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Abstract

Deciding when to refuel is a huge challenge in NASCAR races because teams are
prohibited from monitoring exact fuel levels. The only information that teams can
gather is on pit stops, where they can calculate how much fuel was added, and they
can know the car has been filled to capacity. This leads to a lot of guesswork on
the part of the teams, which can result in running out of fuel on track, which not
only slows down the car, but also is highly dangerous since competitors’ cars are still
traveling upwards of 200mph. This paper verifies two models of a NASCAR racecar
with different constraints for the fuel consumption and refueling process. Both models
were proven to be safe in that the car always stays on the circular track and the car
never runs out of fuel. Therefore, the controls within my models outline strategy for
which NASCAR racecars can guarantee that there is always a control decision such
that the racecar can traverse the racetrack without running out of fuel.
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1 Introduction

In NASCAR, fuel plays a hugely significant role in the outcome of the race. Races are
hundreds of laps with most tracks ranging between 1
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miles long, forcing teams to make

multiple pit stops in order to have enough fuel to finish the race.[5] During a pit stop, the
”pit crew” of mechanics can change out the tires and refuel in around 11 seconds, but with
cars traveling upwards of 200 mph, 11 seconds can be the difference between 1st place and
20th place.

Changing tires is also a significant part of the pit stop strategy because the tire rubber
degrades throughout the race as the cars lap the track. However, refueling is the limiting
factor in the total time that a pit stop requires because refueling is capped at a specific rate
(for safety purposes), and so decisions about refueling often have more of an impact than
decisions about changing tires. In this vein of thought, this paper analyzes the decisions
that a NASCAR team faces when devising a strategy for refueling in terms of a racecar as
a cyber physical system.

Cyber physical systems (CPS), which deal with the intersection of computer systems
and the physical world, must deal with both continuous dynamics and discrete decisions.
CPS model real world systems, providing abstractions of the system which can be analyzed
and verified. The verification of cyber physical systems allows a certain peace of mind,
although verification of a model does not guarantee safety of the actual system. Therefore,
any models in CPS must reflect reality for maximum value. We rely on cyber physical
systems in everyday life, and so verification of these systems is a safety critical skill for those
in the industry. Accurate models of refueling are especially vital in NASCAR because of the
restriction on the sensors teams are allowed to have. In this paper, I will discuss multiple
models of refueling in NASCAR and the corresponding proofs that guarantee safety.

2 Related Work

NASCAR pitting strategy has been studied in depth, as it is such an important piece of
competitive racing. Deck et al discussed game theory strategies for the sequential pitting
decisions, in order to optimize the number of cars a given driver can pass. [1] However, that
paper studied pit stops purely as a tire exchange as fresh tires have better grip on the track
and therefore can withstand higher velocities through the turn without losing traction. The
paper did not take into account the need to have a pit stop to refuel, and so those game
theory based strategies are not accurately representing racing conditions.

Additionally, many have done extensive research into fuel consumption and optimizing
fuel efficiency under different conditions [4]. In NASCAR races, efficiency isn’t the goal, but
understanding fuel consumption guides decisions on pit strategies. For example, in NASCAR
races, fuel consumption is typically much higher when the car is driving ”in traffic” compared
to when the car is in clean air.[3] On the other side, however, lie the benefits of drafting. If
a car is in the right position following another car, then it can ride the ”draft” behind the
lead car and use less fuel. Because the lead car is redirecting the flow of air around its car,
a talented driver could slip into the air stream behind the lead car and consequently have
less air resistance to deal with, boosting speeds by around 5mph.[2]
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Figure 1: The lead cars create an air stream that following cars can use to draft, reducing drag,

but there is also turbulence that can increase drag.

3 Modeling Decisions

3.1 Constant Velocity

For the sake of simplicity, I started with all initial models having a constant velocity. In-
troducing acceleration would have added a lot of arithmetic because the fuel consumption
would need to be calculated by calculating the time it would take to cover a certain distance
given an acceleration. Being able to calculate the time would require solving the kinematic
equation d “ vintial ˚ t `

1
2
a ˚ t2 for the time t, which involves a square root. Using square

roots in Keymaera X is significantly slower than arithmetic without square roots, and so I
chose to start with constant velocity for ease of analysis. During NASCAR races, speeds
are variable, but typically fall in the range right around 180mph - 200mph, so assuming a
constant velocity is a relatively small compromise to make for modeling the actual race. The
real compromise for not including acceleration and deceleration comes from modeling the
actual pit stop, but those are infrequent enough that the average velocity still comes out
fairly high.

3.2 Time Triggered vs Event Triggered

My initial models are time triggered models, in that the ordinary differential equation (ODE)
can only run for a maximum of time T . Given the constant velocity assumption, limiting
the run of the ODE by a time T is essentially equivalent to defining a lap time T . Therefore,
the system will have a control decision at least every time T interval (although the controls
could be triggered in less than time T ).

My secondary model is an event triggered model, in that the ODEs can only run while in a
certain domain, which is the part of the track without the pit lane. In this model (Appendix
A.3), the control will be triggered when the car enters pit lane (x ą“ 0). Typically, CPS
avoid event triggered models because of the implementation challenge in detecting events.
However, if the model is implemented as a NASCAR driver making decisions instead of an
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autonomous system, then a human can detect when they are in a certain location fairly
easily.

3.3 Single Car

Because of the complex forces behind drafting and the effect of aerodynamics on fuel effi-
ciency, and the general complication of modeling 40 cars, I instead chose to focus my model
on the strategy of a single car, assuming fuel consumption is dependent only on the velocity.
Because of the exclusion of other cars, my models also implicitly assume that there are no
crashes or other racing incidents, which would be accurate in an ideal world. Unfortunately,
many NASCAR races do have multiple crashes, but as crashes are unplanned and often end
the race for the involved cars, there’s no reason to include a crash in modeling a strategy for
refueling.

3.4 Circular Track

In NASCAR, 34 out of 36 races are oval tracks navigated counter-clockwise. However, I
modeled the tracks as circles in order to simplify the arithmetic. Because the tracks are
already ovals with relatively short straightaways, modeling the tracks as circles preserves the
general idea of circular motion without compromising too much on the reality of a NASCAR
race. My models also preserve the concept of counterclockwise motion in order to match the
reality of a NASCAR race.

Figure 2: NASCAR races are predominantly oval tracks, like the Dover International Speedway,
with a pit lane extending the length of one of the straightaways.
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Modeling movement along a circular track was the subject of a few of the labs for CMU
course 15-424, and I used those labs as a starting point for my models. Since sine and cosine
are not expressible in the real arithmetic implemented in Keymaera X, counterclockwise
circular motion at a specific velocity v is expressed with the following ODEs.

tx1
“ v ˚ y, y1

“ ´v ˚ x, dx “ ´dy, dy “ dxu

In this model, dx, dy represent the direction vector of the velocity, and x, y represent the
Cartesian coordinates of the vehicle moving in a circle. Therefore,

x “ rad ˚ sinptq

y “ rad ˚ cosptq

dx “ cosptq

dy “ sinptq

3.5 Safety Conditions

Since I decided to approximate the track as a circle, then the first safety requirement is that
the car always stays on the track.

x2
` y2 “ rad2

This property is important because the car should not be able to cut across the track to
get to the ”pit area” to refuel. Instead, all cars must follow the track and have enough fuel
to get around.

The second safety property is the more relevant property about fuel, which is that the
fuel never runs out while the car is on the track.

fuel ě 0

This property is the focus of this paper, as proving that fuel is always greater than zero
will prove that there is a strategy to finish the race without running out of fuel on the track.

3.6 Efficiency Condition

Additionally, as a race, all teams are actively trying to push the limits on how far they can
go without refueling, and so my model represents that in the controls by only refueling if
the car does not have enough fuel to last another lap. In the initial models, this condition is
represented by testing the fuel value and only stopping if the fuel would run out before the
next lap.

4 Model Details

4.1 Linear Model

In my initial linear model (Appenix A.1), I use a linear approximation to model fuel con-
sumption. Using a linear model will simplify the arithmetic and since NASCAR cars rarely
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travel less than 60mph, a linear model is a good approximation of how fuel is actually con-
sumed and guarantee safety. Fuel consumption was modeled as having a negative derivative
based on the slope of the fuel consumption line.

fuel1 “ ´fc ˚ v

Where fc is a constant representing the fuel consumption proportional to the velocity.

Figure 3: Fuel consumption has follows a curve that mostly maps to a quadratic curve, but above
60mph, a linear model could be fairly accurate.

4.2 Quadratic Model

Technically, however, fuel consumption follows a more complex curve. In a study done by
the US Department of Transportation, a model of fuel consumption was developed based on
regression analysis. [4]

FC “
1

FE

FE “ a
´T

2
` b

¯c

where:
FC is fuel consumption in L/km
FE is fuel efficiency in km/L
T is torque in N-m
a, b, c are regression coefficients

So in my second model, (Appendix A.2), I use a quadratic approximation to model fuel
consumption. This model has a more accurate representation of fuel consumption based on
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the US DOT model, as that model shows that there is not a strictly linear relationship be-
tween fuel consumption and torque. Note: torque and speed are linearly related, an increase
in torque is going to accelerate the car and therefore is associated with an increase in speed.

fuel1 “ ´pfc ˚ v ˚ t` cq

Where fc and c are the constants of fuel consumption.

4.3 Proposed Linear Event Triggered Model

A progression up from those models would be to add an abstraction of pit lane. This new
model (Appendix A.3) allows the car to refuel only on one half of the track, e.g. when x ě 0.
This requires that the controls consider how much fuel will be required to return to the pit
lane, not how much fuel would be required to last one more time interval. Therefore, when
a car is in an area where it can make a pit stop, then when deciding whether or not to
stop, it must take into account if there is enough fuel to get back to pit lane if it doesn’t
stop now. To approximate how much time it would take to get back to the current position,
I use the current velocity and the bounding box that encloses the circular track (the box
with perimeter 8 ˚ rad). This bounding box will overestimate the track distance, which can
guarantee the car can always make it back to pit lane.

5 Proofs

The linear and quadratic model proofs had similar structures. Because of the two distinct
postconditions, the proof had two major branches, one to prove that the car always stays on
the track (Section 5.1.1), and the other to prove that the car always has enough fuel (Section
5.1.2).

5.1 Invariants

5.1.1 Circular Motion

The invariants necessary for circular motion were fairly straightforward.

x2
` y2 “ rad2 (1)

dx2
` dy2 “ 1 (2)

dx ˚ v “ ´y (3)

dy ˚ v “ x (4)

rad ą“ 0 (5)

Formula (1) is also one of the safety conditions; the car must be on the track at all times.
Formula (2) is an invariant that guarantees that dx and dy actually represent the direction
vector of velocity. Formulas (3) and (4) describe the relationship between the direction vec-
tors and the actual values of x and y. Since dx and y are both cosines and dy and x both sines,
their relationships are simply proportional given the velocity. Then, formula (5) guarantees
that the radius is non-negative to ensure that the travel is actually counterclockwise.
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5.1.2 Fuel Consumption

max ą fc ˚ v ˚ T (6)

fc ą 0 (7)

T ą 0 (8)

fuelinit ą fc ˚ v ˚ T (9)

In order to prove that the fuel would be greater than 0 at the end of a run of time T , it was
necessary to use the fact that the initial level of fuel fuelinit was greater than the amount
of fuel that would be required for a run of time T , expressed in formula (9). To prove that
in the linear model, it was necessary to ensure that the maximum fuel that the tank could
hold would be enough to last for time T , formula (6). And the related constants, formulas
(7) and (8), also have to be positive in order for the arithmetic to work out.

5.2 Proof Techniques

5.2.1 Discrete Ghost

Use of a discrete ghost was applied to prove both the linear and quadratic models because
the ODEs do not have a real arithmetic solution (they are sines and cosines), and so a ghost
was cut into the domain constraint to keep some extra information about the fuel level. This
technique is essentially introducing a new variable that’s not in the ODE as a value that
doesn’t change so that.

As seen above, to prove the second branch, that fuel ě 0, it was important to establish
a discrete ghost fuelinit. This variable fuelinit was introduced to keep track of the value
of fuel before the ODE ran, so fuelinit was assigned to the value of fuel right as time was
set to 0 before the ODE.

t :“ 0

fuelinit :“ fuel

5.2.2 Differential Cut

The differential cut is a proof technique that cuts an invariant into the domain of a differential
equation.

In terms of the linear model, this cut using fuelinit was

fuelinit ą fc ˚ v ˚ T (10)

fuel “ fuelinit´ fc ˚ v ˚ t (11)

Then, given formula (10), it is clear that formula (11) would prove that fuel ě 0. This cut
was possible because the control decision only allows the car to continue without refueling if
fuel ą fc ˚ v ˚T , which would then guarantee fuelinit ą fc ˚ v ˚T . Then, simple arithmetic
can guarantee that fuel ą 0.

The proof for the quadratic was structured similarly, with the distinction that the invari-
ant and cut using fuelinit was the following:

fuelinit ą fc ˚ v ˚ T 2
` c ˚ T
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5.2.3 Differential Weakening

Given the discrete ghosts and the differential cuts, the domain constraints were used to
prove the post conditions by a differential weakening step. The differential weakening proof
rule throws away the context, and just uses the domain constraints of an ODE to prove the
postconditions. Using differential weakening is only possible if the domain constraints are
strong enough to prove the postcondition without using any of the preconditions as context.

6 Discussion

While I did achieve my goals of proving the initial linear and quadratic models, I didn’t make
as much progress into further models as I had planned because the initial proofs were more
involved that I had originally considered. Through attempting to construct valid proofs, I
was able to build a more accurate initial model, and so even though I wasn’t able to prove
the secondary model, my initial model was more complex than I originally planned. There
are many directions that this project could go in the future, and with more time, I would
love to dig a little deeper into the world of NASCAR refueling strategies. Fuel consumption
is a hugely important topic, and there are many factors that go into making decisions about
refueling during a NASCAR race.

Some of the features I considered adding to my models are below.
One feature that none of the previously mentioned models take into account is the ac-

celeration and deceleration of the car. All models so far have assumed that the velocity is
constant, but a more accurate model would take into account the constant accelerations and
decelerations involved in actual NASCAR racing. Acceleration and deceleration add com-
plexity in calculating the amount of fuel necessary to continue because the fuel consumption
is related to velocity and the above models all assume that the velocity is constant. There-
fore, if acceleration and deceleration were included, the fuel consumption would need to
be calculated by calculating the time it would take to cover a certain distance given an
acceleration, i.e. solving the kinematic equation d “ vintial ˚ t`

1
2
a ˚ t2.

Down the avenue of more complex models, the next model could include a decision both
for when to refuel if the car is in the pit area, and another decision for whether or not to
accelerate/decelerate when the car is on the side of the track that doesn’t allow refueling.
This model would be highly nuanced because the decision of whether or not to refuel cannot
be completely independent of the decision to accelerate/decelerate because the acceleration
will change the amount of fuel consumed before the next time the car is in the pit area.

A future model could also include a more clear cut condition for efficiency. I didn’t have
a specific efficiency post condition, but rather I built efficiency into the control so that a car
wouldn’t stop if it still had enough fuel to continue. For any future model that would use
a time limit to ensure efficiency, the actual refueling would need to be modeled as an ODE
instead of a variable assignment, to account for the total time that refueling takes.

Because my models focused solely on one car, there is no way to account for varying fuel
efficiency based on race traffic or other cars. Another model in future studies could explore
possibly modeling a race with more than one car, and then modify the strategy to perhaps
allow refueling when it is not strictly necessary. For example, if a car has enough fuel to get
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around the track one more time, but it would be advantageous to pit in order to avoid on
track traffic, then perhaps the optimal strategy would be for that car to pit one lap earlier.

7 Deliverables

The goal of this project was to be able to prove the previously listed models safe, and to
achieve a sufficiently high level of accuracy in modeling NASCAR strategy. My models are
in Appendix A and the completed proofs are in Appendix B. The model Appendix A.1
corresponds to the proof Appendix B.1, and the model Appendix A.2 corresponds to the
proof Appendix B.2. There is no completed proof for the model Appendix A.3.
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Appendix

A Models

A.1 Initial Linear

Functions.

R rad.

R max.

R fc.

R T.

End.

ProgramVariables.

R x.

R y.

R dx.

R dy.

R v.

R fuel.

R fuelinit.

R t.

End.

Problem.

(

x^2 + y^2 = rad^2 &

dx^2 + dy^2 = 1 &

dx*v = -y &

dy*v = x &

v > 0 &

rad >= 0 & max > fc * v * T & fc > 0 & T > 0 &

fuel = max & max > 0 & fuelinit > fc * v * T

)

->

[

{

/* Controls */

{

/* Fuel will not be empty, continue */

?fuel > fc*v * T;

++

/* Fuel will be empty, fill back to max */

?fuel <= fc*v * T; fuel := max;}

t := 0;

fuelinit := fuel;
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{x’ = v * dx, y’ = v * dy,

dx’ = -dy, dy’ = dx, t’ = 1, fuelinit’ = 0,

/* Fuel consumption is linear with respect to velocity */

fuel’ = -fc * v

& v >= 0 & t <= T}

}*@invariant( fuel >= 0 &

x^2 + y^2 = rad^2 &

dx^2 + dy^2 = 1 &

dx*v = -y &

dy*v = x &

v > 0 &

rad >= 0 & max > fc * v * T & fc > 0 & T > 0 & fuelinit > fc * v * T

)

](x^2 + y^2 = rad^2 &

fuel >= 0) /* Safety condition. */

End.
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A.2 Initial Quadratic

Functions.

R rad.

R max.

R fc.

R T.

R c.

End.

ProgramVariables.

R x.

R y.

R dx.

R dy.

R v.

R fuel.

R fuelinit.

R t.

End.

Problem.

(

x^2 + y^2 = rad^2 &

dx^2 + dy^2 = 1 &

dx*v = -y &

dy*v = x &

v > 0 &

rad >= 0 & max > fc * v * T^2 + c * T & fc > 0 & T > 0 & c > 0 &

fuel = max & max > 0 & fuelinit > fc * v * T^2 + c * T

)

->

[

{

/* Controls */

{

/* Fuel is not empty, continue */

?fuel >= fc*v * T^2 + c * T;

++

/* Fuel is empty, fill back to max */

?fuel < fc*v * T^2 + c * T; fuel := max;}

t := 0;

fuelinit := fuel;

{x’ = v * dx, y’ = v * dy,

dx’ = -dy, dy’ = dx, t’ = 1, fuelinit’ = 0,
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/* Fuel consumption is linear with respect to velocity */

fuel’ = -(fc * v * 2 * t + c)

& v >= 0 & t >= 0 & t <= T}

}*@invariant( fuel >= 0 &

x^2 + y^2 = rad^2 &

dx^2 + dy^2 = 1 &

dx*v = -y &

dy*v = x &

v > 0 &

rad >= 0 & max > fc * v * T^2 + c * T & fc > 0 & T > 0 & c > 0 &

fuelinit > fc * v * T^2 + c * T

)

](x^2 + y^2 = rad^2 &

fuel >= 0) /* Safety condition. */

End.
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A.3 Secondary Linear

Functions.

R rad.

R max.

R fc.

End.

ProgramVariables.

R x.

R y.

R dx.

R dy.

R v.

R fuel.

R fuelinit.

End.

Problem.

(

x^2 + y^2 = rad^2 &

dx^2 + dy^2 = 1 &

dx*v = -y &

dy*v = x &

v > 0 &

rad >= 0 & max > fc * v * (8*rad / v) & fc > 0 &

fuel = max & max > 0 & fuelinit > fc * v * (8*rad / v)

)

->

[

{

/* Controls */

{

/* In pit lane, decide whether or not to stop */

?x >= 0;

/* There is enough fuel to get around track again, continue */

{?fuel >= fc*v * (8*rad / v);

++

/* Fuel is empty, fill back to max */

?fuel < fc*v * (8*rad / v); fuel := max;}

++
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/* If not in pit lane, continue */

?x < 0;

}

fuelinit := fuel;

{{x’ = v * dx, y’ = v * dy,

dx’ = -dy, dy’ = dx,

/* Fuel consumption is linear with respect to velocity */

fuel’ = -fc * v

& v >= 0

/* if the driver enters the pitting area, trigger a control decision */

& x <= 0 }

++

{x’ = v * dx, y’ = v * dy,

dx’ = -dy, dy’ = dx,

/* Fuel consumption is linear with respect to velocity */

fuel’ = -fc * v

& v >= 0

/* allow the car to move through the pitting area*/

& x >= 0 }}

}*@invariant( fuel >= 0 &

x^2 + y^2 = rad^2 &

dx^2 + dy^2 = 1 &

dx*v = -y &

dy*v = x &

v > 0 &

rad >= 0 & max > fc * v * (8*rad / v) & fc > 0 & fuelinit > fc * v * ((x + y+1) / v)

)

](x^2 + y^2 = rad^2 &

fuel >= 0) /* Safety condition. */

End.
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B Proofs

B.1 Initial Linear

implyR(1) & loop({‘fuel>=0&x^2+y^2=rad^2&dx^2+dy^2=1&dx*v=-y&dy*v=x&v>0&rad>=0&max>fc*v*T&fc>0&T>0&fuelinit>fc*v*T‘}, 1)

<(

master,

master,

composeB(1) &

choiceB(1) &

andR(1)

<(

testB(1) &

implyR(1) &

composeB(1) &

assignB(1) &

composeB(1) &

assignB(1) &

boxAnd(1) &

andR(1) <(diffInvariant({‘fuelinit > fc * v * T & fuel = fuelinit - fc * v * t‘}, 1) & diffWeaken(1) & implyR(1) & QE,

diffInvariant({‘dx = -y/v & dy = x/v‘}, 1) & autoDiffInd(1)

),

composeB(1) &

testB(1) &

implyR(1) &

assignB(1) &

composeB(1) &

assignB(1) &

composeB(1) &

assignB(1) &

boxAnd(1) &

andR(1) <(diffInvariant({‘fuel = max - fc * v * t‘}, 1) & diffWeaken(1) & implyR(1) & QE,

diffInvariant({‘dx = -y/v & dy = x/v‘}, 1) & autoDiffInd(1)

)

)

)
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B.2 Initial Quadratic

implyR(1) & loop({‘fuel>=0&x^2+y^2=rad^2&dx^2+dy^2=1&dx*v=-y&dy*v=x&v>0&rad>=0&max>fc*v*T^2+c*T&fc>0&T>0&c>0&fuelinit>fc*v*T^2+c*T‘}, 1)

<(

master,

master,

composeB(1) &

choiceB(1) &

andR(1)

<(

testB(1) &

implyR(1) &

composeB(1) &

assignB(1) &

composeB(1) &

assignB(1) &

boxAnd(1) &

andR(1) <(diffInvariant({‘fuelinit > fc * v * T^2 + c * T & fuel = fuelinit - fc * v * t^2 - c * t‘}, 1) & diffWeaken(1) & implyR(1) & QE,

diffInvariant({‘dx = -y/v & dy = x/v‘}, 1) & autoDiffInd(1)

),

composeB(1) &

testB(1) &

implyR(1) &

assignB(1) &

composeB(1) &

assignB(1) &

composeB(1) &

assignB(1) &

boxAnd(1) &

andR(1) <(diffInvariant({‘fuel = max - fc * v * t^2 - c * t‘}, 1) & diffWeaken(1) & implyR(1) & QE,

diffInvariant({‘dx = -y/v & dy = x/v‘}, 1) & autoDiffInd(1)

)

))
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