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1. Introduction

Lecture 10 on Differential Equations & Differential Invariants and Lecture 11 on Differ-
ential Equations & Proofs equipped us with powerful tools for proving properties of
differential equations without having to solve them. Differential invariants (dI) [Plal0a]
prove properties of differential equations by induction based on the right-hand side of
the differential equation, rather than its much more complicated global solution. Differ-
ential cuts (DC) [Plal0a] made it possible to prove another property C of a differential
equation and then change the dynamics of the system around so that it is restricted to
never leave that region C. Differential cuts turned out to be very useful when stack-
ing inductive properties of differential equations on top of each other, so that easier
properties are proved first and then assumed during the proof of the more complicated
properties. In fact, in some cases, differential cuts are crucial for proving properties
in the first place [Plal0a, Plal2c, GSP14]. Differential weakening (dW) [Plal0a] proves
simple properties that are entailed by the evolution domain, which becomes especially
useful after the evolution domain constraint has been augmented sufficiently by way
of a differential cut.

Just like in the case of loops, where the search for invariants is nontrivial, differen-
tial invariants also require some smarts (or good automatic procedures [PCO08, Pla12b,
GP14, GSP14]) to be found. Once a differential invariant has been identified, however,
the proof follows easily, which is a computationally attractive property.

Finding invariants of loops is very challenging. It can be shown to be the only
fundamental challenge in proving safety properties of conventional discrete programs
[HMP77]. Likewise, finding invariants and differential invariants is the only funda-
mental challenge in proving safety properties of hybrid systems [P1a08, Plal0b, Pla12a].
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L13.2 Differential Invariants & Proof Theory

A more careful analysis even shows that just finding differential invariants is the only
fundamental challenge for hybrid systems safety verification [Plal2a].

That is reassuring, because we know that the proofs will work! as soon as we find
the right differential invariants. But it also tells us that we can expect the search for dif-
ferential invariants (and invariants) to be challenging, because cyber-physical systems
are extremely challenging, albeit very important. Yet, differential equations also enjoy
many pleasant properties that we can exploit to help us find differential invariants.

Since, at the latest after this revelation, we fully realize the importance of studying
and understanding differential invariants, we subscribe to developing a deeper un-
derstanding of differential invariants right away. The part of their understanding that
today’s lecture develops is how various classes of differential invariants relate to each
other in terms of what they can prove. That is, are there properties that only differential
invariants of the form A can prove, because differential invariants of the form B cannot
ever succeed in proving them? Or are all properties provable by differential invariants
of the form A also provable by differential invariants of the form 5?

These relations between classes of differential invariants tell us which forms of dif-
ferential invariants we need to search for and which forms of differential invariants
we don’t need to bother considering. A secondary goal of today’s lecture besides this
theoretical understanding is the practical understanding of developing more intuition
about differential invariants and seeing them in action more thoroughly.

This lecture is based on [Plal2c] and strikes a balance between comprehensive han-
dling of the subject matter and core intuition. The lecture mostly focuses on the core
intuition at the heart of the proofs and leaves a more comprehensive argument and fur-
ther study for the literature [Plal2c]. Many proofs in this lecture are simplified and only
prove the core argument, while leaving out other aspects. Those—very important—
further details are beyond the scope of this course, however, and can be found else-
where [Plal2c]. For example, this lecture will not study whether indirect proofs could
conclude the same properties. With a more careful analysis [Plal2c], it turns out that
indirect proofs do not change the results reported in this lecture, but the proofs become
significantly more complicated and require a more precise choice of the sequent calcu-
lus formulation. In this lecture, we will also not always prove all statements conjectured
in a theorem. The remaining proofs can be found in the literature [Plal2c].

Note 1 (Proof theory of differential equations). The results in this lecture are part
of the proof theory of differential equations, i.e. the theory of what can be proved about
differential equations and with what techniques. They are proofs about proofs, because they
prove relations between the provability of logical formulas with different proof calculi. That
is, they relate “formula ¢ can be proved using A” and “formula ¢ can be proved using B.”

The most important learning goals of this lecture are:

Modeling and Control: This lecture helps in understanding the core argumentative

! Although it may still be a lot of work in practice to make the proofs work. At least they become possible.
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principles behind CPS and sheds more light on the question how to tame their
analytic complexity.

Computational Thinking: An important part of computer science studies questions
about the limits of computation or, more generally, develops an understanding of
what can be done and what cannot be done. Either in absolute terms (computability
theory studies what is computable and what is not) or in relative terms (complexity
theory studies what is computable in a characteristically quicker way or within
classes of resource bounds on time and space). Often times, the most significant
understanding of a problem space starts with what cannot be done (the theorem
of Rice says that all nontrivial properties of programs are not computable) or what
can be done (every problem that can be solved with a deterministic algorithm in
polynomial time can also be solved with a nondeterministic algorithm in polyno-
mial time, with the converse being the P versus NP problem).

The primary purpose of this lecture is to develop such an understanding of the
limits of what can and what cannot be done in the land of proofs about differential
equations with what techniques. Not all aspects of this deep question will be pos-
sible to answer in one lecture, but it will feature the beginning of the proof theory
of differential equations, i.e. the theory of provability and proofs about differential
equations. Proof theory is, of course, also of interest in other cases, but we will
study it in the case that is most interesting and illuminating: the case of proofs
about differential equations.

The primary, scientific learning goals of this lecture are, thus, to develop a fun-
damental understanding of what can and cannot be proved in which way about
differential equations. This helps us in our search for differential invariants for
applications, because such an understanding prevents us from asking the same
analytic question again in equivalent ways (if two different classes of differential
invariants prove the same properties and one of them already failed) and guides
our search toward the required classes of differential invariants (by next choos-
ing a class that can prove fundamentally more, and of properties of the requisite
form). The secondary, pragmatic learning goals are to practice inductive proofs
about differential equations using differential invariants and to develop an in-
tuition which verification question to best address in which way. In these ways,
both fundamentally and pragmatically, the primary direct impact of this lecture is
on understanding rigorous reasoning about CPS models as well as helping to ver-
ify CPS models of appropriate scale, in which more than one mode of reasoning
is often needed for the various parts and aspects of the system.

Finally this lecture has beneficial side effects informing differential invariant search
and deepening our intuition about differential equations proofs.

CPS Skills: This lecture serves no purpose in CPS Skills that the author could think of,
except indirectly via its impact on their analysis.
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limits of computation

proof theory for differential equations
provability of differential equations
proofs about proofs
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2. Recap

Recall the following proof rules for differential equations from Lecture 11 on Differen-
tial Equations & Proofs and Lecture 12 on Ghosts & Differential Ghosts:

Note 2 (Proof rules for differential equations). b

4 QFW=r@IFy QFF

Frlz'=f(zx)&Q|F k2= f(x) &Q|F,A
Lo TP = f@&QICA  TF = f)&@QAC)FA
'k 2= f(x)& Q] F,A
DAF(—)EIyG IGF [z = f(x),y = (:U y)&Q|G, A
OLFE 2= f(zx)& Q] F
where y is new and y' = g(x,y),y(0) = has a global solution y on @ for each yo. )

.

With cuts and generalizations, earlier lectures have also shown that the following can
be proved:
AFF Fro'=f@x&Q)F F+B
cut, MR (1)
Ab [ = f(2)&Q| B
This is useful for replacing a precondition A and postcondition B by another invari-
ant F' that implies postcondition B and is implied by precondition A, which will be

done frequently in this lecture.
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3. Comparative Deductive Study: Relativity Theory for
Proofs

In order to find out what we can do when we have been unsuccessfully searching for a
differential invariant of one form, we need to understand which other form of differen-
tial invariants could work out better. If we have been looking for differential invariants
of the form p = 0 with a term p without success and then move on to search for dif-
ferential invariants of the form p = ¢, then we cannot expect to be any more successful
than before, because p = ¢ can be rewritten as p — ¢ = 0, which is of the first form again.
So we should, for example, try finding inequational differential invariants of the form
p > 0, instead. In general, this begs the question which generalizations would be silly
(because differential invariants of the form p = ¢ cannot prove any more than those of
the form p = 0) and when it might be smart (because p > 0 could still succeed even if
everything of the form p = 0 failed).

As a principled answer to questions like these, we study the relations of classes of
differential invariants in terms of their relative deductive power. That is, we study
whether some properties are only provable using differential invariants from the class
A, not using differential invariants from the class B, or whether all properties provable
with differential invariants from class A are also provable with class 5.

As a basis, we consider a propositional sequent calculus with logical cuts (which
simplify glueing derivations together) and real-closed field arithmetic (we denote all
uses of real arithmetic by proof rule r) along the lines of what we say in Lecture 6 on
Truth & Proof; see [Plal2c] for precise details. By DZ we denote the proof calculus that,
in addition, has general differential invariants (rule dI with arbitrary quantifier-free
first-order formula F') but no differential cuts (rule DC). For aset Q2 C {>,>,=,A,V}
of operators, we denote by DZq the proof calculus where the differential invariant F'
in rule dI is further restricted to the set of formulas that uses only the operators in (2.
For example, DI_ v is the proof calculus that allows only and/or-combinations of
equations to be used as differential invariants. Likewise, DZ> is the proof calculus that
only allows atomic weak inequalities p > ¢ to be used as differential invariants.

We consider classes of differential invariants and study their relations. If A and 3 are
two classes of differential invariants, we write .4 < B if all properties provable using
differential invariants from A are also provable using differential invariants from B.
We write A £ B otherwise, i.e., when there is a valid property that can only be proven
using differential invariants of A\ B. We write A = B if A < B and B < A. We write
A< Bif A< Band B £ A. Classes A and B are incomparable if A £ B and B £ A.

4. Equivalences of Differential Invariants

Before we go any further, let us study whether there are equivalence transformations on
formulas that preserve differential invariance. Every equivalence transformation that
we have for differential invariant properties helps us with structuring the proof search
space and also helps simplifying the meta-proofs in the proof theory. For example,
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L13.6 Differential Invariants & Proof Theory

we should not expect F' A G to be a differential invariant for proving a property when
G A F was not. Neither would F' VvV G be any better as a differential invariant than
GV F.

Lemma 1 (Differential invariants and propositional logic). Differential invariants
are invariant under propositional equivalences. That is, if F' <+ G is an instance of a
propositional tautology then F is a differential invariant of ' = f(x) & Q if and only if G
is.

Proof. In order to prove this, we consider any property that proves with F as a differ-
ential invariant and show that G also works. Let F’ be a differential invariant of a dif-
ferential equation system 2’ = f(z) & @ and let G be a formula such that F' <> G is an
instance of a propositional tautology. Then G is a differential invariant of 2’ = f(z) & Q,
because of the following formal proof:

*

QF [=f(2))(G)
TG F o' = f(2) & Q]G
Ft [ = f(z)&Q|F

The bottom proof step is easy to see using (1), because precondition F' implies the new
precondition G and postcondition F' is implied by the new postcondition G proposi-
tionally. Subgoal Q + [2":=f(x)](G)’ is provable, because Q + [z":=f(z)](F)" is prov-
able and (G)’ is ultimately a conjunction over all literals of G. The set of literals of G is
identical to the set of literals of F, because the literals do not change by using propo-
sitional tautologies. Furthermore, dC uses a propositionally complete base calculus
[Pla12c]. O

In all subsequent proofs, we can use propositional equivalence transformations by
Lemma 1. In the following, we will also implicitly use equivalence reasoning for pre-
and postconditions 4 la (1) as we have done in Lemma 1. Because of Lemma 1, we can,
without loss of generality, work with arbitrary propositional normal forms for proof
search.

5. Differential Invariants & Arithmetic

Depending on the reader’s exposure to differential structures, it may come as a shock
that not all logical equivalence transformations carry over to differential invariants.
Differential invariance is not necessarily preserved under real arithmetic equivalence
transformations.
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Lemma 2 (Differential invariants and arithmetic). Differential invariants are not in-
variant under equivalences of real arithmetic. That is, if F' <+ G is an instance of a first-
order real arithmetic tautology then F may be a differential invariant of ' = f(x) & Q yet
G may not.

Proof. There are two formulas that are equivalent over first-order real arithmetic but,
for the same differential equation, one of them is a differential invariant, the other one
is not (because their differential structures differ). Since 5 > 0, the formula 22 < 52 is
equivalent to —5 < x A x <5 in first-order real arithmetic. Nevertheless, 22 <5%isa
differential invariant of 2’ = —x by the following formal proof:

*
R F—22% <0

=] b 2= — 2] 222’ <0
A2 <521 [of = —2] 22 < 52

but —5 < x A z < 5is not a differential invariant of 2’ = —z:

not valid
FO<—-a2A—-2<0
=) Flz:=—2z](0 <2’ Az <0)
I s<zhz<5F[r/=-a](-b<azAz<b)

O]

For proving the property in the proof of Lemma 2 we need to use the principle (1) with
the differential invariant F' = 2% < 5% and cannot use —5 < z A z < 5 directly.

By Lemma 2, we cannot just use arbitrary equivalences when investigating differen-
tial invariance, but have to be more careful. Not just the elementary real arithmetical equiv-
alence of having the same set of satisfying assignments matters, but also the differential
structures need to be compatible. Some equivalence transformations that preserve the
solutions still destroy the differential structure. It is the equivalence of real differential
structures that matters. Recall that differential structures are defined locally in terms of
the behavior in neighborhoods of a point, not the point itself.

Lemma 2 illustrates a notable point about differential equations. Many different for-
mulas characterize the same set of satisfying assignments. But not all of them have
the same differential structure. Quadratic polynomials have inherently different dif-
ferential structure than linear polynomials even when they have the same set of so-
lutions over the reals. The differential structure is a more fine-grained information.
This is similar to the fact that two elementary equivalent models of first-order logic
can still be non-isomorphic. Both the set of satisfying assignments and the differen-
tial structure matter for differential invariance. In particular, there are many formulas
with the same solutions but different differential structures. The formulas 22 > 0 and
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2% + 2 — 162 4 972 — 2522 + 262 > 0 have the same solutions (all of R), but very dif-
ferent differential structure; see Fig. 1.

The first two rows in Fig. 1 correspond to the polynomials from the latter two cases.
The third row is a structurally different degree 6 polynomial with again the same set
of solutions (R) but a rather different differential structure. The differential structure
also depends on what value 2’ assumes according to the differential equation. Fig.1
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Figure 1: Equivalent solutions (p > 0 on the left) with quite different differential struc-
ture ((p)’ plotted on the right)

illustrates that (p)’ alone can already have a very different characteristic even if the
respective sets of satisfying assignments of p > 0 are identical.

We can, however, always normalize all atomic subformulas to have right-hand side
0, that is, of the form p = 0,p > 0, or p > 0. For instance, p < ¢ is a differential invariant
if and only if ¢ — p > 0 is, because p < ¢ is equivalent (in first-order real arithmetic) to
q — p > 0 and, moreover, for any variable z and term e, [2":=¢|(p)’ < (¢)’ is equivalent
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Differential Invariants & Proof Theory L13.9

to [2":=¢€](q)" — (p)’ > 0 in first-order real arithmetic.

6. Differential Invariant Equations

For equational differential invariants p = 0, a.k.a. differential invariant equations, propo-
sitional operators do not add to the deductive power.

Proposition 3 (Equational deductive power [Plal0a, Plal2c]). The deductive power
of differential induction with atomic equations is identical to the deductive power of dif-
ferential induction with propositional combinations of polynomial equations: That is, each
formula is provable with propositional combinations of equations as differential invariants
iff it is provable with only atomic equations as differential invariants:

DI: = DI:J\’\/

g J

How could we prove that?
Before you read on, see if you can find the answer for yourself.
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One direction is simple. Proving DZ_ < DI_ , \ is obvious, because every proof us-
ing a differential invariant equation p; = p2 also is a proof using a propositional com-
bination of differential invariant equations. The propositional combination that just
consists of the only conjunct p; = py without making use of any propositional opera-
tors.

The other way around DZ_ > DI_ , y is more difficult. If a formula can be proved
using a differential invariant that is a propositional combination of equations, such
as p1 = p2 A q1 = ¢2, how could it possibly be proved using just a single equation?

Note 6 (Proofs of equal provability). A proof of Proposition 3 needs to show that every\

such provable property is also provable with a structurally simpler differential invariant.

It effectively needs to transform proofs with propositional combinations of equations as

differential invariants into proofs with just differential invariant equations. And, of course,

the proof of Proposition 3 needs to prove that the resulting equations are actually provably

differential invariants and prove the same properties as before. This is a general feature of
kp;’oof theory. 1t often involves proof transformations at the heart of the arguments. )

Proof of Proposition 3. Let 2’ = f(z) be the (vectorial) differential equation to consider.
We show that every differential invariant that is a propositional combination F' of poly-
nomial equations is expressible as a single atomic polynomial equation (the converse
inclusion is obvious). We can assume F' to be in negation normal form by Lemma 1 (re-
call that negations are resolved and # can be assumed not to appear). Then we reduce F'
inductively to a single equation using the following transformations:

o If F is of the form p; = p2 V 1 = g2, then F is equivalent to the single equation

(p1 — p2)(q1 — ¢2) = 0. Furthermore, [2":=f (2)|(F')' = [2":=f(2)]((p1)’ = (p2)' N (@1)" = (22)")
directly implies

[2"=f(@)]((P1—p2)(@1—¢2))" = 0 = [2":=f(2)] (((p1)' = (p2) ) (@1 —a2)+(Pr—P2) ((¢1) —(a2)") = 0)

which implies that the differential structure is the same so that the inductive steps
are equivalent (either both succeed or both fail).

¢ If F is of the form p; = p2 A ¢1 = g2, then F is equivalent to the single equation

(pr = p2)* + (@1 — g2)* = 0. Also, [o":=f(2)](F)" = [2":=f(2)] ((p1)’ = (p2) N (@1)" = (a2)')
implies

[2":=f(2)] ((p1—p2)*+(a1—¢2)*)'=0) = [2":=F(2)] (2(p1—p2)((p1)'— (p2))+2(q1—a2)((@1)'—(q2)") = 0)

Consequently propositional connectives of equations can be replaced by their equiva-
lent arithmetic equations in pre- and postconditions, and the corresponding induction
steps are equivalent. ]

Note that the polynomial degree increases quadratically by the reduction in Propo-
sition 3, but, as a trade-off, the propositional structure simplifies. Consequently, differ-
ential invariant search for the equational case can either exploit propositional structure
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with lower degree polynomials or suppress the propositional structure at the expense
of higher degrees. This trade-off depends on the real arithmetic decision procedure, but
is often enough in favor of keeping propositional structure, because the proof calculus
can still exploit the logical structure to decompose the verification question before in-
voking real arithmetic. There are cases, however, where such reductions are formidably
insightful [Pla12b].

Equational differential invariants, thus, enjoy a lot of beautiful properties, including
characterizing invariant functions [Plal2b] and generalizing to a decision procedure for
algebraic invariants of algebraic differential equations [GP14].

7. Equational Incompleteness

Focusing exclusively on differential invariants with equations reduces the deductive
power, because sometimes only differential invariant inequalities can prove properties.

Proposition 4 (Equational incompleteness). The deductive power of differential induc-
tion with equational formulas is strictly less than the deductive power of general differential
induction, because some inequalities cannot be proven with equations.

DI_=DI_,y < DI
DI> £ DI =DI_py
DI. £ DI =DI_ry

N\

How could such a proposition be proved?
Before you read on, see if you can find the answer for yourself.
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The proof strategy for the proof of Proposition 3 involved transforming proofs into
proofs to prove the inclusion DZ_ > DI_ , . Could the same strategy prove Proposi-
tion4? No, because we need to show the opposite! Proposition 4 conjectures DZ> £ DZ_ x v,
which means that there are true properties that are only provable using a differential in-
variant inequality p; > p2 and not using any differential invariant equations or propo-
sitional combinations thereof.

For one thing, this means that we ought to find a property that a differential invariant
inequality can prove. That ought to be easy enough, because Lecture 11 on Differen-
tial Equations & Proofs showed us how useful differential invariants are. But then a
proof of Proposition 4 also requires a proof why that very same formula cannot possi-
bly ever be proved with any way of using only differential invariant equations or their
propositional combinations. That is a proof about nonprovability. Proving provability
in proof theory amounts to producing a proof (in sequent calculus). Proving nonprov-
ability most certainly does not mean it would be enough to write something down that
is not a proof. After all, just because one proof attempt fails does not mean that other at-
tempts would not be successful. You have experienced this while you were working on
proving your labs for this course. The first proof attempt might have failed miserably
and was impossible to ever work out. But, come next day, you had a better idea with
a different proof, and suddenly the same property turned out to be perfectly provable
even if the first proof attempt failed.

How could we prove that all proof attempts do not work?

Before you read on, see if you can find the answer for yourself.
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One way of showing that a logical formula cannot be proved is by giving a counterex-
ample, i.e. a state which assigns values to the variables that falsify the formula. That is,
of course, not what can help us proving Proposition 4, because a proof of Proposition 4
requires us to find a formula that can be proved with DT~ (so it cannot have any coun-
terexamples, since it is perfectly valid), just cannot be proved with DZ_ 4 . Proving
that a valid formula cannot be proved with DZ_ , \, requires us to show that all proofs
in DZ_ 5 do not prove that formula.

Expedition 1 (Proving differences in set theory and linear algebra). Recall sets. The
way to prove that two sets M, N have the same “number” of elements is to come
up with a pair of functions ® : M — N and ¥ : N — M between the sets and
then prove that ®, ¥ are inverses of each other, i.e. ?(V(y)) = y and V(®(x)) = =
forall x € M,y € N. Proving that two sets M, N do not have the same “number”
of elements works entirely differently, because that has to prove for all pairs of
functions ® : M — N and ¥ : N — M that there is is an « € M such that
U(®(x)) # zorany € N such that ®(V(y)) # y. Since writing down every such
pair of functions ®, ¥ is a lot of work (an infinite amount of work of M and N
are infinite), indirect criteria such as cardinality or countability are used instead,
e.g. for proving that the reals R and rationals Q cannot possibly have the same
number of elements, because QQ are countable but R are not (by Cantor’s diagonal
argument).

Recall vector spaces from linear algebra. The way to prove that two vector spaces
V, W are isomorphic is to think hard and construct a function ® : V' — W and a
function ¥ : W — V and then prove that ®, ¥ are linear functions and inverses of
each other. Proving that two vector spaces V, W are not isomorphic works entirely
differently, because that has to prove that all pairs of functions ® : V' — W and ¥ :
W — V are either not linear or not inverses of each other. Proving the latter literally
is again a lot (usually infinite) amount of work. So instead, indirect criteria are
being used. One proof that two vector spaces V, W are not isomorphic could show
that both have different dimensions and then prove that isomorphic vector spaces
always have the same dimension, so V' and W cannot possibly be isomorphic.

By analogy, proving non-provability leads to a study of indirect criteria about proofs
of differential equations.

Note 8 (Proofs of different provability). Proving non-reducibility A £ B for classes of
differential invariants requires an example formula ¢ that is provable in A plus a proof that
no proof using B proves ¢. The preferred way of doing that is finding an indirect criterion
that all proofs in B possess but that ¢ does not have, so that the proofs using B cannot
possibly succeed in proving ¢.

Proof of Proposition 4. Consider any positive term a > 0 (e.g., 5 or 22 + 1 or 2% + z* + 2).
The following proof proves a formula by differential induction with the weak inequal-
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ity x > 0:
*
. Fa>0
=] F[2:=a]2’ >0
T >0F[r=az>0

The same formula is not provable with an equational differential invariant, however.
Any univariate polynomial p that is zero on all > 0 is the zero polynomial and, thus,
an equation of the form p = 0 cannot be equivalent to the half space x > 0. By the
equational deductive power theorem 3, the above formula then is not provable with
any Boolean combination of equations as differential invariant either, because proposi-
tional combinations of equational differential invariants prove the same properties that
single equational differential invariants do, and the latter cannot succeed in proving

z>0— ' =alz>0.
The other parts of the theorem that involve generalizations of the non-provability
argument to other indirect proofs using cuts and the like are proved elsewhere [Plal2c].
t

It might be tempting to think that at least equational postconditions only need equa-
tional differential invariants for proving them. But that is not the case either [Plal2c].
So even if the property you care to prove involves only equations, you may still need
to generalize your proof arguments to consider inequalities instead.

8. Strict Differential Invariant Inequalities

We show that, conversely, focusing on strict inequalities p > 0 also reduces the deduc-
tive power, because equations are obviously missing and there is at least one proof
where this matters. That is, what are called strict barrier certificates do not prove (non-
trivial) closed invariants.

Proposition 5 (Strict barrier incompleteness). The deductive power of differential in-
duction with strict barrier certificates (formulas of the form p > 0) is strictly less than the
deductive power of general differential induction.

DI- < DI
DI_ % DI

&

Proof. The following proof proves a formula by equational differential induction:

*
R F 2zy +2y(—z) =0

[':=] F o=y [y:= — 2] 222’ + 29y’ = 0
2

T2y =2 =y, =—a]2? +y? =c
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But the same formula is not provable with a differential invariant of the form p > 0. An
invariant of the form p > 0 describes an open set and, thus, cannot be equivalent to the
(nontrivial) closed set where 22 + y? = ¢? holds true. The only sets that are both open
and closed in (the Euclidean space) R™ are the empty set () and the full space R".

The other parts of the theorem are proved elsewhere [Plal2c]. O

Expedition 2 (Topology in real analysis). The following proofs distinguish open
sets from closed sets, which are concepts from real analysis (or topology).cd Roughly:
A closed set is one whose boundary belongs to the set. For example the solid unit
disk of radius 1. An open set is one for which no point of the boundary belongs to
the set, for example the unit disk of radius 1 without the outer circle of radius 1.

~

closed solid disk open 2dISk
2 +y? <1 2o 4yt <1
with boundary without
boundary

A set O C R" is open iff there is a small neighborhood that is contained in O around
every point of O. That is, for all points a € O there is an € > 0 such that every point
b of distance at most ¢ from a is stillin O. A set C' C R" is closed iff its complement is
open. Because R" is what is called a complete metric space, a set C C R" is closed
iff every convergent sequence of elements in C' converges to a limit in C.

One takeaway message is that it makes sense to check whether the desired invariant
is an open or a closed set and use differential invariants of the suitable type for the job.
Of course, both p = 0 and p > 0 might still work for closed sets.

9. Differential Invariant Equations as Differential Invariant
Inequalities

Weak inequalities p > 0, however, do subsume the deductive power of equational dif-
ferential invariants p = 0. This is obvious on the algebraic level but we will see that it
also does carry over to the differential structure.

Proposition 6 (Equational definability). The deductive power of differential induction
with equations is subsumed by the deductive power of differential induction with weak
inequalities:

DI_ v <DI>
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Proof. By Proposition 3, we only need to show that DZ_ < DT>, as DI_ »\ = DI_.
Let e = 0 be an equational differential invariant of a differential equation 2’ = f(z) & Q.
Then we can prove the following:

QF [2"=f(z)](e) =0
dle =0k [/ = f(2) & Qe =0

Then, the inequality —e? > 0, which is equivalent to e = 0 in real arithmetic, also is a
differential invariant of the same dynamics by the following formal proof:

QF [2"=f(z)] ~2¢(e) > 0
Y2 >0 [¢ = f(2) & Q](—e? > 0)

The subgoal for the differential induction step is provable: if we can prove that ) im-
plies [z":=f(z)](e)’ = 0 according to the first sequent proof, then we can also prove that
Q implies [z":=f(z)] —2e(e)’ > 0 for the sequent sequent proof, because [z:=f(x)](e) = 0
implies [z/:=f(z)] —2e(e)’ > 0 in first-order real arithmetic. O

Note that the local state-based view of differential invariants is crucial to make the last
proof work. By Proposition 6, differential invariant search with weak inequalities can
suppress equations. Note, however, that the polynomial degree increases quadratically
with the reduction in Proposition 6. In particular, the polynomial degree increases quar-
tically when using the reductions in Proposition 3 and Proposition 6 one after another
to turn propositional equational formulas into single inequalities. This quartic increase
of the polynomial degree is likely a too serious computational burden for practical pur-
poses even if it is a valid reduction in theory.

10. Differential Invariant Atoms

Next we see that, with the notable exception of pure equations (Proposition 3), propo-
sitional operators increase the deductive power.

Theorem 7 (Atomic incompleteness). The deductive power of differential induction
with propositional combinations of inequalities exceeds the deductive power of differential
induction with atomic inequalities.

DI> < DI>py
DI. < DIy

g J

Proof. Consider any term a > 0 (e.g., 1 or z2+1 or 2242 +1 or (z—y)2+2). Then the for-
mulaz > 0Ay >0 — [2/ =a,y = y?(z > 0 Ay > 0)is provable using a conjunction in
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the differential invariant:

*

R Fa>0Ay2>0

=] - [¢"=a] [yi=y°](=" > 0 Ay > 0)

Tr>0ny>0F [/ =a,y =92z >0Ay>0)

By a sign argument similar to that in the proof of [Plal0a, Theorem 2] and [Plal0b,
Theorem 3.3], no atomic formula is equivalent to > 0 A y > 0. Basically, no formula
of the form p(z,y) > 0 for a polynomial p can be equivalent to x > 0 A y > 0, because
that would imply that p(z,0) > 0 <> = > 0 for all , which, as p(z,0) is a univariate
polynomial with infinitely many roots (for every = > 0), which implies that p(z,0) is
the zero polynomial, which is not equivalent to > 0, because the zero polynomial is
also zero on z < 0. Similar arguments work for p(x,y) > 0 and p(x,y) = 0. Thus, the
above property cannot be proven using a single differential induction. The proof for a
postcondition z > 0 Ay > 0 is similar.

The other—quite substantial—parts of the proof are proved elsewhere [Plal2c]. [

Note that the formula in the proof of Theorem 7 is provable, e.g., using differential
cuts (DC) with two atomic differential induction steps, one for > 0 and one for y > 0.
Yet, a similar, yet much more involved, argument can be made to show that the deduc-
tive power of differential induction with atomic formulas (even when using differen-
tial cuts) is strictly less than the deductive power of general differential induction; see
[Plal0a, Theorem 2].

Consequently, in the case of inequalities, propositional connectives can be quite cru-
cial when looking for differential invariants.

11. Summary

Fig.2 summarizes the findings on provability relations of differential equations ex-
plained in this lecture and others reported in the literature [Plal2c]. We have consid-
ered the differential invariance problem, which, by a relative completeness argument
[Plal2a], is at the heart of hybrid systems verification. To better understand structural
properties of hybrid systems, we have identified and analyzed more than a dozen (16)
relations between the deductive power of several (9) classes of differential invariants,
including subclasses that correspond to related approaches. An understanding of these
relations helps guide the search for suitable differential invariants and also provides an
intuition for exploiting indirect criteria such as open/closedness of sets as a guide.

The results require a symbiosis of elements of logic with real arithmetical, differential,
semialgebraic, and geometrical properties. Future work includes investigating this new
field further called real differential semialgebraic geometry, whose development has only
just begun [Plal2c, GSP14, GSP15].
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DIZ C DIE7/\7\/ DI27:7/\7\/ A % B
strict
\ / i i \ inclusion
DI ——DI_Av ¢ DI

A————8B

)_,—'_‘ -LH“ / equivalent
DI, < DIy ——>DI. _av ANNANANANB
incomparable

DI : properties verifiable using differential invariants built with operators from €2

Figure 2: Differential invariance chart
(strict inclusions A < B, equivalences A = 3, and incomparabilities A £ B,
B £ A for classes of differential invariants are indicated)

A. Curves Playing with Norms and Degrees

The proof of Lemma 2 showed a case where a formula with a higher-degree polynomial
was needed to prove a property that a lower-degree polynomial could not prove. The
conclusion from the proof of Lemma 2 is not that it is always better to use differential
invariants of higher degrees, just because that worked in this particular proof.

For example, the following proof for an upper bound ¢ on the supremum norm
|(x,y)|lc Of the vector (z,y) defined as

def
H(%?ﬁ”oogté—thSt/\—tgygt )

is significantly easier for the curved dynamics:
*

® +uw? <1k -1<v<IA-1<w<l1

=) v+ w? <1k [2/=0v] [yi=w] [ i=ww] [w'i= — wo] [t':=1](—t' <2’ <At <y <P
Tt w?<ipaz=y=t=0F [/ = v,y = w,v =ww,w = —wv,t’ =1&v? +w? < 1] |[(z,9)]|e0 <t
PRt <inez=y=t=0F [/ =0,y =w,v =ww, v = —wv,t’ =1][|(z, )|/ <t

where the first premise of the differential cut (DC) above is elided (marked <) and
proves as in Lecture 11 on Differential Invariants & Proofs. This proof shows that a
point (x,y) starting with linear velocity at most 1 and angular velocity w from the ori-
gin will not move further than the time ¢ in supremum norm.

This simple proof is to be contrasted with the following proof attempt for a corre-
sponding upper bound on the Euclidean norm ||(z, y)||2 defined as

def
||(:E7y)||2 <t= ;1,‘2 +y2 < t2 (3)

for which a direct proof fails:
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not valid
v2+w? <1F 220 + 2yw < 2t

=) v2 +w? < 1F [2':=v] [y i=w] [Vi=ww] [w':= — wv] [t:=1] (222" + 2yy’ < 2tt')
T2t <lAz=y=t=0F[2' =v,y/ =w,v =ww,w = —wv,t/ =1&v2+w? <1]|(z,y)|]2 < ¢
PR rw<ine=y=t=0F[' =09 =w,v =ww,w = —wv,t’ =1]||(z,y)|]2 < ¢

An indirect proof is still possible but much more complicated. But the proof using the

supremum norm (2) is much easier than the proof using the Euclidean norm (3) in this

case. In addition, the arithmetic complexity decreases, because supremum norms are

definable in linear arithmetic (2) unlike the quadratic arithmetic required for Euclidean

norms (3). Finally, the simpler proof is, up to a factor of /2 just as good, because

quantifier elimination easily proves that the supremum norm || - || and the standard
Euclidean norm ||- ||2 are equivalent, i.e., their values are identical up to constant factors:
Ve y (12, y)llo < (@, 9)ll2 < Vll(2,y)llo) )

1
vavy (@ o)l < (@ 9)llee < Nl y)l) ®)

where n is the dimension of the vector space, here 2. That makes sense, because if, e.g.,
the coordinate with maximal absolute value is at most 1, then the Euclidean distance
can be at most 1. And the extra factor of /2 is easily justified by Pythagoras’ theorem.

|-l < V2
- [-l2<1
1

Exercises

Exercise 1. Prove the relation DZ. < DI , ., ie., that all properties provable using
differential invariants of the form p > ¢ are also provable using propositional combina-
tions of these formulas as differential invariants.

Exercise 2. Prove the relation DZ> = DZ< A v.
Exercise 3. Prove the relation DZ> A v = DI> — av.

Exercise 4. Let DZ . denote the proof calculus in which only the formula true is al-
lowed as a differential invariant. Prove the relation DZ . < DZ_.

Exercise 5. Let DIy, denote the proof calculus in which only the formula false is al-
lowed as a differential invariant. Prove the relation DZ ;. < DZ-.
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Exercise 6. Prove the relation DZ_ 5 < DI> av.

Exercise 7. Prove the relation DI~ A v < DZs — A v.

Exercise 8. Prove the norm relations (4) and (5). Use these relations in a sequent proof
to relate the successful proof with a bound on the supremum norm ||(z, y)||~ to a result
about a bound on the Euclidean norm ||(z, y)||2.
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