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1 Introduction

This lecture continues the study of hybrid games and their logic, differential game logic
[Pla15], whose syntax was introduced in Lecture 20 on Hybrid Systems & Games and
whose semantics was developed in Lecture 21 on Winning Strategies & Regions. To-
day’s lecture furthers the development of differential game logic to the third leg of the
logical trinity: its axiomatics. This lecture will focus on the development of rigorous
reasoning techniques for hybrid games as models for CPS with adversarial dynamics.
Without such analysis and reasoning techniques, a logic that only comes with syntax
and semantics can be used as a specification language with a precise meaning, but
would not be very helpful for actually analyzing and verifying hybrid games. It is the
logical trinity of syntax, semantics, and axiomatics that gives logics the power of serv-
ing as well-founded specification and verification languages with a (preferably concise)
syntax, an unambiguous semantics, and actionable analytic reasoning principles. Thus,
today’s lecture is the hybrid games analogue of Lecture 5 on Dynamical Systems and
Dynamic Axioms. Indeed, after the logical sophistication we reached throughout the
semester, this lecture will settle for a Hilbert-type calculus as in Lecture 5 on Dynamical
Systems and Dynamic Axioms as opposed to the more refined and more automatable
sequent calculus from Lecture 6 on Truth and Proof and subsequent lectures.

Before submerging completely into the development of rigorous reasoning techniques
for hybrid games as models for CPS with adversarial dynamics, however, it will be wise
to take a short detour by investigating a semantical simplification of the meaning of
repetition by an implicit characterization of its winning region rather than the explicit
construction by iteration from Lecture 21.

These lecture notes are based on [Plal5], where more information can be found on
logic and hybrid games. The most important learning goals of this lecture are:
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L18.2 Winning & Proving Hybrid Games

Modeling and Control: We advance our understanding of the core principles behind
CPS with hybrid games by understanding analytically and semantically how dis-
crete, continuous, and the adversarial dynamics resulting, e.g., from multiple
agents are integrated and interact in CPS. This lecture also uncovers nuances
in the semantics of adversarial repetitions that makes them conceptually better
behaved than the highly transfinite iterated winning region construction from
Lecture 21. A byproduct of this development shows fixpoints in actions, which
play a prominent role in the understanding of other classes of models as well
and provides one important aspect for the subsequent development of reasoning
techniques.

Computational Thinking: This lecture is devoted to the development of rigorous rea-
soning techniques for CPS models involving adversarial dynamics, which is criti-
cal to getting CPS with such interactions right. Hybrid games provide even more
subtle interactions than hybrid systems did, which make it even more challenging
to say for sure whether and why a design is correct without sufficient rigor in their
analysis. After Lecture 21 captured the semantics of differential game logic and
hybrid games compositionally, this lecture exploits the compositional meaning to
develop compositional reasoning principles for hybrid games. This lecture sys-
tematically develops one reasoning principle for each of the operators of hybrid
programs, resulting in a compositional verification approach. A compositional
semantics is de facto a necessary but not a sufficient condition for the existence of
compositional reasoning principles. Despite the widely generalized semantics of
hybrid games compared to hybrid systems, this lecture will strive to generalize
reasoning techniques for hybrid systems to hybrid games as smoothly as possible.
This leads to a modular way of integrating adversariality into the realm of hybrid
systems models also in terms of their analysis while simultaneously taming their
complexity. This lecture provides an axiomatization of differential game logic dGL
[Pla15] to lift dGL from a specification language to a verification language for CPS
with adversarial dynamics.

CPS Skills: We will develop a deep understanding of the semantics of CPS models
with adversariality by carefully relating their semantics to their reasoning princi-
ples and aligning them in perfect unison. This understanding will also enable us
to develop a better intuition for the operational effects involved in CPS. This lec-
ture also shows insightful and influential nuances on the semantics of repetitions
in CPS models with adversarial dynamics.
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rigorous reasoning for adversarial dynamics
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adversarial repetitions operational CPS effects

fixpoints

In our quest to develop rigorous reasoning principles for hybrid games, we will strive
to identify compositional reasoning principles that align in perfect unison with the com-
positional semantics of hybrid games developed in Lecture 21 on Winning Strategies &
Regions. This enterprise will be enlightening and, for the most part, quite successful.
And, in fact, the reader is encouraged to start right away with the development of a
proof calculus for differential game logic and later compare it with the one that these
lecture notes develop. The part, where this will turn out to be rather difficult is repe-
tition, which is why the lecture notes take a scenic detour through characterizing their
semantics.

2 Characterizing Winning Repetitions Implicitly

Lecture 21 on Winning Strategies & Regions culminated in a semantics of repetition
defined as the union of all winning regions for all ordinals by an explicit (albeit wildly
infinite) construction:

sar(X) =c>(@)X = | J <i(X) where
k ordinal

def
W(X) =X
def

AFHX) = X U (@ (X))
(X)) def U SH(X) A # 0 a limit ordinal

(0% (0%
K<

Is there a more immediate way of characterizing the winning region ¢, (X') of repeti-
tion implicitly rather than by explicit construction? This thought will lead to a beautiful
illustration of Bertrand Russell’s enlightening bonmot:

The advantages of implicit definition over construction are roughly those of
theft over honest toil. — Bertrand Russell (slightly paraphrased)
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L18.4 Winning & Proving Hybrid Games

The above iterated winning region construction describes the semantics of repetition
by iterating from below, i.e. starting from <(X) = X and adding states. Maybe the
semantics of repetition could be characterized more indirectly but more concisely from
above? With an implicit characterization.

Note 1 (+1 argument). Whenever a set Z is in the winning region (X)) of repetition,
then <o (Z) also should be in the winning region ¢,+(X), because it is just one step away
from Z and o* could simply repeat once more. That is

Z C 6o (X) then <o(Z) C cax (X)

This holds for any set Z C ¢,+(X). In particular, the set Z def S+ (X)) itself satisfies
ga(ga* (X)> - Sar* (X) (1)

by Note 1. After all, repeating o once more from the winning region ¢,+(X) of repe-
tition of a cannot give us any states that did not already have a winning strategy in
a*, because o could have been repeated one more time. Consequently, if a set Z C S
claims to be the winning region ¢,~(X) of repetition, it at least has to satisfy

Ca(Z) cZz (2)

because, by (1), the true winning region ¢,+ (X)) does satisfy (2). Thus, strategizing along
a from Z does not give anything that Z would not already know about.

Is there anything else that such a set Z needs to satisfy to be the winning region
Sa (X)) of repetition? Is there only one choice? Or multiple? If there are multiple
choices, which Z is it? Does such a Z always exist, even?

Before you read on, see if you can find the answer for yourself.
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One such Z always exists, even though it may be rather boring. The empty set Z Ly
looks like it would satisfy (2) because it is rather hard to win a game that requires Angel
to enter the empty set of states to win.

On second thought, ¢, () C 0 does not actually always hold for all hybrid games «.
It is violated for states from which Angel can make sure Demon violates the rules of the
game « by losing a challenge or failing to comply with evolution domain constraints.
For example, when () is a nontrivial test like = > 0:

([QD° =[-Q] 0

Yet, then the set of states that make Demon violate the rules satisfies (2):

0a([7Q]) = (220([7Q1)F = (w20([QD)¢ = ([Q] N QD) = [-Q] € [-Q]

But even if the empty set ) satisfies (2), it may be a bit small. Likewise, even if [-(Q)]
satisfies (2) for a = (7Q?), the set [~Q] may still be a bit small. Angel is still in charge
of repetition and can decide how often to repeat and whether to repeat at all. The
winning region .+ (X') of repetition of « should at least contain the winning condition
X, because the winning condition X is particularly easy to reach when already starting
in X by simply suggesting Angel should repeat zero times. Angel would certainly love
to do that, because it does not sound like a lot of work to repeat something zero times.
Consequently, if a set Z C S claims to be the winning region ¢,+(X), then it has to
satisfy (2) and

Gga(0) = <g(0%)t = ([QI N S)E

Xcz 3)

Both conditions (2) and (3) together can be summarized in a single condition as fol-
lows:

Note 2 (Pre-fixpoint). Every candidate Z for the winning region .- (X) satisfies:

XUw(Z2)CZ 4)

A set Z satisfying condition (4) is called a pre-fixpoint.

Again: what is this set Z that satisfies (4)? Is there only one choice? Or multiple?
If there are multiple choices, which Z is the right one for the semantics of repetition?
Does such a Z always exist, even?

Before you read on, see if you can find the answer for yourself.
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One such Z certainly exists. The empty set does not qualify unless X = () (and
even then () actually only works if Demon cannot be tricked into violating the rules of
the game). The set X itself is too small as well unless the game has no incentive to

start repeating, because ¢, (X) C X. But the full state space Z Lf s always satisfies (4)
trivially so (4) has a solution. Now, the whole space is a little too big to call it Angel’s
winning region independently of the hybrid game «. Even if the full space may very
well be the winning region for some particularly Demonophobic Angel-friendly hybrid
games like

(=132 =1%Vz:=2-1))(0<z<1) 5)

the full state space is hardly the right winning region for any arbitrary o*. It definitely
depends on the hybrid game « and the winning condition ¢ whether Angel has a win-
ning strategy for (a)¢ or not. For example for Demon’s favorite game where he always
wins, ¢,+(X) had better be (J, not S. Thus, the largest solution Z of (4) hardly qualifies.
So which solution Z of (4) do we define to be ¢, (X) now?
Before you read on, see if you can find the answer for yourself.
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Among the many Z that solve (4), the largest one is not informative, because the
largest Z simply degrades to S. So smaller solutions Z are preferable. Which one?
How do multiple solutions even relate to each other? Suppose Y, Z are both solutions
of (4). That is

Y (6)
Z @)
Then, by the monotonicity lemma from Lecture 21 (repeated in Lemma 3 below):

mon (6).07)
XUw(YNZ) C XU(w(Y)Nw(Z) € YNZ )

Hence, by (8), the intersection Y N Z of solutions Y and Z of (4) also is a solution of

(4):

Lemma 1 (Intersection closure). For any two solutions Y, Z of the prefix condition (4),
a smaller solution of (4) can be obtained by intersection Y N Z.

Whenever there are two solutions 71, Z5 of (4), their intersection Y; N Z5 solves (4)
as well. When there’s yet another solution Z3 of (4), their intersection Y; N Y2 N Y3 also
solves (4). Similarly for any larger family of solutions whose intersection will solve (4).
If we keep on intersecting solutions, we will arrive at smaller and smaller solutions
until, some fine day, there’s not going to be a smaller one. This yields the smallest
solution Z of (4) which can be characterized directly.

Note 4 (Semantics of repetitions). Among the many Z that solve (4), so+(X) is defined
to be the smallest Z that solves (4):

ga*(X):ﬂ{ZgS : XU (2) C Z} ©9)

The characterization in terms of iterated winning regions from Lecture 21 leads to the

same set ¢,+ (X), but the (least pre-fixpoint or) fixpoint characterization (9) is easier.
The set on the right-hand side of (9) is an intersection of solutions, thus, a solution by

Lemma 1 (or its counterpart for families of solutions). Hence ¢, (X) itself satisfies (4):

XU Sav (ga* (X)) C o (X) (10)

Also compare this with where we came from when we argued for (1). Could it be the
case that the inclusion in (10) is strict, i.e. not equals? No this cannot happen, because

S+ (X)) is the smallest such set. That is, by (10), the set Z e xu Sa(Sax (X)) satisfies
Z C ¢o+(X) and, thus, by Lemma 3:

mon

XU (Z) € XUcg(so+ (X)) =2
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L18.8 Winning & Proving Hybrid Games

Thus, the set Z e xu Sa(Sax (X)) satisfies the condition X U¢,(Z) C Z from (9) and,
since ¢+ (X) is the smallest such set by (9), so smaller or equal Z:

5o (X) € Z = X Uca(sa(X))

Consequently, with (10), this implies that both inclusions hold, so ¢+ (X)) actually satis-
ties not just the inclusion (4) but even the fixpoint equation:

XU ga(ga* (X)) = Qa* (X) (11)

Note 5 (Semantics of repetitions, fixpoint formulation). That is, ¢o+ (X)) is a fixpoint
solving the equation
XUc(Z2)=12 (12)

and it is the least fixpoint, i.e. the smallest Z solving the equation (12), i.e. it satisfies

ar(X)=({Z2 <S8 : XUw(2) =2}

g J

The fact that ¢+ (X) is defined as the least of all the fixpoints makes sure that Angel
only wins games by a well-founded number of repetitions. That is, she only wins a
repetition if she ultimately stops repeating, not by postponing termination forever. See
[Pla15] for more details.

It is also worth noting that it would still have been possible to make the iteration of
winning region constructions work out using the seminal fixpoint theorem of Knaster-
Tarski. Yet, this requires the iterated winning region constructions to go significantly
transfinite [Plal5], way beyond the first infinite ordinal w.

3 Semantics of Hybrid Games

The semantics of differential game logic from Lecture 21 was still pending a defini-
tion of the winning regions ¢, (-) and d,(-) for Angel and Demon, respectively, in the
hybrid game «. Rather than taking a detour for understanding those by operational
game semantics (as in Lecture 20), or in terms of transfinitely iterated winning region
constructions, the winning regions of hybrid games can be defined directly, giving a
denotational semantics to hybrid games.

The only difference of the following semantics compared to the definition in Lecture
21 is the new case of repetition a*.

15-424 LECTURE NOTES ANDRE PLATZER


http://symbolaris.com/course/fcps16/21-winning.pdf
http://symbolaris.com/course/fcps16/20-Hgames.pdf
http://symbolaris.com/course/fcps16/21-winning.pdf
http://symbolaris.com/course/fcps16/21-winning.pdf

Winning & Proving Hybrid Games L18.9

~

Definition 2 (Semantics of hybrid games). The semantics of a hybrid game o is a
function ¢, (-) that, for each interpretation I and each set of Angel’s winning states
X C S, gives the winning region, i.e. the set of states ¢, (X) from which Angel has
a winning strategy to achieve X (whatever strategy Demon chooses). It is defined
inductively as follows

L (X)) ={wes : e x}

2. @) &(X) ={p(0) €S : ¢(r) € X forsomer € R>g and (differentiable)
¢ : [0,7] = Ssuch that ¢(¢) € [Q] and %t)(x)(() = [0]e(¢) forall0 < ¢ < r}

@@(X)=[QInX

Saug(X) = ca(X) Ucp(X)

Sa;8(X) = alsp(X))
sar(X)=N{ZCS : XUc(2)C Z}

Sat(X) = (sa(XE))E

N o O ke W

The winning region of Demon, i.e. the set of states J,(X) from which Demon has
a winning strategy to achieve X (whatever strategy Angel chooses) is defined in-
ductively as follows

1. 6pp(X)={wes : ll¥ex}

2. p—p() & (X) = {p(0) € S : p(r) € X forall r € R>g and (differentiable)
¢ : [0,7] = Ssuch that p(¢) € [Q] and 22D@ (¢) = [9]p(¢) forall 0 < ¢ < r}

3. r(X) = ([QDF U X
4. baup(X) = 8a(X) N 85(X)
5. 5a;,8(X) = 504(55()())
6. (X)) =U{ZCS: ZCXnNd(2)}
_ C\\C
\_ 7. 5ad(X) = (5a(X )) Y,

This notation uses ¢, (X ) instead of ¢/ (X ) and 6, (X ) instead of §. (X ), because the inter-
pretation I that gives a semantics to predicate symbols in tests and evolution domains is
clear from the context. Strategies do not occur explicitly in the dGL semantics, because
it is based on the existence of winning strategies, not on the strategies themselves.

Just as the semantics dC, the semantics of dGL is compositional, i.e. the semantics of
a compound dGL formula is a simple function of the semantics of its pieces, and the
semantics of a compound hybrid game is a function of the semantics of its pieces. Fur-
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L18.10 Winning & Proving Hybrid Games

thermore, existence of a strategy in hybrid game « to achieve X is independent of any
game and dG£ formula surrounding «, but just depends on the remaining game « it-
self and the goal X. By a simple inductive argument, this shows that one can focus on
memoryless strategies, because the existence of strategies does not depend on the con-
text, hence, by working bottom up, the strategy itself cannot depend on past states and
choices, only the current state, remaining game, and goal. This also follows from a gen-
eralization of a classical result by Zermelo. Furthermore, the semantics is monotone,
i.e. larger sets of winning states induce larger winning regions.

Monotonicity is what Lecture 21 looked into for the case of hybrid games without
repetition. But it continues to hold for general hybrid games.

Lemma 3 (Monotonicity [Plal5]). The semantics is monotone, i.e. 5o (X) C ¢o(Y) and
da(X) Co0(Y) forall X C Y.

Proof. A simple check based on the observation that X only occurs with an even num-
ber of negations in the semantics. For example, ¢,+(X) = ({Z C S : X U (Z) C
Z} CHZCS : YUw(Z) CZ} = (Y)if X CY. Likewise, X C Y implies
XL D ¥C hence ¢o(XT) 2 60 (Y?), 50 60 (X) = (sa(XE)E C (su(Y0))E = ¢ a(Y). O

Monotonicity implies that the least fixpoint in ¢+ (X') and the greatest fixpoint in d,+ (X))
are well-defined [HKT00, Lemma 1.7]. The semantics of ¢,+ (X)) is a least fixpoint, which
results in a well-founded repetition of , i.e. Angel can repeat any number of times but
she ultimately needs to stop at a state in X in order to win. The semantics of §,+(X) is
a greatest fixpoint, instead, for which Demon needs to achieve a state in X after every
number of repetitions, because Angel could choose to stop at any time, but Demon still
wins if he only postpones X' forever, because Angel ultimately has to stop repeating.
Thus, for the formula (a*)¢$, Demon already has a winning strategy if he only has a
strategy that is not losing by preventing ¢ indefinitely, because Angel eventually has to
stop repeating anyhow and will then end up in a state not satisfying ¢, which makes
her lose. The situation for [a*]¢ is dual.

4 Determinacy

Every particular game play in a hybrid game is won by exactly one player, because
hybrid games are zero-sum and there are no draws. Hybrid games actually satisfy a
much stronger property: determinacy, i.e. that, from any initial situation, either one of
the players always has a winning strategy to force a win, regardless of how the other
player chooses to play.

If, from the same initial state, both Angel and Demon had a winning strategy for op-
posing winning conditions, then something would be terribly inconsistent. It cannot
happen that Angel has a winning strategy in hybrid game « to get to a state where —¢
and, from the same initial state, Demon supposedly also has a winning strategy in the
same hybrid game o to get to a state where ¢ holds. After all, a winning strategy is
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a strategy that makes that player win no matter what strategy the opponent follows.
Hence, for any initial state, at most one player can have a winning strategy for comple-
mentary winning conditions. This argues for the validity of F —([a]¢ A (a)—¢), which
can also be proved (Theorem 4).

So it cannot happen that both players have a winning strategy for complementary
winning conditions. But it might still happen that no one has a winning strategy, i.e.
both players can let the other player win, but cannot win strategically themselves (re-
call, e.g., the filibuster example from Lecture 20, which first appeared as if no player
might have a winning strategy but then turned out to make Demon win). This does not
happen for hybrid games, though, because at least one (hence exactly one) player has a
winning strategy for complementary winning conditions from any initial state.

Theorem 4 (Consistency & determinacy [Plal5]). Hybrid games are consistent and
determined, i.e. E ={a)—¢ < [a]o.

Proof. The proof shows by induction on the structure of a that ¢, (X®) = §,(X) for all
X C S and all I with some set of states S, which implies the validity of —(a)—¢ <> [a]®

using X %' [4].
L oa(XO =fwes : Wl ¢ X318 = ¢, y(X) = 6,_9(X)

2. gxlzf(x)&Q(XE)C = {p(0) € § : ¢(r) € X for some 0 < r € R and some
(differentiable) ¢ : [0,7] — S such that 22D (¢) = [0](¢) and ¢(¢) € [Q] for
all0 < ¢ < r}c = Oy—f(@) & (X), because the set of states from which there is

no winning strategy for Angel to reach a state in X prior to leaving [Q] along
' = f(z) & Q is exactly the set of states from which 2’ = f(z) & Q always stays in
X (until leaving [@] in case that ever happens).

3. w(XP)F = ([QIN XO)F = ([Q)° U (XO)F = 6:0(X)

4 6aup(X9)" = ((XB) Ue(XY)) = aa(XH)ENes(XH)° = 6a(X) N65(X) = baus(X)

5. casp(X°)° = ca(sp(X5)F = ca(05(X)%)" = 8a(d5(X)) = bap(X)

6. s (XF = (N{ZC s+ Xua(2)C Z})Bz (Nzcs: (xna@bhtc Z})C
=(N{zcs: (xnoa(Z9)rc Z})C =U{ZCS: ZCXN6a(Z)} = 6o (X). !

7. 6aa(X0)0 = (ca((XOYE)E = 6,(XT)E = 5,0(X) O

'The penultimate equation follows from the p-calculus equivalence vZ.Y(Z) = -uZ.~Y(=Z) and the
fact that least pre-fixpoints are fixpoints and that greatest post-fixpoints are fixpoints for monotone
functions.
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5 Hybrid Game Axioms

An axiomatization for differential game logic has been found in [Plal5], where we refer
to for more details.

Note 9 (Differential game logic axiomatization [Pla15]). h
[] [ <> ~(a) ¢
(=) (z:=0)¢(z) + #(0)
() (2’ = f(z))¢ « >0 (z:=y(1))¢ W'(t) = f(v))
(1) (7Q)¢ < (Q A ¢)
(U) (aUB)P < (a)p V (B)¢
(5) (a; 89 < (@) (B)o
(") o V{(){a*)p — ()¢
(*) (ah)¢ & ~(a)-¢
¢ =
M a6 = @
V() — ¢
T e
el
¢ — [a*]o
\§ J

The determinacy axiom [-] describes the duality of winning strategies for complemen-
tary winning conditions of Angel and Demon, i.e. that Demon has a winning strategy
to achieve ¢ in hybrid game « if and only if Angel does not have a counter strategy;, i.e.
winning strategy to achieve —¢ in the same game «. The determinacy axiom || internal-
izes Theorem 4. Axiom (:=) is Hoare’s assignment rule. Formula ¢(6) is obtained from
¢(z) by substituting 0 for x at all occurrences of x, provided = does not occur in the scope
of a quantifier or modality binding x or a variable of §. A modality containing x := or
«’ outside the scope of tests 7() or evolution domain constraints binds x, because it may
change the value of z. In the differential equation axiom ('), y(-) is the unique [Wal98,
Theorem 10.VI] solution of the symbolic initial value problem /() = f(y),y(0) = x.
The duration ¢ how long to follow solution y is for Angel to decide, hence existentially
quantified. It goes without saying that variables like ¢ are fresh in Fig. 9.

Axioms (?), (U), and (;) are as in differential dynamic logic [Pla12] except that their
meaning is quite different, because they refer to winning strategies of hybrid games in-
stead of reachability relations of systems. The challenge axiom (?) expresses that Angel
has a winning strategy to achieve ¢ in the test game ?() exactly from those positions
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that are already in ¢ (because 7@) does not change the state) and that satisfy ) for oth-
erwise she would fail the test and lose the game immediately. The axiom of choice (U)
expresses that Angel has a winning strategy in a game of choice ao U /3 to achieve ¢ iff
she has a winning strategy in either hybrid game « or in 3, because she can choose
which one to play. The sequential game axiom (;) expresses that Angel has a winning
strategy in a sequential game «; 5 to achieve ¢ iff she has a winning strategy in game «
to achieve (/) ¢, i.e. to get to a position from which she has a winning strategy in game
 to achieve ¢. The iteration axiom (*) characterizes (a*) ¢ as a pre-fixpoint. It expresses
that, if the game is already in a state satisfying ¢ or if Angel has a winning strategy for
game « to achieve (a*)¢, i.e. to get to a position from which she has a winning strategy
for game o to achieve ¢, then, either way, Angel has a winning strategy to achieve ¢ in
game o*. The converse of (*) can be derived? and is also denoted by (*). The dual ax-
iom (%) characterizes dual games. It says that Angel has a winning strategy to achieve
¢ in dual game o iff Angel does not have a winning strategy to achieve —¢ in game «.
Combining dual game axiom (%) with the determinacy axiom [-] yields(a?)¢ < [a]®, i.e.
that Angel has a winning strategy to achieve ¢ in a? iff Demon has a winning strategy
to achieve ¢ in . Similar reasoning derives [a?]¢ > (a)¢.

Monotonicity rule M is the generalization rule of monotonic modal logic C [Che80]
and internalizes Lemma 3. It expresses that, if the implication ¢ — ¢ is valid, then, from
wherever Angel has a winning strategy in a hybrid game « to achieve ¢, she also has a
winning strategy to achieve 1), because ) holds wherever ¢ does. So rule M expresses
that easier objectives are easier to win. Fixpoint rule FP characterizes (o*)¢ as a least
pre-fixpoint. It says that, if ¢ is another formula that is a pre-fixpoint, i.e. that holds in
all states that satisfy ¢ or from which Angel has a winning strategy in game « to achieve
that condition 1, then 1 also holds whereever (a*)¢ does, i.e. in all states from which
Angel has a winning strategy in game a* to achieve ¢.

The proof rules FP and the induction rule ind are equivalent in the sense that one can
be derived from the other in the dGL calculus [Pla15].

Example 5. The dual filibuster game formula from Lecture 20 proves easily in the dGL
calculus by going back and forth between players [Plal5] using the abbreviations N,*:

*

”?

"r=0F0=0VvV1=0
<::>$:0|—(:L‘::O>:r:0\/<ac::1>:r:0
Wp=0F (@:=0Uz:=1)z =0

D2 =0F ~(z:=0Nz:=1)-z =0
H:L’—Ol—[x—Oﬂx—l]x:
mx—OF[(m—Oﬂx—l)*]x 0
e =0F (z:=0Uz:=1)%)z =0

2oV (a){a*)p — (a*)¢ derives by (*). Thus, (a)(¢ V (a)(a™)p) — (a){a*)¢ by M. Hence, ¢ V {a)(¢ V
(a)(a™)p) = ¢V () ()¢ by propositional congruence. Consequently, (a*)¢ — ¢ V () (a™)¢ by FP.
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L18.14 Winning & Proving Hybrid Games

6 Relating Differential Game Logic and Differential Dynamic
Logic

Now that we have come to appreciate the value of soundness, couldn’t we have known
about that, for the most part, before Theorem ??? Most dGL axioms look rather familiar,
except for (-) versus [-] dualities, when we compare them to the dC axioms from Lecture
5 on Dynamical Systems and Dynamic Axioms. Does that not mean that these same
axioms are already trivially sound? Why did we go through the (rather minor) trouble
of proving Theorem ???

Before you read on, see if you can find the answer for yourself.
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It is not quite so easy. After all, we could have given the same syntactical operator U
an entirely different meaning for hybrid games than before for hybrid systems. Maybe
we could have been silly and flipped the meaning of ; and U around The fact of the
matter is, of course, that we did not. The operator U still means choice, just for hy-
brid games rather than hybrid systems. So could we deduce the soundness of the dGL
axioms in Fig. 9 from the soundness of the corresponding d axioms from Lecture 5 on
Dynamical Systems and Dynamic Axioms and focus on the new axioms, only?

Before we do anything of the kind, we first need to convince ourselves that the dC
semantics really coincides with the more general dGL semantics in case there are no
games involved. How could that be done? Maybe by proving validity of all formulas
of the following form

()¢ < ()¢ (13)
~—— ——
in dZ in dGL

for dual-free hybrid games «, i.e. those that do not mention ¢ (not even indirectly hid-
den in the abbreviation N,*).
Before you read on, see if you can find the answer for yourself.
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The problem with (13) is that it is not directly a formula in any logic, because the
operator could hardly be applied meaningfully to two formulas from different logics.
Well, of course, every dC formula is a dGL formula, so the left-hand side of (13) could
be embedded into dGL, but then (13) becomes well-defined but is only stating a mere
triviality.

Instead, a proper approach would be to rephrase the well-intended (13) semantically:

w € [{a)¢] iff w € [(a)] (14)
in‘GL in:ﬂrG‘[l

which is equivalent to

(v € [¢] for some v with (w,v) € [a] ) iff w € <. ([¢])

statement about reachability in dC winning in dGL

Equivalence (14) can be shown. In fact, an exercise in Lecture 3 on Choice & Con-
trol already developed an understanding of the dZ semantics based on sets of states,
preparing for(14).

The trouble is that, besides requiring a proof itself, the equivalence (14) will still not
quite justify soundness of the dGL axioms in Fig. 9 that look innocuously like d£ axioms.
Equivalence (14) is for dual-free hybrid games . But even if the top-level operator in
axiom (U) is not 4 that dual operator could still occur within « or 8, which requires a
game semantics to make sense of.

Consequently, we are better off proving soundness for the dGL axioms according to
their actual semantics, like in Theorem ??, as opposed to trying half-witted ways out
that only make soundness matters worse.

Exercises

Exercise 1. Explain how often you will have to repeat the winning region construction
to show that the following dGL formula is valid:

(xi=z+12' =190z:=2-1))(0<z<1)
Exercise 2. Can you find dG£ formulas for which the winning region construction takes

even longer to terminate? How far can you push this?

Exercise 3. Carefully identify how determinacy relates to the two possible understand-
ings of the filibuster example discussed in an earlier lecture.

Exercise 4. Prove the elided cases of Lemma 3.

Exercise 5. Find the appropriate soundness notion for the axioms of dG£ and prove that
the axioms are sound.

Exercise 6. Write down a valid formula that characterizes an interesting game between
two robots.
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