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Abstract

We present a temporal logic for reasoning about differential equations which expresses differential
behavior via a time domain with a nilpotent (specifically, nilsquare) infinitesimal, an element ε > 0 for
which ε2 = 0. We define a language and axiomatic system as well as a semantics using the ring of dual
numbers R[ε].

Introduction

One way of modeling systems which evolve through time is via temporal logics, which introduce modal
operators expressing in some way “truth at time t.” Many variants on this setup have been proposed (see
[4, Section 5.2] for a survey), differing both in the form of the logical connectives and in the form of the
time domain (for example, discrete vs. continuous time). In this approach, we tailor the time domain
for reasoning about differential equations by adding infinitesimal elements, positive but smaller than any
standard positive real, which can be used to encode properties of derivatives.

There are two main approaches to analysis using infitesimals: non-standard analysis (NSA), which uses
the hyperreal numbers constructed using ultraproducts [10], and smooth infinitesimal analysis (SIA), a sub-
field of synthetic differential geometry [6], which uses algebraic and category-theoretic constructions. We take
the latter approach. (There is prior work using the former for modeling continuous systems, e.g. [1, 2, 11, 12];
NSA infinitesimals are used with temporal logic in [5], but in order to model instantaneous transitions, not
differential behavior.) Smooth infinitesimal analysis is based on the introduction of nilpotent infinitemisals,
positive points ε > 0 such that εn+1 = 0; non-standard analysis, on the other hand, introduces invertible
infinitesimals, which are smaller than any standard real and have infinitely large inverses. We contend that
our approach is semantically cleaner than the SIA approach; although developing a fully general model for
SIA on manifolds is complex [7], our restricted use case has a simple semantics, whereas the construction of
the hyperreals is highly non-constructive, requiring some form of choice axiom. We also believe that SIA is
the more natural setting for differential reasoning, since nilsquare infinitesimals directly encode first-order
behavior. (We will not justify this claim further, but see [7, Introduction & Chapter VI] for discussion of
the values of the two approaches.)

In §1, we define and motivate the ring of dual numbers, which provides the semantic basis for our theory.
In §2 we present the syntax of our logic εTL and its axiom system, and in §3 we give the intepretation of εTL
in the intended model. In §4 we describe a decision procedure for the first-order fragment of εTL, assuming
completeness. Finally, in §5 we compare εTL to differential dynamic logic [8], in particular its continuous
fragment FOD.

1 The Ring of Dual Numbers R[ε]
Our approach to a theory of differential equations is based on the ring of dual numbers, an algebraic con-
struction which adds infinitesimal elements to the real number field R. The ring of dual numbers is defined
as R[x]/(x2), the quotient of the ring of polynomials with real coefficients by the relation x2 = 0. For read-
ability, we write R[ε] for the ring of dual numbers and ε for the element x. This ε is a nilpotent infinitesimal,
an element so “small” that ε2 = 0; as we will see, it plays the role of a first-order differential. (Note that
R[ε] is not a field, as ε has no inverse.) Formally, an element of R[ε] is a polynomial a0 + a1ε+ . . .+ anε

n.
Since ε2 = 0, however, every element is equal to one of the form a0 + a1ε. Addition and multiplication are
inherited from their definitions on polynomials:

(a1 + b1ε) + (a2 + b2ε) =⇒ (a1 + a2) + (b1 + b2)ε
(a1 + b2ε) · (a2 + b2ε) =⇒ a1a2 + (a1b2 + a2b1)ε
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An order on R[ε] is defined lexicographically, following the intuition that ε is “smaller than any standard
real.”

a1 + b1ε ≤ a2 + b2ε iff either a1 < a2 or a1 = a2 and b1 ≤ b2
For a taste of the motivation behind using R[ε], consider a polynomial P (x) = a0 +a1x+ · · ·+anx

n with
coefficients in R. Then

P (x+ ε) = a0 + a1(x+ ε) + · · ·+ an(x+ ε)n

For any n, (x+ ε)n = xn + nxn−1ε+ (· · · )ε2 = xn + nxn−1. Thus

P (x+ ε) = a0 + a1(x+ ε) + · · ·+ an(x+ nxn−1ε)

= P (x) + P ′(x)ε

where P ′(x) = a1 + . . .+annx
n−1 is the formal derivative of P at x. Rearranged, P ′(x)ε = P (x+ ε)−P (x).

Since an analytical derivative can be defined as

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
,

we think of ε as a quantity so small that the limiting equation already holds for h = ε; in other words, on
the infinitesimal (specifically, first-order differential) scale, f is linear.

2 Syntax and Axiomatics of εTL

Guided by the idea of semantics in the ring of dual numbers, we define a temporal logic εTL and describe
its axiomatics. The terms are given as in differential dynamic logic, with the addition of the constant ε.

e ::= x | A | 0 | 1 | ε | e+ e | e · e

Note also the presence of two varieties of variable, x and A. We use lowercase x, y, z, . . . (also, t) to denote
differentiable variables and capital letters A,B,C, . . . to denote constant variables. Importantly, only terms
containing no differentiable variables may be substituted for constant variables. Any term can be substituted
for a differentiable variable. The formulae are those of first-order propositional logic with an order relation,
along a universal quantifier for constant variables and a modal operator ©t.

φ ::= e = e | e ≤ e | φ ∧ φ | ¬φ | ∀x.φ | ∀A.φ | ©eφ

As usual, we write ∨ and→ for the connectives derived from ∧ and ¬. The modal operator©e expresses truth
after e time has passed (where e is evaluated at the current moment). The value t may be negative, so ©
can also be used to express past events. The distinction between constant and differentiable variables comes
into play with ©: as their names suggest, constant variables do not change over time, while differentiable
variables may change in a differentiable way.

The axioms capturing the first-order properties of R[ε] essentially follow those of R, with minor adjust-
ments to accommodate ε. We write x ≈ y as shorthand for x · ε = y · ε – this expresses that x and y differ
by an infinitesimal.

(x+ y) + z = x+ (y + z) “≤ is a total order” ∃y.x+ y = 0
x+ y = y + x x ≤ y → y + z ≤ x+ z x 6≈ 0→ ∃y.x · y = 1
x · y = y · x 0 ≤ x ∧ 0 ≤ y → 0 ≤ x · y x ≈ 0→ ∃y.x = y · ε
x+ 0 = x 0 < ε ∃A.A = x
x · 1 = x
ε2 = 0
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In the right column we see that only non-infinitesimal elements are invertible, while all infinitesimals are
some multiple of ε. Note that ε is provably smaller than any positive rational: since (1−ε)(1+ε) = 1−ε2 = 1
is positive and 1 + ε ≥ 1 ≥ 0, we must have 1 − ε ≥ 0, thus 1 − εn = (1 − ε)n ≥ 0 for any n ∈ N, thus
ε ≤ 1

n . The axiom ∃A.A = x expresses that there is always a constant variable with the current value of
a differentiable variable. For compound formulae, we have, in addition to the standard axioms of classical
first-order predicate logic, axioms describing the ©t modality.

©t(φ ∧ ψ)↔ (©tφ) ∧ (©tψ) (©t¬φ)↔ ¬©t φ
(©t∀A.φ)↔ ∀A.(©tφ) (©t1 ©t2 φ)↔ ∃A.(©t1t2 = A) ∧©t1+Aφ

Finally, we have axioms describing the relation of ©t and ε to differentiation. Here, ∃̃!A.φ(A) is shorthand
for ∃A.(φ(A) ∧ ∀B.φ(B)→ B ≈ A), that is, unique existence up to ≈.

(©tφ)↔ φ (if φ contains no differentiable variables)

∃̃!A.∀X. x = X → ∀B.©B·ε (x = X +A ·B · ε)
(Kock-Lawvere axiom)

∃̃!Xf .∀x. t ≥ 0 ∧ x ≈ xi → (∀0 < A < t.©A (∀X.x = X →©εx = X + e(X)))→©t(x ≈ Xf )
(uniqueness of solutions)

The first of these axioms internalizes that constant variables are in fact constant. The second states that
every term has a derivative, unique up to ≈, and serves to relate the infinitesimal timesteps ©B·ε as B
varies. The third is a schema parameterized over terms e (which, as shown explicitly, may mention X, but
not Xi or Xf ), and gives the uniqueness of solutions (again, up to ≈) to differential equations.

3 Semantics of εTL

We now give the intended semantics for εTL. The semantics of terms is defined by an interpretation function
J−KD;C

u , taking terms of εTL to elements of R[ε]. Here D is an environment mapping differentiable variables
x to pairs of functions D0(x), D1(x) : R → R with D0(x) differentiable, C is an environment mapping
constant variables to elements of R[ε], and u ∈ R[ε] is a time index. The interpretation function is defined
inductively as follows, where u = u0 + u1 · ε for u0, u1 ∈ R.

JxKD;C
u = D0(x)(u0) + (D1(x)(u0) + (D0(x))′(u0) · u1) · ε

JAKD;C
u = C(A)

J0KD;C
u = 0

J1KD;C
u = 1

JεKD;C
u = ε

Je1 + e2KD;C
u = Je1KD;C

u + Je2KD;C
u

Je1 · e2KD;C
u = Je1KD;C

u · Je2KD;C
u

Observe that for any term e, the mathematical function u 7→ JeKD;C
u can be written in the form as u 7→

f0(u0) + (f ′0(u0) · u1 + f1(u0)) · ε for some f0, f1 : R→ R with f0 differentiable. (The factor f1 is necessary
to account for functions such as u 7→ u · ε, where we take f0(u0) = 0 and f1(u0) = u0.) We are therefore
able to substitute the interpretation of a term for a differentiable variable in D, and we have JeKD;C =
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JxKD[x 7→(f0,f1)];C for f0, f1 as above (and x fresh). We now define semantic entailment |=D;C
u φ.

|=D;C
u (e1 = e2) ⇐⇒ Je1KD;C

u = Je2KD;C
u

|=D;C
u (e1 ≤ e2) ⇐⇒ Je1KD;C

u ≤ Je2KD;C
u

|=D;C
u φ ∧ ψ ⇐⇒ |=D;C

u φ and |=D;C
u ψ

|=D;C
u ¬φ ⇐⇒ 6|=D;C

u φ

|=D;C
u ∀A.φ ⇐⇒ |=D;C[A 7→v]

u φ for all v ∈ R[ε]

|=D;C
u ∀x.φ ⇐⇒ |=D[x 7→(f0,f1)];C

u φ for all f0, f1 : R→ R with f0 differentiable

|=D;C
u ©eφ ⇐⇒ |=D;C

u+JeKD;C
u

φ

Nearly all of the axioms described in §2 are obviously sound with respect to these semantics. We will only
explicitly verify the uniqueness axiom

∃̃!Xf .∀x. t ≥ 0 ∧ x ≈ xi → (∀0 < A < t.©A (∀X.x = X →©εx = X + e(X)))→©t(x ≈ Xf )

For any D,C we have a function defined by (u, a) 7→ JeKD;C[X 7→a]
u . As argued above, this function can

be written as (u, a) 7→ f0(u0, a) + (f ′0(u0, a) · u1 + f1(u0, a)) · ε for some f0, f1 with f0 differentiable in
u0. The restricted syntax of the term language implies that f0, f1 must be polynomial in a. The semantic
interpretation of the uniqueness axiom applied at state D,C, u is then

There exists af ∈ R such that, for any g : R → R differentiable with g(u) = ai and g′(w) =
f0(w, g(w)) for all u < v < w, we have g(v) = af .

where ai is the standard part of JxiKD;C
u . In other words, there is a unique solution (modulo infinitesimals)

to the differential equation f0 with initial value xi. Since f0 is polynomial in a, the Picard-Lindelöf Theorem
[13, Theorem 10.VI] applies to validate this axiom. We remark that this axiom is not sound if ≈ is replaced
by = in the statement: the functions u 7→ u · ε and u 7→ 2 · u · ε are equal at time u = 0 and both have
derivative 0 everywhere, but are not equal at time u = 1. Also, the generalized “differential invariant” axiom

φ ∧ t ≥ 0 ∧ (∀0 < A < t.©A (φ→©εφ))→©tφ

is unsound even if φ is ≈-invariant. Consider the formula φ(x) = ¬(x ≈ 1), and suppose x is interpreted by
identity function. Then φ(x) is true at time 0 and preserved along infinitesimal steps, but fails to hold at
time 1.

4 Deciding First-Order R[ε]-Arithmetic

In this section, we describe a decision procedure for the first-order fragment of our axiomatization (FOR[ε])
in terms of the corresponding procedure for first-order real arithmetic (FOR). (Since R[e] is not a field,
real-closed field methods do not apply directly; while a decision procedure with infinitesimal elements is
developed in [3], the infinitesimals in question are invertible infinitesimals.) We will use without proof that
FOR[ε] is a complete theory, which we believe to be true; if it is false, we do not expect that it would be
difficult to correct the theory. Of course, once we assume completeness, we already know that a decision
procedure exists, but our intent is to observe that any algorithm for deciding FOR can be adapted absolutely
straightforwardly to FOR[ε].

We describe a translation (−)↑ from formulae in FOR[ε] to formulae in FOR, then argue that φ is seman-
tically valid if and only if φ↑ is. The formula translation (−)↑ takes a formula in n variables (differentiable
or constant) to a formula in 2n real variables. For the term translation, each term t in FOR[ε] produces two

terms in FOR, for which we will write t↑ = (t↑0, t
↑
1) – the pair is meant to represent the term t↑0 + t↑1 · ε. These
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are defined as follows.
x↑ = (x0, x1)
A↑ = (A0, A1)
0↑ = (0, 0)
1↑ = (1, 0)
ε↑ = (0, 1)

(t+ r)↑ = (t↑0 + r↑0 , t
↑
1 + r↑1)

(t · r)↑ = (t↑0 · r
↑
0 , t
↑
0 · r

↑
1 + t↑1 · r

↑
0)

The translation of formulae is then given by

(t = r)↑ = t↑0 = r↑0 ∧ t
↑
1 = r↑1

(t ≤ r)↑ = t↑0 < r↑0 ∨ (t↑0 = r↑0 ∧ t
↑
1 ≤ r

↑
1)

(φ ∧ ψ)↑ = φ↑ ∧ ψ↑
(¬φ)↑ = ¬(φ↑)

(∀A.φ)↑ = ∀A0.∀A1.(φ
↑)

(∀x.φ)↑ = ∀x0.∀x1.(φ↑)

The translations of +, ·, = ,and ≤ follow exactly their definitions in R[ε] in terms of R, so the semantic
correctness of the translation is virtually immediate. Thus, φ is valid for FOR[ε] if φ↑ is valid for FOR, so
we can simply apply a real-arithmetic decision procedure to φ↑ to decide φ.

5 dL and εTL

In this section, we describe the relationship between differential dynamic logic [8] and εTL. Since εTL only
deals with functions which vary in a differentiable way, its expressive power is limited compared to dL.
Since dL has a sound and complete axiomatization relative to its differential part FOD, the first order
fragment with differential modality [x′ = θ]φ (see [9]), it is possible that the same holds for dL relative to
εTL. However, εTL cannot express piecewise differentiable functions as FOD can, and the author has not
investigated the impact of this difference on the proof of completeness in [9].

Nevertheless, we note that certain axioms of dL concerning the evolution of differential equations are
provable in some form in εTL, while others are at least semantically valid. First of all, the modal formula
[x′ = θ(x)]φ can be translated as the formula

∀r ≥ 0.(∀0 < t < r.©t x
′ is θ)→©rφ

where x′ is θ is shorthand for
∀X.x = X →©εx = X + θ(X)

(As a side note, we observe that various derivative laws are provable in εTL, for example x′1 is θ1∧x′2 is θ2 →
(x1x2)′ is x1θ2 + x2θ1.) We will write [x′ = θ(x)]φ for the εTL translation as well as the dL formula.
Consider the axiom [′] which characterizes the differential modality in FOD:

[x′ = θ]φ↔ ∀t ≥ 0[x := y(t)]φ
(y′(t) = θ)

The εTL equivalent would then be

[x′ = θ]φ↔ ∀t ≥ 0[y(t)/x]φ
(y′(t) = θ)

This formula is not true, as noted in Section 3, because uniqueness of solutions is true only up to ≈ and φ
may not be ≈-invariant. However, the axiom is provable from uniqueness of solutions for all φ which are
provably ≈-invariant, which includes the sublanguage of εTL using {≈,.} but not {=,≤}. (Here e1 . e2 is
of course defined as e1 · ε ≤ e2 · ε.)
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The uniqueness of solutions axiom is also sufficient to prove at least one instance of a differential invariant
(DI) axiom of dL. For example, consider the following example of an invariant rule derivable in dL.

Γ ` x = y ` θ1 = θ2
Γ ` [x′ = θ1, y

′ = θ2]x = y

Again, although this rule does is unsound in εTL, the adjusted rule

Γ ` x ≈ y ` θ1 = θ2
Γ ` [x′ = θ1, y

′ = θ2]x ≈ y

is easily provable from uniqueness of solutions. Other examples of differential invariants, such as

Γ ` x ≤ y ` θ1 ≤ θ2
Γ ` [x′ = θ1, y

′ = θ2]x ≤ y

do not appear to be derivable in εTL even with ≤ replaced by . in appropriate places. However, they are
semantically valid, so additional axioms could be introduced (as they are in dL) for these purposes.

6 Conclusions and Future Work

We have presented a simple logic for reasoning about differential equations using first-order differential
elements, which we hope could be used as a foundation for more practical developments. Besides cleaning
up loose ends (e.g., the completeness of FOR[ε]), we mention two potential directions for improvement. The
first is to handle hybrid systems, which contain both continuous and discrete elements. As noted in §5,
εTL is very limited in its ability to describe discrete transitions, since no variable is capable of discrete
evolution. Even if the completeness proof of [9] can be adapted to εTL, constructs for direct reasoning about
discrete transitions are necessary for practical purposes. One possibility is to introduce a predicate Diff(e)
which holds when a term is differentiable at the current time, and restrict the Kock-Lawvere and uniqueness
of solution axioms appropriately; this would allow for a semantics where functions need not always vary
differentiably.

Second is to more critically analyze the choice of axioms for εTL. As we have observed in §5, the
uniqueness of solutions axiom allows us to derive some rules of dL, but not all, and the conceptual priority
of the axiom and possibility of augmentations or alternatives remains unexplored.
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