Amazon Fulfillment Centers: Robot Interactions
in a Distributed System Paradigm

Abdelwahab Bourai, Rohan Meringeti

May 2, 2016

Abstract

In today’s world, robots play an ever increasing role in tasks ranging from
surgical procedures to manufacturing. In addition, as costs of labor continue to
soar, the need for cost efficient alternatives has also risen. This need is often met
through automation and robotic systems. However, this raises concerns of safety
and efficiency in the workplace. In some industries, such as car manufacturing,
the marriage of robots and labor has far surpassed expectations. However,
newer industries are still experimenting with robotic involvement in the office.
In particular, we investigate Amazon fulfillment centers and the emergence of
automated warehousing systems, where robots carry out labor intensive tasks
such as sorting and delivering merchandise throughout the facility. We model
multiple robots interacting in a diverse set of scenarios, ranging from units that
focus on finding and delivering packages in an organized environment to drones
that respond to emergencies in the facility.

0.1 Introduction

Since its founding in 1994, Amazon has grown into the premier online market-
place with over 244 million active users and 2 billion items purchased per year.
In order to ensure optimal customer satisfaction, the company has to ship orders
at a breakneck pace. To do this, Amazon has set up 89 warehouses distributed
throughout the United States known as fulfillment centers A robotics company
called Kiva Systems was acquired in 2012 to explore the use of machines in prod-
uct retrieval inside the warehouse. They are controlled by a central computer
and an array of sensors, allowing for a distributed approach to the difficult prob-
lem of package delivery. The robots are constantly interacting with humans, as
they deliver product shelves to workers for sorting and product selection. This
symbiotic relationship between human and machine is vital to maximize effi-
ciency in seemingly impossibly large tasks. However, this also raises the bar
for safety and hazard prevention. We believe cyber-physical systems research
can be applied in this field to model common scenarios and prove safety to
minimize the risks and identify potential pain points in large distributed robot
systems. Amazon net a profit of 89 billion dollars and 107 billion dollars in sales
in 2014. In addition it experienced a 20% growth rate in revenue from 2014 to
2015. It can further expect to increase profits as it moves towards larger systems
of distributed robots that can drastically cut labor costs throughout its fulfill-
ment centers. Furthermore, these systems are not limited just to this specific
scenario; distributed robotics systems can play an enormous role in industries
and scenarios such disaster rescue efforts, agriculture, and autonomous driving
systems.

0.2 Models
0.2.1 Model Background

We wish to model the system in a manner that simplifies the complexities of
movement in the facility and also generalizes well. We divided the warehouse
facility into three regions, each with its own main occupant. One region was
where the human workers stand and wait for robots to deliver them products.
Let this region be in the top third of the facility. In the middle third, we have a
product shelving system organized into a grid, with ”streets” and robots picking
up products to deliver to the human workers. Finally we designate the bottom
third as the ”"loading dock” for our sytem, where robots take recently arrived
items and deliver them to the edge of the product shelves to be organized. Given
this background, we identified three key models: a linear model focused on
robots tasked with retrieving products from a grid system of shelves, a circular
motion model to model robots tasked with delivering products recently arrived
to the facility to the linear motion robots to be added to the grid, and a spherical
motion robot model simulating drones that react and repair emergencies in the
system. We model the individual robots as well as their interactions with each

other. In some models we have two sets of variables such as poszA and posxB.
Assume without loss of generality that when we mention variables denoted with
A the same holds true for B. In addition, assume the robots we use in the
system can move in any direction, meaning the robot can change direction
without needing to turn.

0.2.2 Exploring Linear Grid Motion with Robots

We model two robots on a linear grid system. Both are completing the same
tasks and travel within the same grid. We model movement throughout the
grid by assuming the robot can only go in the vertical and horizontal planes;
there is no diagonal movement. When we wish to pick up a package, or deliver
a package to a certain location, we observe where the package is in the xy
plane. To get to that point, we measure how far away we are in the vertical
and horizontal directions and take the maximum of the two distances. In the
model the variables absVertA and absHor A are compared. The distance that
is greater determines which direction we travel in for the current time step.

absVertA := \/(pkgPosyA — posyA)?

absHorB := +/(pkgPoszA — poszA)?

absVertB := +/(pkgPosyB — posyB)?

absHor B := +/(pkgPoszB — poszB)?

Notice that we are taking the square root of a square to get the absolute value
of the distances.

So now we are able to choose which direction we move in. However what if
we need to switch directions? This requires us to model turning. We set up a
variable distTolnter A that measures how far we are from the next intersection
in our path. In our continuous dynamics, we decrement it based our velocity as
we approach

distTolnter A" = —1 x \/(vel A)?

Throughout this model, the robots are usually moving at speed MaxV elocity.
However, if we detect that we are approaching an intersection and will overshoot,
we adjust our velocity such that we will stop exactly at the intersection:

distTolnter A

?(distTolnter A > OAdistTolnter A < MazVelocity=T);vel A := T

Now that we have stopped at the intersection we have to decide which direction
to continue on. We previously mentioned how we always move in the direction
that is furthest away from the package. We introduce two variables horDir A
and vertDirA that act as flags denoting directions left, right, up and down.
They have three possible values: 0, 1, and -1, with 0 implying not moving in
that direction at all, 1 implying right and up, and -1 implying left and down.

So for example if our package is farther away to the right we would update our
values this way:

?(distTolInter A =0 A pkgPosx A > posx A A absHorA > absVertA);

vertdirA := 0; hordir A := 1;distTolnter A := GSize;

We reset distTolnter A to the maximum value of GSize, the length of one grid
block.

Another issue we model is interacting with other robots on the grid. We al-
ways attempt to maintain a safe distance, set at SafeDistance in the model,
such that in the next time step we are certain of avoiding collisions. This dis-
tance is determined by taking the hypotenuse of the grid blocks, this way we
ensure that no two robots will ever be close enough that they can turn into the
same path and crash. In the case where two robots are very close in the grid, we
set up an ordering system where the robot with the higher ordering retreats and
heads in the opposite direction until both robots are at a safe distance apart.
We determine where each robot will be in the next time step:

futureposzA := postA + (vel A x hordirA = T)
futureposyA := posyA + (vel A x vertdir A« T')
futureposzB := posx B + (velB x hordirB « T')
futureposyB := posyB + (vel B x vertdirB « T)

We use the previously mentioned direction flags to determine exactly where the
robots will be on the grid after time step T'. This cooperation between robots
is vital for safely moving throughout the grid.

We made a few other key simplifications. We removed acceleration and brak-
ing from the system because we assume velocity to be negligible. Additionally
we assume no two way streets in the grid. We deemed this to be too much of
a safety risk with robots carrying fragile cargo so close to one another. While
there may be a potential efficiency loss due to forcing robots to wait for paths
to clear off, the safety gained from not having robots side by side outweighs
those losses. We also make the assumption that each robot is at least a block’s
hypotenuse distance, SafeDistance, away from each other and set this as a
precondition. This allows to never have to worry about two robots crashing
into each other.

0.2.3 Spherical Motion for Emergency Response

The type of situation we attempt to model is akin to a an accident or emergency
occurring. Since the goal is to resolve the emergency in the most efficient man-
ner and packages are often height dependent (stored on high shelves), we model

a drone going towards a package, even with the obstruction of an obstacle along
the way. The emergency response model is far more complex than the linear
model. With the linear model, we operate only on the cartesian plane. However
if we want to model drone movement and behavior we have to able to account
for maximal range of motion for the drone to be effective in dealing with any
type of emergency.

An obvious challenge in this model is how to efficiently bypass models to
reach the emergency location. The idea we used here is that a drone approaches
linearly, in a straight line, towards the emergency location. At each time step,
we create a sphere of length SafeRobotDist around our obstacle. The goal is
make sure that we never get inside this sphere. The manner in which we con-
ducted this test is take a unit vector in our current direction, and see the furthest
we would go if the differential equation were to run for T time steps. If we were
to go inside the sphere (have a euclidean distance of less than Sa feRobotDist)
we would slow down so at most we would end up at the surface of the sphere.
Once on the sphere, we would chart a route on the surface of the sphere to-
wards the emergency, and travel along that route to bypass the obstacle. We
will elaborate on how this step is done in the following expansion of the model.

We now take a closer look a the model, and explain some of the challenges
and decisions we made. Let us declare three groups of positional variables
representing the drone, the hazard, and a potential obstacle:

$7y7z

emerX,emerY,emerZ
0bs X, 0bsY, 0bsZ

The hazard in our instance can be a stalled robot, a spill, or a crash. The
obstacle could be a human worker in the facility other drones, or any inanimate
object in the way. We need to reach the emergency as quickly as possible, so
the first step is to see if we can travel directly to the point using linear motion.
We take the Euclidean distance between us and the obstacle

obsDistance := /(obsX — x)2 4 (0bsY —)2 + (0bsZ — z)2

and ensure that it is greater than SafeDistance. If it is we continue on a
straight path to the hazard. We then find the magnitude of the line from our
drone to the emerX, emerY and emerZ. We do this to get the unit vectors:

(emerX — x)?

unitvr = -
magnitude
) (emerY —y)?
unitvy == Y——m————
magnitude

4

. (emerZ — z2)?
unitvz == Y——————
magnitude

With these we can know what our velocities will be in the =, y and z directions.
ve = MaxVelocity * unitve

vy = MazxVelocity x unitvy

vz := MazVelocity *x unitvz

It’s very unlikely we can continue with linear motion forever, so we calculate
how much ground we can cover with linear motion until we have to avoid some
obstacles. This is stored in futureDist in the model

futureDist := \/(0bsX — (x + vz * T))2 4 (0bsY — (y + vy« T))2 + (0bsZ — (z + vz T))2

Now that we have reached a point where linear motion no longer suffices,
we must introduce spherical motion. We are now traveling on a sphere of ra-
dius SafeDistance with the obstacle at the center. Our goal is travel along
the sphere such that we approach our emergency. To do this we intersect a
plane to the sphere like below. One caveat with this approach however, is that
we must deal with the scenario where we are outside of the sphere starting
out, and in the next time step, we are also out of the sphere. One possible
path taken is right through the sphere, which would break a safety condition
that states that we must remain outside of the radius of the sphere. Fortu-
nately, the very fact that we’re cutting through the sphere in one time step
means that we never encounter the obstacle, since we have the precondition,
MaxVelocity <= SafeRobotDist/T, which guarantees, that we can travel a
max distance of SafeRobotDist in one time step. Therefore, we have adjusted
our safety condition to that the obstacle and the drone never hit.

Figure 1: Intersection of a Plane and Sphere

We want to find planes that intersect with the sphere on the all three coor-
dinates. To define a plane, we need three points. Our first two points are easy,

they are the obstacle, and position of the robot themselves. The final point is
gotten by taking a line from the robot to the emergency point. The point on the
other side of the sphere is the third point of the plane. This is found through
non deterministic assignment, until we have reached a SafeRobotDist.

scaleV = %

planeX = x 4+ unitvx * scaleV
planeY = y + unitvy * scaleV
planeZ := z + unitvz x scaleV’

Those unit vectors we made earlier prove useful, as they tell us which di-
rection we go in each coordinate plane. Given these points, we have to test to
make sure we will actually be safe once we reach there, if not we choose a new
point on the sphere

?(v/(planeX — 0bsX)2 + (planeY — obsY)2 + (planeZ — obsZ)? = SafeRobot Dist)

So taking a look at where we have reached till now, we have the equation
of plane intersecting with a sphere, which represents the route we wish to take.
The next part of spherical motion takes into account the idea of pairwise planes.
To understand how pairwise planes work, we have to take a look at circular mo-
tion.

Circular motion is done within one plane, generally on the coordinate planes
(xy, yz, or xz). The differential equations used in circular motion are the fol-
lowing.

2 =vx*dx

Yy =v*dy
dx’ = —dy * v/radius
dy' = dx * v/radius

The point to highlight here, is value v/radius which tells us the rate that the
angle is changing around the circle. The idea we now use is one with pairwise
planes. Suppose we have,

v =vxdr,y =v*dy,dx’ = —dy*vl/radius,dy’ = dx * v1/radius

¥ =vxdr, 2 =vxdz,dx’ = —dz *v2/radius,dz’ = dx x v2/radius

y =vxdy, 2 =vxdz,dy = —dzxv3/radius,dz’ = dy x v3/radius

Figure 2: Pairwise Coordinate Axes

So this is essentially circular motion on each coordinate plane. So how can
we relate this idea to the plane we have created? We see that the only differ-
ence between the planes above the rate of change of angles. We also know that
that any plane is a weighted average of the 3 pairwise planes above. In other
words, we have a unit velocity vector in the direction of our plane, but how
do we decompose that velocity vector in to the three coordinate planes, such
that we get circular movement on that plane. Essentially, this question boils
down to how the velocity vectors in each direction are weighted. The tactic
that we use to solve this is the idea of plane angle similarity. We take the angle
between our plane and each one of the coordinate planes, and weight the rate
of change of angle in that direction based on how close that angle is with the
coordinate plane. For a simple example, say our plane was actually the xy-
coordinate plane. Then the angle difference with the xy coordinate plane would
be 0 degrees, while there would be a 90 degree difference with the other two
planes. We would thus gives the v,y plane a weight of 1, and the other two 0
weights, leaving only the circular motion in the xy coordinate plane. The code
below shows how these weights are gotten and applied.

normalX = (vV1Y % v2Z — v1Z % v2Y);

normalY := (vV1Z xv2X —vlX %xv2Z);
normalZ := (v1X % v2Y — v1Y % v2X);
normal Magnitude := ((normalX)? + (normalY)? + (normal Z)?)(1/2);
normalUnitX := normal X /normal M agnitude;

normalUnitY := normalY /normal Magnitude;

Figure 3: Angles between Planes

normalUnitZ := normalZ /normal M agnitude;
normalPlaneX := 1;4+ 4+ normal PlaneX := —1;
normal PlaneY := 1;+ + normalPlaneY = —1;
normal PlaneZ := 1;4+ 4+ normal PlaneZ = —1;

zydist := MaxAngleDistance—(normalUnit X >+normalUnitY >+ (normalUnit Z—normal Plane Z)?)/?,

yzdist := MaxAngleDistance—((normalUnit X —normal Plane X)*4+normalUnitY > +normalUnit Z*)*/?,

(
xzdist == Max Angle Distance—(normalUnit X >4 (normalUnitY —normal PlaneY)?+normalUnit Z2)'/?;

Notice how we did mention that we would find the angles between the planes,
however, there are no angles used in the above equations. This is due to two
reasons. One is that the equation for angle between two planes involves trigno-
metric calculations, which is not possible in Keymeara. Second, is that we don’t
really care about the exact angles. Instead what we care about is the ratio of
angles to each other. Therefore, what we do is we take a normal unit vector, one
from our plane, and one from each coordinate plane, and compare the distance
between them. We only want the distance formed by an acute angle, therefore
the max distance between any two points is simply v/12 4+ 12 = v/2. For example
say we compare the normal vectors of our plane and the xy coordinate plane. If
our plane were to be the xy coordinate plane, we would have a distance of 0. On
the otherhand, say our plane was the yz, or the xz plane, then we would have a
distance of /2. The choice used in the normalPlane variables above is so that

we only get the actue angles, and the test ?(xydist > Oyzdist > 0zxzdist > 0);
makes sure of this fact. We subtract each distance from /2 or MaxAngleDis-
tance, so that we can get a ratio of the similarity of the angles, not differences.
Finally, in the following lines, we scale the weights appropriately, so that the
sum equals 1.

vSecale := x;
xyweight := xydist/vScale;
yzweight := yzdist/vScale;
xzweight := xzdist/vScale;

?(zyweight + yzweight + xzweight = 1);

0.2.4 Interaction between Linear and Circular Motion Robots

The final model is based on the scenario where a robot takes recently delivered,
unsorted merchandise to the boundary of the product grid for the linear motion
robots to pick up and place in their proper places. Our preconditions are similar
to those of the linear model; we do not want to start at an unsafe distance from
the other robot. However another precondition is

posyB < LoadingBoundary

meaning that robot B, our circular motion robot, must be below LoadingBoundary,
which is set as the y value for the border between the loading region and the
product grid. We let our Robot A run as in model 1, but this time without
having to worry about another linear motion robot, thus its motions are quite
simple. The interesting portion of this model is how the two robots interact with
each other. For example, what is robot B doing while robot A is dropping off a
package. One option is that is travels underneath the loading boundary looking
for packages. Ideally, however, the locations of where packages are dropped off
are handled by the same system that controls the robots. Therefore, the robot
really shouldn’t move until the system tells it to grab a package in the loading
boundary. Hence, we introduce the following variables to alert the circular robot
to where it should go.
pkgPickupX

pkgPickupY
pkgDropof fY

Furthermore, we don’t want the model to be too boring, so we add an obstacle
in the path of our circular robot. Similarly to how we handle the sphere sit-
uation, we attempt linear motion towards the package when we are at a safe
distance away, and circular motion when we are enroute to hit the obstacle. We
have already mentioned much of circular motion in the previous model, so we
won’t elaborate on the concept here.

0.3 Proofs
0.3.1 Proof1l

The grunt of this model, involves a lot of cases and choice statements. Therefore,
the strategy used to prove this model is loop induction, followed by breaking on
choice and composition. Once each branch is broken to its child nodes, we can
solve each respective branch through Differential Induction, which captures the
idea that distance between the two robots will never be closer than SafeRobot-
Dist.

0.3.2 Proof 2
0.3.3 Proof 3

0.4 Applications

0.4.1 Agricultural Labor Improvement

Distributed robotics systems are capable of taking over simple, labor intensive
tasks that allow humans to focus on more complex tasks. For example, crop
picking in California is an enormous industry and generates billions of dollars
in agricultural revenue. In Ventura County alone, 20,000 jobs are added every
crop cycle for fruit picking. However, many of these farms are still desperate for
more workers, leading some to turn to hiring practices that are both dangerous
and illegal. A system set up similar to our model can be perfect for not only
picking, but also optimizing picking production. Imagine an orange orchard in
the Central Valley in prime picking season, with thousands of acres of oranges
read to be picked. We propose a few different possibilities for our system.

The first one focuses on having the simplest possible system. Robots are spread
throughout the orchard, with each robot operating in a small square plot of
trees. Human workers pick the oranges and place them in bins, and when they
are full the robot in charge of that plot collects and drops off these bins at a
central pickup location. Another class of robots waits at that boundary and
delivers it to the large sorting bins for human quality control workers to pick
out rotten crops and package them for delivery. Since we have worked on ob-
stacle avoidance and working side by side human workers, the distributed robot
model we proposed above for both the linear grid motion and the interactions
with the circular motion model can be replicated easily here.

Another, more complex task involves using our spherical motion model in direct
crop picking. If instead of heading to an emergency we tune our drone model
to identify crops and outfit it with the proper manipulators, a large swarm of
drones, working in tandem with a distributed system of ground robots that aid
in the transport of the picked fruit, can do the grueling work in the hot Central

10

California day and allow human workers to once again focus on auxiliary tasks.
This can be a boon for labor rights, as it will allow farmer currently skirting
labor laws to deal with the huge labor demand to pick crops. If they can min-
imize the amount of workers needed, they can pay at or above the minimum
wage, rather than below for a full days of work in the hot sun. In addition,
these robot systems would pay themselves off in the long run compared to the
current system, as the huge influx of thousands of workers during crop picking
months places strain on local municipalities.

0.4.2 Vehicle Automation

Research in self-driving vehicles has accelerated in recent years, as more com-
panies throw their hat into the ring in the hopes of developing safe autonomous
cars. Already some cars offer automated brake assistance or in the case of
Tesla autopilot features. One company that may have a particularly interesting
system will be Uber, which is trying to replace human drivers with driverless
cars. The cars will be available to consumers at the click of a button, but there
is potential for cooperation and interaction between the vehicles. Imagine the
”cargo” for our model being the humans scattered across a city grid. Our linear
motion model would have to be expanded to deal with two way streets and much
more robust safety concerns. In addition, we can utilize our linear and circular
interaction model to deal with problems such as freeway driving.

For example, in New York City, and most cities, most of the city is laid out
in a grid street system, with very few non-linear motion paths. However, if
someone were to request a trip to the suburbs, or vice versa, there may be a
need to take a freeway, a much more complex task that involves far more non-
linear motion. A distributed robot system can identify these issues and have
two modes of transportation. When in the city, and requesting destinations in
the city, the system only calls grid-based robotic cars. However, if one wishes
to get on the freeway, grid motion vehicles can pick up the passenger and take
them to a ”"loading dock” of sorts where longer distance and specialized freeway
cars await to transport them out of the city to areas with less developed city
planning.

0.5 Conclusion

The application of cyberphysical systems on to interactions between robots is
endless. By proving that robots can work together to solve problems and handle
any emergencies, the need for human supervision is redacted. In our situations
modelled in this paper, we attempt to understand and explain the processes used
in Amazon Fulfillment Centers, where multiply classes of robots must work to-
gether to accomplish a goal. In such an environment, having humans on the

11

work floor is an unnecessary hazard, so it is critical that these robots work to-
gether safely and efficiently without any constant supervision.

We have modeled three scenarios, which we believe are critical to the func-
tioning of the warehouse. The first is through the use of linear motion robots
whose main function it is to pickup and dropoff packages to a LoadingBoundary.
This scenario is critical to the shipping and handling process of the warehouse,
and involves multiple robots working a ”city-grid” like format. These robots
have to deal with issues such as turning, coordination through the use of locks,
and determining correct paths to take to obstruct the least number of robots.
Particularly the last problem is the hardest to solve, as difficulty of the algo-
rithm increases exponentially for each new robot added.

The second scenario is the most cutting edge in technology and uses drones
to fix emergency locations, and solves any problems on the work floor. The
use of the drones is invaluable, since no matter how reliable CPS modeling and
tests may be, reality is always different. Furthermore, if we had humans fix the
emergency, we would have to halt production on the entire grid to make sure
the safety of the worker isn’t compromised. This is akin to shutting down an
entire city to fix a road. If instead drones were able to fix these issues, both
productivity and safety issues would be resolved.

Finally, the third scenario involves the coordination between two different classes
of robots. We modeled the interactions between a linear robot, which delivers a
package from the warehouse to the loading boundary, where it is then picked up
by a circular robot, which may have a task such as loading on a specific truck
for shipment. The model is crucial since it represents how different robots with
completely separate abilities are able to work together to complete a goal.

With these scenarios in mind, we modeled basic functionality of an Amazon
Warehouse. We were able to prove both the linear motion robots and the co-
ordination between the linear and circular motion robots which showed us that
robots can cooperate safely in a system to achieve a common goal. Although
we were not able to prove the spherical drone model, this is mostly due to the
edge case of going through a non center point of the sphere within one time
step. Given the right pre-conditions and loop invariants even this condition can
be met and proved. In conclusion, we have developed the basic dynamics for
understanding how a complex cyberphysical system can be modeled and used to
guarantee safety of different realms of robots working in tandem to accomplish
a singular goal.

12

Bibliography

Todo

13

