out of choices. A more
realistic and permissive controller, thus, also handles the case if that test fails, at
which point we are back at (3.8).

Note 18 (Controllers cannot discard cases) While subsequent chapters dis-
cuss cases where hybrid programs use tests ?Q in crucial ways to discard
non-permitted behaviors, great care needs to be exercised that controllers also
handle the remaining cases. A bad controller

?x > s; α

only handles the case where x > s and ignores all other circumstances, which
renders the controller incapable of reacting and, thus, unsafe when x ≤ s. A
better controller design always considers the case when a condition is not
satisfied and handles it appropriately as well:

(?x > s;α)∪ (?x≤ s; . . .)

Liveness proofs can tell both cases of controllers apart, but appropriate design
principles of being prepared for both outcomes of each test go a long way in
improving the controllers.

Similarly bad controller designs result from careless evolution domains:

a :=−b; {x′ = v,v′ = a&v > 4}

The differential equations in this controller silently assume the velocity would
always stay above 4, which is clearly not always the case when braking. Acci-
dental divisions by zero are another source of trouble in CPS controllers.

3.4.2 Patternology?

3.5 Summary

This chapter introduced hybrid programs as a model for cyber-physical systems,
summarized in Table 3.1. Hybrid programs combine differential equations with con-
ventional program constructs and discrete assignments. The programming language
of hybrid programs embraces nondeterminism as a first-class citizen and features

78 3 Choice & Control

differential equations that can be combined to form hybrid systems using the com-
positional operators of hybrid programs.

Table 3.1 Statements and effects of hybrid programs (HPs)

HP Notation Operation Effect
x :=e discrete assignment assigns term e to variable x
x′ = f (x)&Q continuous evolution differential equations for x with term f (x) with-

in first-order constraint Q (evolution domain)
?Q state test / check test first-order formula Q at current state
α; β seq. composition HP β starts after HP α finishes
α ∪β nondet. choice choice between alternatives HP α or HP β

α∗ nondet. repetition repeats HP α n-times for any n ∈ N

Exercises

3.1. The semantics of an HP α is its reachability relation [[α]]. For example,

[[x :=2 · x;x :=x+1]] = {(ω,ν) : ν(x) = 2 ·ω(x)+1 and ν(z) = ω(z) for all z 6= x}

Describe the reachability relation of the following HPs in similarly explicit ways:

1. x :=x+1;x :=2 · x
2. x :=1∪ x :=−1
3. x :=1∪ ?(x≤ 0)
4. x :=1; ?(x≤ 0)
5. ?(x≤ 0)
6. x :=1∪ x′ = 1
7. x :=1; x′ = 1
8. x :=1; {x′ = 1&x≤ 1}
9. x :=1; {x′ = 1&x≤ 0}

10. v :=1; x′ = v
11. v :=1; {x′ = v}∗
12. x′ = v,v′ = a&x≥ 0

3.2. The semantics of hybrid programs (Definition 3.2) requires evolution domain
constraints Q to hold always throughout a continuous evolution. What exactly hap-
pens if the system starts in a state where Q does not hold to begin with?

3.3 (If-then-else). Sect. 3.2.3 considered if-then-else statements for hybrid pro-
grams. But they no longer showed up in the grammar of hybrid programs. Is this
a mistake? Can you define if(P)α elseβ from the operators that HPs provide?

3.4 (If-then-else). Suppose we add the if-then-else-statement if(P)α elseβ to the
syntax of HPs. Define a semantics [[if(P)α elseβ]] for if-then-else statements.

3.5 Summary 79

3.5 (Switch-case). Define a switch statement that runs the statement αi if formula
Pi is true, and chooses nondeterministically if multiple conditions are true:

switch (

case P1 : α1

case P2 : α2

...
case P1 : α1

)

What would need to be changed to make sure only the statement αi with the first
true condition Pi executes?

3.6 (While). Suppose we add the while loop while(P)α to the syntax of HPs. As
usual, while(P)α is supposed to run α if P holds, and, whenever α finished, repeat
again if P holds. Define a semantics [[while(P)α]] for while loops. Can you define a
program that is equivalent to while(P)α from the original syntax of HPs?

3.7. Consider your favorite programming language and discuss in what ways it in-
troduces discrete change and discrete dynamics. Can it model all behavior that hy-
brid programs can describe? Can your programming language model all behavior
that hybrid programs without differential equations can describe? How about the
other way around? And what would you need to add to your programming language
to cover all of hybrid systems? How would you best do that?

3.8. Can you find a discrete controller ctrl and a continuous program plant such that
the following two hybrid programs have very different behavior?

(ctrl; plant)∗ versus (ctrl∪plant)∗

3.9 (Set-valued semantics). The semantics of hybrid programs (Definition 3.2) is
defined as a transition relation [[α]]⊆S×S on states. Define an equivalent seman-
tics using functions R(α) : S→ 2S from the initial state to the set of all final states,
where 2S denotes the powerset of S, i.e. the set of all subsets of S. Define this set-
valued semantics R(α) without referring to the transition relation semantics [[α]] and
prove that it is equivalent, i.e.

ν ∈ R(α)(ω) iff (ω,ν) ∈ [[α]]

Likewise, define an equivalent semantics based on functions ς(α) : 2S → 2S from
the set of possible final states to the set of initial states that can end in the given set
of final states. Prove that it is equivalent, i.e. for all sets of states X ⊆S:

ω ∈ ς(α)(X) iff there is a state ν ∈ X such that (ω,ν) ∈ [[α]]

80 3 Choice & Control

3.10 (Switched systems). Hybrid programs come in different classes; see Table 3.2.
According to Chap. 2, for example, a continuous program is an HP that only con-
sists of one continuous evolution of the form x′ = f (x)&Q. A discrete system cor-
responds to an HP that has no differential equations. A switched continuous system
corresponds to an HP that has no assignments, because it does not have any instant
changes of state variables but merely switches mode (possibly after some tests) from
one continuous mode into another.

Table 3.2 Classification of hybrid programs and correspondence to dynamical systems

HP class Dynamical systems class

only ODE continuous dynamical systems
no ODE discrete dynamical systems
no assignment switched continuous dynamical systems
general HP hybrid dynamical systems

Consider an HP in which the variables are partitioned into state variables (x,v)
sensor variables (m) and controller variables (a):((

(?v < 4; a :=A)∪a :=−b
)
;

{x′ = v,v′ = a}
)∗

Transform this HP into a switched program that has the same behavior on the ob-
servable state and sensor variables but is a switched system, so does not contain any
assignments. The behavior of controller variables is considered irrelevant as long as
the behavior of the other state variables x,v is unchanged.

3.11 (Nondeterministic assignments). Suppose we add a new statement x :=∗ for
nondeterministic assignment to the syntax of HPs. The nondeterministic assignment
x :=∗ assigns an arbitrary real number to the variable x. Define a semantics [[x :=∗]]
for the x :=∗ statement.

3.12 (** Program interpreter). In a programming language of your choosing, fix a
recursive data structure for hybrid programs from Definition 3.1 and fix some finite
representation for states where all variables have rational values instead of reals.
Write a program interpreter as a computer program, which, given an initial state
ω and a program α , successively enumerates possible final states ν that can be
reached by α from ω , that is (ω,ν) ∈ [[α]] by implementing Definition 3.2. Resolve
nondeterministic choices in the transition either by user input or by randomization.
What makes the case of differential equation case particularly challenging?

3.5 Summary 81

References

1. Alur, R., Courcoubetis, C., Henzinger, T. A. & Ho, P.-H. Hybrid Automata: An
Algorithmic Approach to the Specification and Verification of Hybrid Systems.
in Hybrid Systems (eds Grossman, R. L., Nerode, A., Ravn, A. P. & Rischel,
H.) 736 (Springer, 1992), 209–229.

2. Church, A. A Note on the Entscheidungsproblem. J. Symb. Log. 1, 40–41
(1936).

3. David, R. & Alla, H. On Hybrid Petri Nets. Discrete Event Dynamic Systems
11, 9–40 (2001).

4. Frege, G. Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache
des reinen Denkens (Verlag von Louis Nebert, 1879).

5. Harper, R. Practical Foundations for Programming Languages 2nd ed. doi:10.
1017/CBO9781316576892 (Cambridge Univ. Press, 2016).

6. Hoare, C. A. R. An Axiomatic Basis for Computer Programming. Commun.
ACM 12, 576–580 (1969).

7. Hopcroft, J. E., Motwani, R. & Ullmann, J. D. Introduction to Automata The-
ory, Languages, and Computation 3rd ed. (2006).

8. Jeannin, J. & Platzer, A. dTL2: Differential Temporal Dynamic Logic with
Nested Temporalities for Hybrid Systems in IJCAR (eds Demri, S., Kapur, D.
& Weidenbach, C.) 8562 (Springer, 2014), 292–306. doi:10.1007/978-
3-319-08587-6_22.

9. Proceedings of the 27th Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS 2012, Dubrovnik, Croatia, June 25–28, 2012 (IEEE, 2012).

10. Loos, S. M. & Platzer, A. Differential Refinement Logic in LICS (eds Grohe,
M., Koskinen, E. & Shankar, N.) (ACM, 2016), 505–514. doi:10.1145/
2933575.2934555.

11. Nerode, A. & Kohn, W. Models for Hybrid Systems: Automata, Topologies,
Controllability, Observability in Hybrid Systems (Springer-Verlag, London,
UK, UK, 1993), 317–356.

12. Olderog, E.-R. Nets, Terms and Formulas: Three Views of Concurrent Pro-
cesses and Their Relationship 267 (Cambridge University Press, 1991).

13. Platzer, A. Differential Dynamic Logic for Verifying Parametric Hybrid Sys-
tems. in TABLEAUX (ed Olivetti, N.) 4548 (Springer, 2007), 216–232. doi:10.
1007/978-3-540-73099-6_17.

14. Platzer, A. Differential Dynamic Logic for Hybrid Systems. J. Autom. Reas.
41, 143–189 (2008).

15. Platzer, A. Logical Analysis of Hybrid Systems: Proving Theorems for Com-
plex Dynamics doi:10.1007/978-3-642-14509-4 (Springer, Heidel-
berg, 2010).

16. Platzer, A. Logics of Dynamical Systems in LICS (IEEE, 2012), 13–24. doi:10.
1109/LICS.2012.13.

17. Platzer, A. The Complete Proof Theory of Hybrid Systems in LICS (IEEE,
2012), 541–550. doi:10.1109/LICS.2012.64.

http://dx.doi.org/10.1017/CBO9781316576892
http://dx.doi.org/10.1017/CBO9781316576892
http://dx.doi.org/10.1007/978-3-319-08587-6_22
http://dx.doi.org/10.1007/978-3-319-08587-6_22
http://dx.doi.org/10.1145/2933575.2934555
http://dx.doi.org/10.1145/2933575.2934555
http://dx.doi.org/10.1007/978-3-540-73099-6_17
http://dx.doi.org/10.1007/978-3-540-73099-6_17
http://dx.doi.org/10.1007/978-3-642-14509-4
http://dx.doi.org/10.1109/LICS.2012.13
http://dx.doi.org/10.1109/LICS.2012.13
http://dx.doi.org/10.1109/LICS.2012.64

82 3 Choice & Control

18. Platzer, A. A Complete Uniform Substitution Calculus for Differential Dy-
namic Logic. J. Autom. Reas. doi:10.1007/s10817- 016- 9385- 1
(2016).

19. Plotkin, G. D. A structural approach to operational semantics tech. rep.
DAIMI FN-19 (Aarhus University, Denmark, 1981).

20. Pratt, V. R. Semantical Considerations on Floyd-Hoare Logic in 17th Annual
Symposium on Foundations of Computer Science, 25-27 October 1976, Hous-
ton, Texas, USA (IEEE, 1976), 109–121.

21. Scott, D. S. Outline of a Mathematical Theory of Computation Technical
Monograph PRG–2 (Oxford University Computing Laboratory, Oxford, Eng-
land, Nov. 1970).

22. Scott, D. & Strachey, C. Toward a mathematical semantics for computer lan-
guages? tech. rep. PRG-6 (Oxford Programming Research Group, 1971).

23. Turing, A. M. On Computable Numbers, with an Application to the Entschei-
dungsproblem. Proceedings of the London Mathematical Society 2 42, 230–
265 (1937).

http://dx.doi.org/10.1007/s10817-016-9385-1

	Cyber-Physical Systems: Overview
	Introduction
	Cyber-Physical Systems Analysis by Example
	Application Domains
	Significance
	The Importance of Safety

	Hybrid Systems versus Cyber-Physical Systems
	Multi-dynamical Systems
	How to Learn about Cyber-Physical Systems
	Computational Thinking for Cyber-Physical Systems
	Learning Objectives
	Structure of This Book
	Summary
	References

	Part I Elementary Cyber-Physical Systems
	Differential Equations & Domains
	Introduction
	Differential Equations as Models of Continuous Physical Processes
	The Meaning of Differential Equations
	A Tiny Compendium of Differential Equation Examples
	Domains of Differential Equations
	Syntax of Continuous Programs
	Continuous Programs
	Terms
	First-order Formulas

	Semantics of Continuous Programs
	Terms
	First-order Formulas
	Continuous Programs

	Summary
	Appendix
	Existence Theorems
	Existence and Uniqueness Theorems
	Linear Differential Equations with Constant Coefficients
	Continuation and Continuous Dependency

	Exercises
	References

	Choice & Control
	Introduction
	A Gradual Introduction to Hybrid Programs
	Discrete Change in Programs
	Compositions of Programs
	Decisions in Hybrid Programs
	Choices in Hybrid Programs
	Tests in Hybrid Programs
	Repetitions in Hybrid Programs

	Hybrid Programs
	Syntax
	Semantics

	Hybrid Program Design
	A Matter of Choice
	Patternology?

	Summary
	Exercises
	References

	Safety & Contracts
	Introduction
	A Gradual Introduction to CPS Contracts
	The Adventures of Quantum the Bouncing Ball
	How Quantum Discovered a Crack in the Fabric of Time
	How Quantum Learned to Deflate
	Postcondition Contracts for CPS
	Precondition Contracts for CPS

	Logical Formulas for Hybrid Programs
	Differential Dynamic Logic
	Syntax
	Semantics

	CPS Contracts in Logic
	Identifying Requirements of a CPS
	Summary
	Appendix
	Intermediate Conditions for a Proof of Sequential Compositions
	A Proof of Choice
	A Proof of Tests

	Exercises
	References

	Dynamical Systems & Dynamic Axioms
	Introduction
	Intermediate Conditions for CPS
	Dynamic Axioms for Dynamical Systems
	Nondeterministic Choices
	Soundness
	Assignments
	Differential Equations
	Tests
	Sequential Compositions
	Loops

	A Proof of a Short Bouncing Ball
	Summary
	Appendix
	Modal Modus Ponens has Implications on Boxes
	Vacuous State Change If Nothing Relevant Ever Changes
	Gödel Generalizes Validities into Boxes
	Monotonicity of Postconditions
	Of Free and Bound Variables
	Free and Bound Variable Analysis

	Exercises
	References

	Truth & Proof
	Introduction
	Truth and Proof
	Sequents
	Proofs
	Propositional Proof Rules
	Soundness
	Proofs with Dynamics
	Quantifier Proof Rules

	Derived Proof Rules
	A Sequent Proof for a Non-Bouncing Ball
	Real Arithmetic
	Real Quantifier Elimination
	Instantiating Real Arithmetic
	Weakening Real Arithmetic
	Structural Proof Rules
	Substituting Equations
	Abbreviating Terms
	Creatively Cutting Real Arithmetic

	Summary
	Exercises
	References

	Control Loops & Invariants
	Introduction
	Control Loops
	Induction for Loops
	Induction Axioms for Loops
	Induction Rule for Loops
	Loop Invariants
	Contextual Soundness Requirements

	Operational Effect of Loop Invariants
	Invariants for Sequential or Nondeterministical Compositions
	A Proof of a Happily Repetitive Bouncing Ball
	Splitting Postconditions
	Operational Intuition of Loop Invariants
	Summary
	Appendix
	Loops of Proofs
	Breaking Loops of Proofs
	Invariant Proofs of Loops
	Alternative Forms of the Induction Axiom

	Exercises
	References

	Events & Responses
	Introduction
	The Need for Control
	Events in Control
	Event Detection
	Dividing Up Physics
	Event Firing
	Event-Triggered Verification
	Event-Triggered Control Paradigm
	Physics versus Control Distinctions

	Summary
	Exercises
	References

	Reactions & Delays
	Introduction
	Delays in Control
	The Impact of Delays on Event Detection
	Model-predictive Control Basics
	Design by Invariant
	Sequencing and Prioritizing Reactions
	Time-triggered Verification

	Summary
	Exercises
	References

	Part II Differential Equations Analysis
	Differential Equations & Differential Invariants
	Introduction
	A Gradual Introduction to Differential Invariants
	Global Descriptive Power of Local Differential Equations
	Intuition for Differential Invariants
	Deriving Differential Invariants

	Differentials
	Syntax
	Semantics of Differential Symbols
	Semantics of Differential Terms
	Derivation Lemma
	Differential Lemma
	Differential Invariant Term Axiom
	Differential Substitution Lemmas

	Differential Invariant Terms
	A Differential Invariant Proof by Generalization
	Example Proofs
	Summary
	Appendix
	Differential Equations vs. Loops
	Derivation Operators
	Differential Invariant Terms and Invariant Functions

	Exercises
	References

	Differential Equations & Proofs
	Introduction
	Recap: Ingredients for Differential Equation Proofs
	Differential Weakening
	Operations in Differential Invariants
	Equational Differential Invariants
	Differential Invariant Proof Rule
	Differential Invariant Inequalities
	Disequational Differential Invariants
	Conjunctive Differential Invariants
	Disjunctive Differential Invariants

	Differential Invariants
	Example Proofs
	Assuming Invariants
	Differential Cuts
	Differential Weakening Again
	Summary
	Appendix: Proving Aerodynamic Bouncing Balls
	Exercises
	References

	Ghosts & Differential Ghosts
	Introduction
	Recap
	Arithmetic Ghosts
	Nondeterministic Assignments & Ghosts of Choice
	Differential-algebraic Ghosts
	Discrete Ghosts
	Proving Bouncing Balls with Sneaky Solutions
	Exploiting Differential Ghosts for Falling Balls
	Differential Ghosts
	Substitute Ghosts
	Summary
	Appendix: Axiomatic Ghosts
	Exercises
	References

	Differential Invariants & Proof Theory
	Introduction
	Recap
	Comparative Deductive Study: Relativity Theory for Proofs
	Equivalences of Differential Invariants
	Differential Invariants & Arithmetic
	Differential Invariant Equations
	Equational Incompleteness
	Strict Differential Invariant Inequalities
	Differential Invariant Equations as Differential Invariant Inequalities
	Differential Invariant Atoms
	Summary
	Appendix: Curves Playing with Norms and Degrees
	Exercises
	References

	Part III Adversarial Cyber-Physical Systems
	Hybrid Systems & Games
	Introduction
	Choices & Nondeterminism
	Control & Dual Control
	Hybrid Games
	Differential Game Logic
	Demon's Controls
	An Informal Operational Game Semantics
	Summary
	Exercises
	References

	Winning Strategies & Regions
	Introduction
	Semantics
	Winning Regions
	Advance Notice Repetitions
	-Strategic Semantics
	Inflationary Semantics
	There and Back Again Game
	Summary
	Exercises
	References

	Winning & Proving Hybrid Games
	Introduction
	Characterizing Winning Repetitions Implicitly
	Semantics of Hybrid Games
	Determinacy
	Hybrid Game Axioms
	Relating Differential Game Logic and Differential Dynamic Logic
	Exercises
	References

	Game Proofs & Separations
	Introduction
	Recap: Semantics of Hybrid Games
	Hybrid Game Proofs
	Soundness
	Separating Axioms
	Repetitive Diamonds – Convergence vs. Iteration
	Exercises
	References

	Part IV Real Arithmetic
	Virtual Substitution & Real Equations
	Introduction
	Framing the Miracle
	Quantifier Elimination
	Homomorphic Normalization for Quantifier Elimination
	Substitution Base
	Term Substitutions

	Square Root Substitutions for Quadratics
	Optimizations
	Summary
	Appendix: Real Algebraic Geometry
	Exercises
	References

	Virtual Substitution & Real Arithmetic
	Introduction
	Recap: Square Root Substitutions for Quadratics
	Infinity Substitution
	Infinitesimal Substitutions
	Quantifier Elimination by Virtual Substitution
	Summary
	Appendix: Semialgebraic Geometry
	Exercises
	References

