
IoTSafe: A Safe & Verified Security
Controller for Internet-of-Things

Tianlong Yu
Carnegie Mellon University

1 Introduction
The Internet-of-Things (IoT) has quickly moved from hype to reality. Like
other disruptive technologies, such as smartphones and cloud computing, IoT
has the potential for a societal scale impact by transforming our daily lives.
Major companies have already started to pioneer this transformation by intro-
ducing a range of products in the areas of smart homes, smart cities, and health
care.

While IoT has huge potential, it is also threatened by diverse security
threats. Since IoT devices are typically embedded deep inside networks, they
are attractive attack targets and may become the “weakest link” for breaking
into a secure IT infrastructure [7], or leaking sensitive information about users
and their behaviors [8]. In addition, IoT devices have already been used as bots
to launch DDoS or spams [1].

A"acker	

User	Unfixable		
Flaws	

No	context	for		
physical	behaviors	

✗	✗	Embedded	
Controller	

Figure 1: Current embedded controller or security appliances can not se-
cure IoT.

The uniqueness of IoT is posing new challenges to the control and manage-
ment:

• Unfixable flaws: IoT devices tend to have unfixable security flaws for
two fundamental reasons. First, there are no host-based defenses (e.g.,
antivirus) due to resource constraints on these devices (e.g., limited
RAM). Second, unlike traditional IT devices, IoT devices lack effective

1



automated software updates. The current process of patching IoT vul-
nerabilities is via manual firmware updates, and software updates will
likely be unavailable (e.g., a vendor may no longer support updates for
an old device). Therefore, these IoT devices can be easily compromised
by attacker and the hardware controller on the IoT device itself cannot
ensure the device behaves in a safe way.

• Complex physical behaviors: IoT devices has a significant physical im-
pact on the environment. For example, the temperature of a baby room
is kept in a safe range 20 centigrade to 24 centigrade by a thermostat,
and an attacker can compromise the thermostat to overheat the room and
endanger the baby. Traditional firewall, IDS or IPS at the gateway is
not aware of such physical behavior and thus fail to ensure the physical
safety of IoT.

Hybrid		
Program�

IoTSafe		
Controller	

KeYmaera	X�

✔ Verified Safety�

✔  Implementation		

on OpenDayLight

IoT APIs Security Appliances APIs

Message Verifier
with Snort

✔ Room	Temperature	
Model	

Figure 2: Our contributions in this project.

Because of these security challenges, we think the current hardware con-
troller on device or the firewall at the gateway is insufficient to ensure the phys-
ical safety for IoT devices [11]. To address the two challenges, our idea is to
build a security controller that controls both the IoT device and the security
appliances such as firewall, IDS/IPS and guarantees the physical safety con-
strains (e.g., the temperature of the baby room is between 20 centigrade and 24

2



centigrade) even when the adversary presents (attacker can change the setting
of the temperature setting of the thermostat). More specifically, we make the
following contributions in this project, as shown in Figure 2:

• We model the baby room temperature with thermostat, attacker and se-
curity appliance (message verifier) presents and design a hybrid program
for the security controller.

• We determine the safety property and the controller action to ensure the
safety, and use KeYmaera [2] to prove the safety constrains always holds
for the hybrid program.

• We implemented a real security controller based on the verified hybrid
program on top of commodity SDN controller OpenDayLight [3], which
can be deployed and used in a real smart home network.

2 CPS Scenario
Let’s start by describing the CPS scenario we study here. We consider a baby
room with temperature T1 and thermostat that can change the room tempera-
ture. The safe temperature for a baby is 20 centigrade to 24 centigrade. The
temperature outside is Te. The user can set this thermostat with a desired tem-
perature Td through device APIs. Suppose this API is exposed and the attacker
can also set the desired temperature Td to overheating/overcooling the room to
endanger the baby. Next we show how to capture the room temperature change
using physics.

Newton’s law of cooling: The Newton’s law of cooling says the heat
gain/loss between two objects is proportional to the temperature difference be-
tween the two objects.

T ′1 = K(T2 − T1) (1)

Assume the thermostat is using a common embedded heating mechanism,
producing heat hthermostat = K1(Td − T1). The intuition behind this mecha-
nism is the heat generated is proportional to the difference between the desired
temperature Td and current room temperature T1, and if they are equal, produce
no heating.

3



Security	Controller	

Te	 T1	

Desired		
Temperature	Td	 A7acker	

User	

Safety	20<=T1<=24	

Message		
Verifier	

Figure 3: CPS model of a baby room.

Then according to Newton’s law of cooling, the temperature of the baby
room T1 can be described by:

T ′1 = Ke(Te − T1) + K1(Td − T1) (2)

where Ke is a constant decided by the physical property of the room (e.g., wall)
and K1 is a constant decided by the thermostat.

Security Controller: To protect the baby and ensures the safety constrains,
the controller can perform two actions: (1) dynamically configure the message
verifier to decide when the user or attacker can change the desired temperature
Td on the thermostat; (2) reset the desired temperature Td to a safe value. Note
that the reset action just uses the APIs provided by the device to control Td and
requires no modification on the device itself.

3 Hybrid Program for Security Controller
In this section, let’s try to design a Hybrid Program for the security controller,
reason about the design choices and decisions, and verify The intuition for
design the controller is that if the room temperature gets too close to the upper
bound 24 centigrade or lower bound 20 centigrade, the controller will reset the
desired temperature of the thermostat.

4



3.1 Hybrid Program Design
Event-triggered or Time-triggered? The first question we need to ask is
wether this controller should be event-triggered or time-triggered. Event-
triggered here means the thermostat actively check the temperature and mes-
sage the controller when temperature reaches a certain point. Time-triggered
means the controller request the temperature from the thermostat periodically.
For IoT devices we need to design time-triggered security controller for the
following reason. Here an important observation we made is the IoT devices
are usually passive, for example, Philips Hue passively respond to the get/post
message from control. Since we assume we do not change the hardware or
firmware of these IoT devices, we cannot change a passive IoT device to active,
for example, actively send alerts when the temperature reaches a threshold.

Therefore, our controller is a time-triggered controller running a loop exe-
cution, checking the temperature every tc time. Suppose the time in each ex-
ecution is denoted by t, the change of time is denoted by t′, and the evolution
domain of each loop execution is 0 < t < tc.

User/Attacker Actions? We assume the user or attacker can change the
desired temperature Td to an arbitrary value in 0 < t < tc. We also assume
that the desired Td is within range Tmin

d < Td < Tmax
d because of the heating

capability constrain of the thermostat (e.g. limited power). And this constrain
is embedded at the thermostat and can not be changed. Also, whether the
user/attacker can change the desired temperature is controlled by the message
verifier. We model message verifier control as a test of a message verifier state
?FW = 0, which means the user/attacker can change the temperature at state
FW = 0. We model this user/attacker setting of desired temperature as a
non-deterministic variable with a range constrain: ?FW = 0;Td := ∗; ?(Td >
Tmin
d &Td < Tmax

d );.
Controller Actions? At the beginning of a loop execution, when a con-

troller predicts that the potential attacker can overheat or overcool the room,
the controller can reset the desired temperature to a safe value and set the mes-
sage verifier to prevent the potential attacker override the desired temperature
to break the safety, which is like to put a lock on the desired temperature. There
are two key questions here: (1) how to predict whether the potential attacker
can overheat or overcool the room? (2) what is the safe value to set the desired
temperature to?

From the differential equation T ′1 = Ke(Te−T1)+K1(Td−T1), we calculate
the maximum temperature increase ∆max

+ and maximum temperature decrease

5



Δ-max�

Δ+max�
24�

20�

Figure 4: Estimate whether the potential attacker can overheat or overcool
the room.

∆max
− . From the calculation, we learn that:

• The condition for the potential attacker to overheat the room is ?(Te +
Tmax
d − (Te + Tmax

d − 2 ∗ T1) ∗ e(−2∗tc))/2 > 24;.

• The condition for the potential attacker to overcool the room is ?(Te +
Tmin
d − (Te + Tmin

d − 2 ∗ T1) ∗ e(−2∗tc))/2 < 20;.

Then if the potential attacker can overheat or overcool the room, we can set
T ′1 to 0 to prevent the temperature increase or decrease in the following tc. To
do so, we should set Td := 2 ∗ T1 − Te;

Figure 5: Hybrid Program Variables.

6



Figure 6: Hybrid Program.

Put Together: We now put together the above pieces and generate a Hy-
brid Program as shown in Figure 6. In the initial stage, the controller predict
whether potential attacker can overheat the room. The the controller allow the
user to change the desired temperature in range Tmin

d < Td < Tmax
d . Finally,

the controller uses the differential equation to describe the temperature change
in tc as {T1′ = Ke ∗ (Te − T1) + K1 ∗ (Td − T1), t

′ = 1&t < tc}, where the
evolution domain is t < tc.

3.2 Proof with KeYmaera X
After we obtain the Hybrid Program, we use the KeYmaera X [2] to ver-
ify the controller would always satisfy the safety condition. Here we do not
seek much contribution on manually find complex and hard-to-obtain proofs
or proof rules. This is because our long term goals is not to obtain a delicate
and complex manually proof. Instead, we restrict ourself to just use general
proof rules, which gives us chance to automate the proof for not only the room
temperature for one particular house, but a large scale of diverse houses.

The rules we use here are general. We observed that the invariant in all loop
executions is T1 > 20&T1 < 20, and select this as the loop invariants. Then
we use the loop rule to break the loop:

We use the randomb rule to resolve the nondeterministic variables:

7



Figure 7: Loop rule [2].

Figure 8: Randomb rule [2].

And we use the DW rule (differential weakening) to prove the differential
equation part:

Figure 9: Differential weakening rule [2].

Then we can prove the Hybrid Program step by step by using KeYmaera
X and with the following tactic.

4 Implement IoTSafe on Commodity SDN Con-
troller

We have implemented a fully functional IoTSafe controller from the Hybrid
Program on top of commodity Software-Defined-Network (SDN) controller
OpenDayLight, consisting of around 8K lines of code [4].

First we provide a quick walkthrough of how our IoTSafe controller works.

1. At initial stage, using Network-Function-Virtualization (NFV) tech-
niques, we create a number of virtualized security appliances at a security
server connected to the IoT gateway, e.g., a customized message verifier
for the thermostat. Then using SDN technique, each device’s traffic is
tunneled to/from, and processed, in the micro-security appliances called
micro-middleboxes.

2. Then our IoTSafe controller will establish control connections with the
IoT devices and security appliances. The IoTSafe controller then actively
send a message to check the room temperature and desired temperature
every tc time, using a loop execution. We implemented a checking logic

8



Figure 10: Tatic to prove the Hybrid Program.

with a Finite State Machine and bind each state with a action in micro-
middlebox. For example, when the state is ”will be overheated” - (Te +
Tmax
d −(Te+Tmax

d −2∗T1)∗e(−2∗tc))/2 > 24, then the controller will send
a control message to the message verifier to check on and prevent any
control message from user (potential attacker) send to the thermostat. In
this way, the temperature is ”locked” for safety in next tc time. After that,
the controller will send a control message to the thermostat to reset the
desired temperature to 2 ∗ T1 − Te to overwrite the potential overheating
Td value.

Next, we briefly our implementation and the extensions we made to open
source tools to enable the IoTSafe vision.

We choose OpenDaylight a popular industry-grade SDN controller as
our starting point. Since OpenDaylight only focuses on simple forward-
ing functions, to support IoTSafe, we add several extensions:

1. Event handler: OpenDaylight natively only handles OpenFlow
messages from SDN switches. We extend it to handle events from com-
mon security appliances; e.g., Snort IDS alerts. We also extend it to get
the physical context from IoT devices from IoT devices’ APIs, e.g., the
actual temperature and the desired temperature from the thermostat.

2. micro-middlebox control APIs: We also implement custom control chan-
nels between the IoTSafe controller and the individual micro-middlebox.
They implement micro-middlebox-specific messages for reconfiguring
policies; e.g., installing and updating micro-middlebox-specific configu-
rations [5].

9



Internet�

IoTSafe	Controller	

IoT	Gateway	

Micro-middleboxes	

Home	Network	 ��

control	

Security	Server	

control	

Hybrid		
Program�

Figure 11: A real security IoT controller implementation that controls
both IoT devices and network security appliances.

3. micro-middlebox To realize each micro-middlebox, we use virtual ma-
chines. We currently support several open source security functions; e.g.,
NAT/firewalls using iptables, IDS/IPS using Snort [10], proxies using
Squid [6]. Each micro-middlebox runs inside a VM; we use Centos 6.5
as the host OS running the KVM hypervisor. We set up simple tunnel-
based forwarding rules at the ingress switch to steer the traffic to the
security server. These micro-middleboxes need two minimal extensions
to integrate with IoTSafe. First, we extend the micro-middlebox imple-
mentations to support the addition of tags to outgoing packets to enable
the tag-based forwarding [9]. Second, we need to forward events/alerts
to the IoTNetS controller. We implement this by having a light-weight
IoTNetS client program that parses these alerts (e.g., Snort alerts) and
forwards them to the controller. This alert parsing program is config-
urable and can be customized to only forward relevant events.

10



Hybrid		
Program�

IoTSafe		
Controller	

KeYmaera	X�

Synthesizer	�

Automa>c		
Transla>on?	

IoT	Device	
Model�

Security	
Policy�

Figure 12: Future works.

5 Discussion and Future Works
In this section, we discuss the problems we encounter in this project (prove a
double room setting) and critical pieces for future works.

• Two room, two thermostats controls: Initially we were trying to pro-
vide controller for a two room, two thermostats setting, where each room
has it’s own safety temperature range, and the temperature for room 1 is
T ′1 = Ke(Te − T1) + K1−e(Td − T1) + K1−2(T2 − T1) and the tempera-
ture for room 2 is T ′2 = Ke(Te− T2) +K2−e(Td− T2) +K2−1(T1− T2).
However, this requires a potentially asymmetric control for each of the
thermostat, and we have a hard time to clarify what is the right control
assignment for the desired temperature for each thermostat and what’s
the right way to model the asymmetric control.

• Synthesizer: Currently we are write the hybrid program manually. How-
ever in reality, the users or security administrators of the IoT network do
not have the knowledge to write the hybrid program. The reasonable in-
put we require from these users or security administrators can be some

11



IoT models T ′1 = Ke(Te − T1) + K1(Td − T1) and security policy spec-
ifications (20 < T1 < 40). Therefore, a critical piece of work is to
write a synthesizer to automatically translate the IoT models and policy
specifications into reasonable hybrid program.

• Automatic Hybrid Program Translator: Now we are manually imple-
menting the real controller based on the Hybrid Program for one sce-
nario. This does not scale to diverse IoT scenarios given the potential
combination of devices and environment is infinite. We need a Hy-
brid Program translator that can automatically translate the Hybrid Pro-
gram into real controller and security appliances implementations such
as OpenDayLight implementation.

References
[1] Fridge sends spam emails as attack hits smart gadgets. http://www.bbc.com/news/technology-

25780908.

[2] KeYmaera: A Hybrid Theorem Prover for Hybrid Systems. http://symbolaris.com/info/
KeYmaera.html.

[3] OpenDayLight. http://www.opendaylight.org/.

[4] Psi. https://github.com/PreciseSecurity/PSI.git.

[5] Pulledpork. https://code.google.com/p/pulledpork/.

[6] Squid. http://www.squid-cache.org/.

[7] The Internet of Things Is Wildly Insecure - And Often Unpatchable. http://www.wired.com/2014/
01/theres-no-good-way-to-patch-the-internet-of-things-and-thats-a-huge-
problem/.

[8] Will giving the internet eyes and ears mean the end of privacy? http://www.theguardian.com/
technology/2013/may/16/internet-of-things-privacy-google.

[9] S. K. Fayazbakhsh, L. Chiang, V. Sekar, M. Yu, and J. C. Mogul. Enforcing network-wide policies in the
presence of dynamic middlebox actions using FlowTags. In Proc. NSDI, 2014.

[10] M. Roesch et al. Snort: Lightweight intrusion detection for networks. In LISA, volume 99, pages 229–238,
1999.

[11] T. Yu, V. Sekar, S. Seshan, Y. Agarwal, and C. Xu. Handling a trillion (unfixable) flaws on a billion devices:
Rethinking network security for the internet-of-things. In Proceedings of the 14th ACM Workshop on Hot Topics
in Networks, page 5. ACM, 2015.

12


