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1. Introduction

Lecture 10 on Differential Equations & Differential Invariants introduced equational
differential invariants of the form e = 0 for differential equations that are much more
general than the ones supported by axiom [′] from Lecture 5 on Dynamical Systems &
Dynamic Axioms. Axiom [′] replaces properties of differential equations with univer-
sally quantified properties of solutions, but is limited to differential equations that have
explicit closed-form solutions whose arithmetic can be handled (mostly polynomials or
rational functions). But axiom [′] works for any arbitrary postcondition. The equational
differential invariant proof rule dI=0 supports general differential equations, but was
limited to equational postconditions of the form e = 0.

The goal of this lecture is to generalize the differential invariant proof rules to work
for more general postconditions but retaining the flexibility with the differential equa-
tions that differential invariants provide. Indeed, the principles developed in Lecture
10 generalize beautifully to logical formulas other than the limited form e = 0. This lec-
ture will establish generalizations that make the differential invariant proof rule work
for formulas F of more general forms. The most important part will be soundly defin-
ing the total derivative F ′, because the basic shape of the differential invariants proof
rule stays the same:

` [x′ := f(x)](F )′

F ` [x′ = f(x)]F

More details can be found in [Pla10b, Chapter 3.5] and [Pla10a, Pla12d, Pla12a, Pla12b].
Differential invariants were originally conceived in 2008 [Pla10a, Pla08] and later used
for an automatic proof procedure for hybrid systems [PC08]. These lecture notes are
based on an advanced axiomatic logical understanding of differential invariants via
differential forms [Pla15].
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L11.2 Differential Equations & Proofs

This lecture advances the capabilities of differential invariants begun in Lecture 10
on Differential Equations & Differential Invariants and continues to be of central sig-
nificance for the Foundations of Cyber-Physical Systems. The most important learning
goals of this lecture are:

Modeling and Control: This lecture continues the study of the core principles behind
CPS by developing a deeper understanding of how continuous dynamical behav-
ior affects the truth of logical formulas. The differential invariants developed in
this lecture also have a significance for developing models and controls using the
design-by-invariant principle.

Computational Thinking: This lecture exploits computational thinking continuing the
surprising analogies among discrete dynamics and continuous dynamics discov-
ered in Lecture 10. This lecture is devoted to rigorous reasoning about the differ-
ential equations in CPS models, which is crucial for understanding the continuous
behavior that CPS exhibit over time. This lecture systematically expands on the
differential invariant terms for equational properties of differential equations de-
veloped in Lecture 10 and generalizes the same core principles to the study of
general properties of differential equations. Computational thinking is exploited
in a second way by generalizing Gentzen’s cut principle, which is of seminal sig-
nificance in discrete logic, to differential equations. This lecture continues the
axiomatization of differential dynamic logic dL [Pla12c, Pla12a] pursued since Lec-
ture 5 on Dynamical Systems & Dynamic Axioms and lifts dL’s proof techniques
to systems with more complex properties of more complex differential equations.
The concepts developed in this lecture continue the differential facet illustrating
the more general relation of syntax (which is notation), semantics (what carries
meaning), and axiomatics (which internalizes semantic relations into universal
syntactic transformations). These concepts and their relations jointly form the
significant logical trinity of syntax, semantics, and axiomatics. Finally, the verifi-
cation techniques developed in this lecture are critical for verifying CPS models
of appropriate scale and technical complexity.

CPS Skills: The focus in this lecture is on reasoning about differential equations. As
a beneficial side effect, we will develop a better intuition for the operational ef-
fects involved in CPS by getting better tools for understanding how exactly state
changes while the system follows a differential equation and what properties of
it will not change.
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Differential Equations & Proofs L11.3

CT

M&C CPS

discrete vs. continuous analogie
rigorous reasoning about ODEs
beyond differential invariant terms
differential invariant formulas
cut principles for differential equations
axiomatization of ODEs
differential facet of logical trinity

understanding continuous dynamics
relate discrete+continuous
design-by-invariant

operational CPS effects
state changes along ODE

2. Recall: Ingredients for Differential Equation Proofs

First recall the semantics of differentials from Lecture 10 on Differential Equations &
Differential Invariants as well as the semantics of differential equations from Lecture 3
on Choice & Control:

Definition 1 (Semantics of differentials). The semantics of differential term (e)′ in
state ω is the value [[(e)′]]ω defined as

[[(e)′]]ω =
∑
x∈V

ω(x′)
∂[[e]]

∂x
(ω)

Note 2 (Semantics of differential equations).

[[x′ = f(x) &Q]] = {(ϕ(0)|{x′}{ , ϕ(r)) : ϕ(ζ) |= x′ = f(x) ∧Q for all 0≤ζ≤r

for some solution ϕ : [0, r]→ S of some duration r ∈ R}

where ϕ(ζ)(x′) =
dϕ(t)(x)

dt
(ζ)

Recall the following results from Lecture 10 on Differential Equations & Differential
Invariants:
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L11.4 Differential Equations & Proofs

Lemma 2 (Derivation lemma). The following equations of differentials are valid formu-
las so sound axioms.

+′ (e+ k)′ = (e)′ + (k)′

−′ (e− k)′ = (e)′ − (k)′

·′ (e · k)′ = (e)′ · k + e · (k)′

/′ (e/k)′ =
(
(e)′ · k − e · (k)′

)
/k2

c′ (c())′ = 0

x′ (x)′ = x′

Lemma 3 (Differential lemma). Let ϕ |= x′ = f(x) ∧Q for some solution ϕ : [0, r] →
S of duration r > 0. Then for all terms e (defined all along ϕ) and all times ζ ∈ [0, r]:

[[(e)′]]ϕ(ζ) =
d [[e]]ϕ(t)

dt
(ζ)

In particular, [[e]]ϕ(ζ) is continuously differentiable in ζ.

Lemma 4 (Differential assignment). If ϕ |= x′ = f(x) ∧Q for a flow ϕ : [0, r]→ S of
any duration r ≥ 0, then

ϕ |= P ↔ [x′ := f(x)]P

Corollary 5 (Differential effects). The differential effect axiom is sound:

DE [x′ = f(x) &Q]P ↔ [x′ = f(x) &Q][x′ := f(x)]P

Lemma 4 and its corollary are already more general and work for any postcondition
P , not just for normalized equations e = 0. Lemma 2 covers general polynomial (and
rational) terms.

3. Differential Weakening

Just like the differential effect axiom DE perfectly internalizes the effect that differential
equations have on the differential symbols, the differential weakening axiom internal-
izes the semantic effect of their evolution domain constraints (Note 2). Of course, the
effect of an evolution domain constraint Q is not to change values around, but rather to
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Differential Equations & Proofs L11.5

limit the continuous evolution to always remain within Q. There are multiple ways of
achieving that [Pla15] and you are invited to discover them.

One simple but useful way is the following differential weakening axiom, somewhat
reminiscent of the way axiom DE is phrased:

Lemma 6 (Differential weakening). The following axiom is sound:

DW [x′ = f(x) &Q]P ↔ [x′ = f(x) &Q](Q→ P )

Since differential equations can never leave their evolution domain constraints, any
property P is true after the differential equation if and only if it is true whenever the
evolution domain constraintQ is. After all, the evolution domain constraintQ is always
true throughout all evolutions of x′ = f(x) &Q.

Because of its frequent use, the following differential weakening sequent proof rule
that follows with a generalization step G from the differential weakening axiom DW is
useful, too:

dW
Q ` P

Γ ` [x′ = f(x) &Q]P,∆

This rule is obviously sound, too, because the system x′ = f(x) &Q, by definition, will
stop before it leaves Q, hence, if Q implies F (i.e. the region Q is contained in the region
F ), then F is an invariant, no matter what the actual differential equation x′ = f(x)
does.

Of course, it is crucial for soundness that dW drops the context Γ,∆, which could not
soundly be available in the premise (Exercise 1). The context Γ contains information
about the initial state which is no longer guaranteed to remain true in the final state.
When adding an additional universal quantifier ∀x, however, it is sound to keep the
context around, because ∀x soundly overapproximates all the changes that any differ-
ential equation x′ = f(x) could possibly ever do:

dW
Γ ` ∀x (q(x)→ p(x)),∆

Γ ` [x′ = f(x) & q(x)]p(x),∆

Neither of those simple proof rules can prove particularly interesting properties, be-
cause they only work when Q is rather informative. They can, however, be useful to
obtain partial information about the domains of differential equations or in combina-
tion with stronger proof rules (e.g., differential cuts).

4. Differential Invariant Terms

Lecture 10 on Differential Equations & Differential Invariants proved soundness for
a proof rule for differential invariant terms, which can be used to prove normalized
invariant equations of the form e = 0. In addition to recalling it, we will immediately
generalize it to the presence of evolution domain constraints using our new differential
weakening principles.
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L11.6 Differential Equations & Proofs

Lemma 7 (Differential invariant terms). The following special case of the differential invari-
ants proof rule is sound, i.e. if its premise is valid then so is its conclusion:

dI=0
Q ` [x′ := f(x)](e)′ = 0

e = 0 ` [x′ = f(x) &Q]e = 0

This rule can be derived with DE,G,DW from the more elementary rule:

DI=0
` [x′ = f(x) &Q](e)′ = 0

e = 0 ` [x′ = f(x) &Q]e = 0

as follows
Q ` [x′ := f(x)](e)′ = 0

→R ` Q→ [x′ := f(x)](e)′ = 0
G ` [x′ = f(x) &Q](Q→ [x′ := f(x)](e)′ = 0)

DW ` [x′ = f(x) &Q][x′ := f(x)](e)′ = 0
DE ` [x′ = f(x) &Q](e)′ = 0

DI=0e = 0 ` [x′ = f(x) &Q]e = 0

Observe how useful it is that we have assembled an array of independent reasoning
principles, differential effect DE, differential weakening DW, generalization G, to com-
bine and bundle the logically more elementary rule DI=0 to the more useful rule dI=0.
Such modular combinations of reasoning principles are not just easier to get sound, but
also more flexible because they allow free variations in the argument structure. Cor-
responding counterparts of dI=0 will, consequently, result directly from the stronger
forms of the elementary differential invariant rule DI=0 that we consider subsequently.

Differential invariant terms led to an indirect proof of

v2 + w2 = r2 → [v′ = w,w′ = −v]v2 + w2 = r2 (1)

by generalizing the formula using MR and cut to

v2 + w2 − r2 = 0→ [v′ = w,w′ = −v]v2 + w2 − r2 = 0 (2)

after normalizing the equation to have 0 on the right-hand side as required by the dif-
ferential invariant term proof rule dI=0. Let’s find a more direct proof, though.

5. Equational Differential Invariants

There are more general logical formulas that we would like to prove to be invariants
of differential equations, not just the polynomial equations normalized such that they
are single terms equaling 0. For example, we should generalize differential invariants
to enable a direct proof of (1) with an invariant of the form of a general equation e = k,
rather than insisting on normalizing equations to the form e = 0 by generalization MR
first.
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Differential Equations & Proofs L11.7

Thinking back of the soundness proof for dI=0 in Lecture 10, the argument was based
on the value of the left-hand side term h(t) = [[e]]ϕ(t) as a function of time t. The same
argument can be made by considering the difference h(t) = [[e− k]]ϕ(t) instead to prove
postconditions of the form e = k. How does the inductive step for formula e = k need
to be define to make a corresponding differential invariant proof rule sound? That is,
for what premise is the following a sound proof rule where e and k are arbitrary terms?

???

e = k ` [x′ = f(x)]e = k

Before you read on, see if you can find the answer for yourself.
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L11.8 Differential Equations & Proofs

If we mnemonically define the “differential” of an equation e = k as

(e = k)′
def≡ ((e)′ = (k)′)

this results in a sound proof rule by a simple variation of the soundness proof for DI=0

as sketched above:

DI=
` [x′ = f(x) &Q](e)′ = (k)′

e = k ` [x′ = f(x) &Q]e = k

This rule for equational differential invariants captures the basic intuition that e always
stays equal to k if it has been initially (antecedent of conclusion) and the derivative of
e is the same as the derivative of k with respect to the differential equation x′ = f(x).
The intuition, thus, is that two quantities that start with the same rate of change from
the same value initially will always remain the same. This intuition is made precise
by Lemma 3. Instead of going through a proper soundness proof for DI=, however,
let’s directly generalize the proof principles further and see if differential invariants
can prove even more formulas for us. We will later prove soundness for the general
differential invariant rule, from which DI= derives as a special case. In example proofs,
we will frequently refer to dI of which dI= is merely a special form for the sake of
development.

Observe that the following rule derives from DI= just like dI=0 derives from DI=0:

dI=
` [x′ := f(x)](e)′ = (k)′

e = k ` [x′ = f(x)]e = k

Example 8 (Rotational dynamics). The rotational dynamics v′ = w,w′ = −v is compli-
cated in that the solution involves trigonometric functions, which are generally outside
decidable classes of arithmetic. Yet, we can easily prove interesting properties about
it using dI and decidable polynomial arithmetic. For instance, dI= can directly prove
formula (1), i.e. that v2 + w2 = r2 is a differential invariant of the dynamics, using the
following proof:

∗
R ` 2vw + 2w(−v) = 0

[′:=] ` [v′ :=w][w′ :=−v]2vv′ + 2ww′ = 0
dI v2 + w2 = r2 ` [v′ = w,w′ = −v]v2 + w2 = r2

→R ` v2 + w2 = r2 → [v′ = w,w′ = −v]v2 + w2 = r2

This proof is certainly easier and more direct than the previous proof based on MR.

6. Differential Invariant Inequalities

The differential invariant proof rules considered so far give a good (initial) understand-
ing of how to prove equational invariants. What about inequalities? How can they be
proved?

Before you read on, see if you can find the answer for yourself.
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Differential Equations & Proofs L11.9

The primary question to generalize the differential invariant proof rule is again how
to mnemonically define a “differential”

(e ≤ k)′
def≡ ((e)′ ≤ (k)′)

which gives the following pair of differential invariant proof rules, which we simply
also just call ?? and dI again:

` [x′ = f(x) &Q](e)′ ≤ (k)′

e ≤ k ` [x′ = f(x) &Q]e ≤ k
` [x′ := f(x)](e)′ ≤ (k)′

e ≤ k ` [x′ = f(x)]e ≤ k

The intuition is that a quantity e that starts with smaller or equal rate of change than
that of k from a smaller or equal value initially will always remain smaller or equal.

Example 9 (Cubic dynamics). Similarly, differential induction can easily prove that 1
3 ≤ 5x2

is an invariant of the cubic dynamics x′ = x3; see the proof in Fig. 9 for the dynamics
in Fig. 1. To apply the differential induction rule dI, we form the derivative of the dif-

∗
R ` 0 ≤ 5 · 2x(x3)

[′:=] ` [x′ := x3]0 ≤ 5 · 2xx′
dI 1

3 ≤ 5x2 ` [x′ = x3]13 ≤ 5x2 0 t

x

x0
x′ = x3

Figure 1: a Cubic dynamics proof 1b: Cubic dynamics

ferential invariant F ≡ 1
3 ≤ 5x2, which gives (F )′ ≡ (13 ≤ 5x2)′ ≡ 0 ≤ 5 · 2xx′. Now, the

differential induction rule dI takes into account that the derivative of state variable x
along the dynamics is known. Substituting the differential equation x′ = x3 into the
inequality yields [x′ := x3](F )′ ≡ 0 ≤ 5 · 2xx3, which is a valid formula and closes by
quantifier elimination with R.

Differential invariants that are inequalities are not just a minor variation of equa-
tional differential invariants, because they can prove more. That is, it can be shown
[Pla12d] that there are valid formulas that can be proved using differential invariant
inequalities but cannot be proved just using equations as differential invariants (dI=).
So sometimes, you need to be prepared to look for inequalities that you can use as dif-
ferential invariants. The converse is not true. Everything that is provable using dI= is
also provable using differential invariant inequalities [Pla12d], but you should still look
for equational differential invariants if they give easier proofs.

Strict inequalities can also be used as differential invariants when defining their “dif-
ferentials” mnemonically as:

(e < k)′
def≡ ((e)′ < (k)′)
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L11.10 Differential Equations & Proofs
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Figure 2: Damped oscillator time trajectory (left) and invariant in phase space (right)

It is easy to see (Exercise 2) that the following slightly relaxed definition is also sound:

(e < k)′
def≡ ((e)′ ≤ (k)′)

Example 10 (Rotational dynamics). An inequality property can be proved easily for the
rotational dynamics v′ = w,w′ = −v using the following proof:

∗
R ` 2vw + 2w(−v) ≤ 0

[′:=] ` [v′ :=w][w′ :=−v]2vv′ + 2ww′ ≤ 0
dI v2 + w2 ≤ r2 ` [v′ = w,w′ = −v]v2 + w2 ≤ r2
→R ` v2 + w2 ≤ r2 → [v′ = w,w′ = −v]v2 + w2 ≤ r2

Example 11 (Damped oscillator). This proof shows the invariant of the damped oscilla-
tor illustrated in Fig. 2:

∗
R ω≥0 ∧ d≥0 ` 2ω2xy + 2y(−ω2x− 2dωy) ≤ 0

[′:=] ω≥ 0 ∧ d≥0 ` [x′ := y][y′ :=−ω2x− 2dωy]2ω2xx′ + 2yy′ ≤ 0
dI ω2x2+y2≤c2 ` [x′ = y, y′ = −ω2x− 2dωy& (ω≥0 ∧ d≥0)]ω2x2+y2≤c2

7. Disequational Differential Invariants

The case that is missing in differential invariant proof rules of atomic formulas are for
postconditions that are disequalities e 6= k? How can they be proved?

Before you read on, see if you can find the answer for yourself.
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Differential Equations & Proofs L11.11

By analogy to the previous cases, one might expect the following definition:

(e 6= k)′
?≡ ((e)′ 6= (k)′) ???

It is crucial for soundness of differential invariants that (e 6= η)′ is not defined that
way! In the following counterexample, variable x can reach x = 0 without its derivative
ever being 0; again, see Fig. 3 for the dynamics. Of course, just because e and k start out

∗ (unsound)
` 1 6= 0

 x 6= 5 ` [x′ = 1]x 6= 5 0 t

x

x
′ = 1

x0 + t

Figure 3: a Unsound attempt of using disequalities 3b: Linear dynamics

different, does not mean they would always stay different if they evolve with different
derivatives. Au contraire, it is because both evolve with different derivatives that they
might catch each other.

Instead, if e and k start out differently and evolve with the same derivatives, they
will always stay different. So the sound definition is slightly unexpected:

(e 6= k)′
def≡ ((e)′ = (k)′)

8. Conjunctive Differential Invariants

The next case to consider is where the invariant that we want to prove is a conjunction
F ∧G. The crucial question then is again what we a “differential” (F ∧G)′ would be
that measures the rate-of-change in truth-values of the conjunction F ∧ G. Of course,
there aren’t many changes of truth-values to speak of, because there’s only two: true
and false . But, still, no change in truth-value is a good thing for an invariant argument.
An invariant should always stay true if it was true initially.

Before you read on, see if you can find the answer for yourself.
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L11.12 Differential Equations & Proofs

To show that a conjunction F ∧G is invariant it is perfectly sufficient to prove that
both are invariant. This can be justified separately, but is more obvious when recalling
the following equivalence from Lecture 7:

[]∧ [α](P ∧Q)↔ [α]P ∧ [α]Q

which is valid for all hybrid programs α, also when α is just a differential equation.
Consequently, the mnemonic “differential” for conjunction is the conjunction of the
differentials:

(F ∧G)′ ≡ (F )′ ∧ (G)′

Again, we will not develop a proper soundness argument, because it will follow from
the general differential invariant proof rule.

A corresponding generalization of the differential invariants proof rule to conjunc-
tions enables us to do the following proof:

∗
R ` 2vw + 2w(−v) ≤ 0 ∧ 2vw + 2w(−v) ≥ 0

[′:=] ` [v′ :=w][w′ :=−v](2vv′ + 2ww′ ≤ 0 ∧ 2vv′ + 2ww′ ≥ 0)
dI v2 + w2 ≤ r2 ∧ v2 + w2 ≥ r2 ` [v′ = w,w′ = −v](v2 + w2 ≤ r2 ∧ v2 + w2 ≥ r2)

Of course, a direct proof with []∧ and two separate proofs that the left conjunct is a dif-
ferential invariant and that, separately, the right conjunct also is a differential invariant
would have worked equally well. Since the invariant v2 + w2 ≤ r2 ∧ v2 + w2 ≥ r2 is
easily proved to be equivalent to v2 + w2 = r2, the above proof gives yet another proof
of (1) when combined with a corresponding use of the generalization rule MR.

9. Disjunctive Differential Invariants

The next case to consider is where the invariant that we want to prove is a disjunction
F ∨G. Our other lemmas take care of how to handle differential effects and differential
weakening, if only we define the correct “differential” (F ∨G)′. How?

Before you read on, see if you can find the answer for yourself.
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Differential Equations & Proofs L11.13

The “differential” of a conjunction is the conjunction of the differentials. So, by anal-
ogy, it might stand to reason to define the “differential” of a disjunction as the disjunc-
tion of the differentials.

(F ∨G)′
?≡ (F )′ ∨ (G)′ ???

Let’s give it a try:

unsound
R ` 2vw + 2w(−v) = 0 ∨ 5v + rw ≥ 0

[′:=] ` [v′ :=w][w′ :=−v]2vv′ + 2ww′ = 0 ∨ r′v + rv′ ≥ 0
 v2 + w2 = r2 ∨ rv ≥ 0 ` [v′ = w,w′ = −v, r′ = 5](v2 + w2 = r2 ∨ rv ≥ 0)

That would be spectacularly wrong, however, because the formula at the bottom is not
actually valid, so it does not deserve a proof. We have no business of proving formulas
that are not valid and if we ever could, we would have found a serious unsoundness in
the proof rules.

For soundness of differential invariants, it is crucial that the “differential” (F ∨G)′ of
a disjunction is defined, e.g., conjunctively as (F )′ ∧ (G)′ instead of as (F )′ ∨ (G)′. From
an initial state ω which satisfies ω |= F , and hence ω |= F ∨G, the formula F ∨G only
is sustained differentially if F itself is a differential invariant, not if G is. For instance,
v2 + w2 = r2 ∨ rd ≥ 0 is no invariant of the above differential equation, because rv ≥ 0
will be invalidated if we just follow the circle dynamics long enough. So if the disjunc-
tion was true because rv ≥ 0 was true in the beginning, it does not stay invariant.

Instead, splitting differential invariant proofs over disjunctions by ∨L is the way to
go, and, in fact, by []∧, also justifies the choice

(F ∨G)′
def≡ (F )′ ∧ (G)′

→R

∨L

MR

dI
[x′ := f(x)](A)′

A ` [x′ = f(x)]A
∨R

id
∗

A ` A,B
A ` A ∨B

A ` [x′ = f(x)](A ∨B)
MR

dI
[x′ := f(x)](B)′

B ` [x′ = f(x)]B
∨R

id
∗

B ` A,B
B ` A ∨B

B ` [x′ = f(x)](A ∨B)

A ∨B ` [x′ = f(x)](A ∨B)

A ∨B → [x′ = f(x)](A ∨B)

10. Differential Invariants

Differential invariants are a general proof principles for proving invariants of formulas.
Summarizing what this lecture has discovered so far leads to a single proof rule for
differential invariants. That is why all previous proofs just indicated dI when using the
various special cases of the differential invariant proof rule to be developed next.

All previous arguments remain valid when the differential equation has an evolution
domain constraint Q that it cannot leave by definition. In that case, the inductive proof
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L11.14 Differential Equations & Proofs

step can even assume the evolution domain constraint to hold, because the system, by
definition, is not allowed to leave it.

Definition 12 (Differential). The following definition generalizes the differential
operator (·)′ to real-arithmetic formulas:

(F ∧G)′ ≡ (F )′ ∧ (G)′ (3a)
(F ∨G)′ ≡ (F )′ ∧ (G)′ (3b)
(e ≥ k)′ ≡ (e)′ ≥ (k)′ accordingly for <,>,≤,=, but not 6= (3c)

The operation mapping F to [x′ := f(x)](F )′ is called Lie-derivative of F with re-
spect to x′ = f(x).

By (3c), the “differential” (F )′ on formulas F uses the differential (e)′ of the terms e that
occur within F .

Lemma 13 (Differential invariants). The differential invariant rule is sound:

dI
Q ` [x′ := f(x)](F )′

F ` [x′ = f(x) &Q]F
dI’

Γ ` F,∆ Q ` [x′ := f(x)](F )′ F ` ψ
Γ ` [x′ = f(x) &Q]ψ,∆

The version dI’ can be derived easily from the more fundamental, essential form dI simi-
lar to how the most useful loop induction rule loop derives from the essential form ind.

The basic idea behind rule dI is that the premise of dI shows that the differential (F )′

holds within evolution domainQwhen substituting the differential equations x′ = f(x)
into (F )′. If F holds initially (antecedent of conclusion), then F itself always stays
true (succedent of conclusion). Intuitively, the premise gives a condition showing that,
within Q, the differential (F )′ along the differential constraints is pointing inwards or
transversally to F but never outwards to ¬F ; see Fig. 4 for an illustration. Hence, if we

¬ ¬FF F

Figure 4: Differential invariant F for safety

start in F and, as indicated by (F )′, the local dynamics never points outside F , then the
system always stays in F when following the dynamics.

Proof sketch. A full proof is located elsewhere [Pla15].

h(t)
def
= [[e]]ϕ(t) is differentiable on [0, r] if r > 0.
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dh(t)

dt
(ζ) =

d[[e]]ϕ(t)

dt
(ζ) = [[(e)′]]ϕ(ζ) ≥ 0 by lemma + premise for all ζ.

h(r)− h(0)︸︷︷︸
≥0

= (r − 0)︸ ︷︷ ︸
>0

dh(t)

dt
(ξ)︸ ︷︷ ︸

≥0

≥ 0 by mean-value theorem for some ξ.

This proof rule enables us to easily prove (2) and all previous proofs as well:

∗
R ` 2vw + 2w(−v) ≤ 0

[′:=] ` [v′ :=w][w′ :=−v]2vv′ + 2ww′ ≤ 0
dI v2 + w2 ≤ r2 ` [v′ = w,w′ = −v]v2 + w2 ≤ r2
→R ` v2 + w2 ≤ r2 → [v′ = w,w′ = −v]v2 + w2 ≤ r2

11. Example Proofs

Example 14 (Quartic dynamics). The following simple dL proof uses dI to prove an
invariant of a quartic dynamics.

∗
R a ≥ 0 ` 3x2((x− 3)4 + a) ≥ 0

[′:=] a ≥ 0 ` [x′ := (x− 3)4 + a]3x2x′ ≥ 0

dI x3 ≥ −1 ` [x′ = (x− 3)4 + a& a ≥ 0]x3 ≥ −1

Observe that rule dI directly makes the evolution domain constraint a ≥ 0 available as
an assumption in the premise, because the continuous evolution is never allowed to
leave it.

Example 15. Consider the dynamics x′ = y, y′ = −ω2x− 2dωy of the damped oscillator
with the undamped angular frequency ω and the damping ratio d. See Fig. 5 for one
example of an evolution along this continuous dynamics. Figure 5 shows a trajectory
in the x, y space on the left, and an evolution of x over time t on the right. General
symbolic solutions of symbolic initial-value problems for this differential equation can
become surprisingly difficult. Mathematica, for instance, produces a long equation of
exponentials that spans 6 lines of terms just for one solution. A differential invariant
proof, instead, is very simple:

∗
R ω ≥ 0 ∧ d ≥ 0 ` 2ω2xy − 2ω2xy − 4dωy2 ≤ 0

[′:=] ω ≥ 0 ∧ d ≥ 0 ` [x′ := y][y′ :=−ω2x− 2dωy]2ω2xx′ + 2yy′ ≤ 0

dI ω2x2 + y2 ≤ c2 ` [x′ = y, y′ = −ω2x− 2dωy& (ω ≥ 0 ∧ d ≥ 0)]ω2x2 + y2 ≤ c2
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y

x

t

x

Figure 5: Trajectory and evolution of a damped oscillator

Observe that rule dI directly makes the evolution domain constraint ω ≥ 0 ∧ d ≥ 0 avail-
able as an assumption in the premise, because the continuous evolution is never al-
lowed to leave it.

12. Assuming Invariants

Let’s make the dynamics more interesting and see what happens. Suppose there is a
robot at a point with coordinates (x, y) that is facing in direction (v, w). Suppose the
robot moves with constant (linear) velocity into direction (v, w), which is rotating as
before. Then the corresponding dynamics is:

x′ = v, y′ = w, v′ = ωw,w′ = −ωv

because the derivative of the x coordinate is the component v of the direction and the
derivative of the y coordinate is the componentw of the direction. And correspondingly
with the angular velocity ω determining how fast the rotation of the direction (v, w) is.
Consider the following conjecture:

(x−1)2+(y−2)2 ≥ p2 → [x′ = v, y′ = w, v′ = ωw,w′ = −ωv](x−1)2+(y−2)2 ≥ p2 (4)

This conjecture expresses that the robot at position (x, y) will always stay at distance p
from the point (1, 2) if it started there. Let’s try to prove conjecture (4):

` 2(x− 1)v + 2(y − 2)w ≥ 0
[′:=] ` [x′ := v][y′ :=w]2(x− 1)x′ + 2(y − 2)y′ ≥ 0

dI (x− 1)2 + (y − 2)2 ≥ p2 ` [x′ = v, y′ = w, v′ = ωw,w′ = −ωv](x− 1)2 + (y − 2)2 ≥ p2

Unfortunately, this differential invariant proof does not work. As a matter of fact, for-
tunately it does not work out, because conjecture (4) is not valid, so we will, fortunately,
not be able to prove it with a sound proof technique. Conjecture (4) is too optimistic.
Starting from some directions far far away, the robot will most certainly get too close to
the point (1,2). Other directions may be fine.
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Inspecting the above failed proof attempt, we could prove (4) if we knew something
about the directions (v, w) that would make the remaining premise prove. What could
that be?

Before you read on, see if you can find the answer for yourself.
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Certainly, if we knew v = w = 0, the resulting premise would prove. Yet, that case
is pretty boring because it corresponds to the point (x, y) being stuck forever. A more
interesting case in which the premise would easily prove is if we knew x− 1 = −w and
y−2 = v. In what sense could we “know” x−1 = −w∧y−2 = v? Certainly, we would
have to assume this compatibility condition for directions versus position is true in the
initial state, otherwise we would not necessarily know the condition holds true where
we need it. So let’s modify (4) to include this assumption:

x− 1 = −w ∧ y − 2 = v ∧ (x− 1)2 + (y − 2)2 ≥ p2 →
[x′ = v, y′ = w, v′ = ωw,w′ = −ωv](x− 1)2 + (y − 2)2 ≥ p2 (5)

Yet, the place in the proof where we need to know x− 1 = −w∧ y− 2 = v for the above
sequent prove to continue is in the middle of the inductive step. How could we make
that happen?

Before you read on, see if you can find the answer for yourself.
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One step in the right direction is to check whether x − 1 = −w ∧ y − 2 = v is a
differential invariant of the dynamics, so it stays true forever if it was true initially:

not valid

` v = −(−ωv) ∧ w = ωw
[′:=] ` [x′ := v][y′ :=w][v′ := ωw][w′ :=−ωv](x′ = −w′ ∧ y′ = v′)

dI x− 1 = −w ∧ y − 2 = v ` [x′ = v, y′ = w, v′ = ωw,w′ = −ωv](x− 1 = −w ∧ y − 2 = v)

This prove does not quite work out, because both sides of the equations are off by
a factor of ω and, indeed, x − 1 = −w ∧ y − 2 = v is not an invariant unless ω = 1.
On second thought, that makes sense, because the angular velocity ω determines how
quickly the robot turns, so if there is any relation between position and direction, it
should somehow depend on the angular velocity ω.

Let’s refine the conjecture to incorporate the angular velocity on the side of the equa-
tion where it was missing in the above proof and consider ω(x−1) = −w∧ω(y−2) = v
instead. That knowledge would still help the proof of (4), just with the same extra factor
on both terms. So let’s modify (5) to use this assumption on the initial state:

ω(x− 1) = −w ∧ ω(y − 2) = v ∧ (x− 1)2 + (y − 2)2 ≥ p2 →
[x′ = v, y′ = w, v′ = ωw,w′ = −ωv](x− 1)2 + (y − 2)2 ≥ p2 (6)

A simple proof shows that the new addition ω(x − 1) = −w ∧ ω(y − 2) = v is a
differential invariant of the dynamics, so it holds always if it holds in the beginning:

∗
R ` ωv = −(−ωv) ∧ ωw = ωw

[′:=] ` [x′ := v][y′ :=w][v′ := ωw][w′ :=−ωv](ωx′ = −w′ ∧ ωy′ = v′)
dI ω(x− 1) = −e ∧ ω(y − 2) = d ` [x′ = v, y′ = w, v′ = ωw,w′ = −ωv](ω(x− 1) = −w ∧ ω(y − 2) = v)

Now, how can this freshly proved invariant ω(x − 1) = −w ∧ ω(y − 2) = v be made
available in the previous proof? Perhaps we could prove (6) using the conjunction of
the invariant we want with the additional invariant we need:

(x− 1)2 + (y − 2)2 ≥ p2 ∧ ω(x− 1) = −w ∧ ω(y − 2) = v

That does not work (eliding the antecedent in the conclusion just for space reasons)
` 2(x− 1)v + 2(y − 2)w ≥ 0 ∧ ωv = −(−ωv) ∧ ωw = ωw

[′:=] ` [x′ := v][y′ :=w][v′ := ωw][w′ :=−ωv](2(x− 1)x′ + 2(y − 2)y′ ≥ 0 ∧ ωx′ = −w′ ∧ ωy′ = v′)
dI (x− 1)2 . . . ` [x′ = v, y′ = w, v′ = ωw,w′ = −ωv]((x− 1)2 + (y − 2)2 ≥ p2 ∧ ω(x− 1) = −w ∧ ω(y − 2) = v)

because the right conjunct in the premise still proves beautifully but the left conjunct in
the premise needs to know the invariant, which the differential invariant proof rule dI
does not make the invariant F available in the antecedent of the premise.
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In the case of loops, the invariant F can be assumed to hold before the loop body in
the induction step (the other form loop of the loop invariant rule):

ind
F ` [α]F

F ` [α∗]F

By analogy, we could augment the differential invariant proof rule dI similarly to
include F in the assumptions. Is that a good idea?

Before you read on, see if you can find the answer for yourself.
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It looks tempting to suspect that rule dI could be improved by assuming the differ-
ential invariant F in the antecedent of the premise:

dI??
Q ∧ F ` [x′ := f(x)](F )′

F ` [x′ = f(x) &Q]F
sound?

After all, we really only care about staying safe when we are still safe. And that would
indeed easily prove the formula (6), which might make us cheer. But implicit properties
of differential equations are a subtle business. Assuming F like in rule dI?? would, in
fact, be unsound, as the following simple counterexample shows, which “proves” an
invalid property using the unsound proof rule dI??:

(unsound)

v2 − 2v + 1 = 0 ` 2vw − 2w = 0

v2 − 2v + 1 = 0 ` [v′ :=w][w′ :=−v](2vv′ − 2v′ = 0)
 v2 − 2v + 1 = 0 ` [v′ = w,w′ = −v]v2 − 2v + 1 = 0

Of course, v2 − 2v + 1 = 0 does not stay true for the rotational dynamics, because v
changes. And there are many other invalid properties that the unsound proof rule dI??
would claim to “prove”, for example:

(unsound)

−(x− y)2 ≥ 0 ` −2(x− y)(1− y) ≥ 0

−(x− y)2 ≥ 0 ` [x′ := 1][y′ := y](−2(x− y)(x′ − y′) ≥ 0)
 −(x− y)2 ≥ 0 ` [x′ = 1, y′ = y](−(x− y)2 ≥ 0)

Assuming an invariant of a differential equation during its own proof is, thus, terribly
incorrect, even though it has been suggested numerous times in the literature. There
are some cases for which rule dI?? or variations of it would be sound, but these are
nontrivial [Pla10a, Pla12d, Pla12b, GP14, GSP14].

The reason why assuming invariants for their own proof is problematic for the case of
differential equations is somewhat subtle [Pla10a, Pla12d]. In a nutshell, the proof rule
dI?? assumes more than it knows, so that the argument becomes cyclic. The antecedent
only provides the invariant in a single point and Lecture 10 already explained that
derivatives are not particularly well-defined in a single point. That is one of the reasons
why we had to exercise extraordinary care in our arguments to define precisely what
derivatives and differentials were to begin with in Lecture 10. Recall that, unlike time-
derivatives, differentials have meaning in isolated states.

13. Differential Cuts

Instead of these ill-guided attempts of assuming invariants for their own proof, there is
a complementary proof rule for differential cuts [Pla10a, Pla08, Pla12d, Pla12b] that can
be used to strengthen assumptions about differential equations in a sound way:
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DC
Γ ` [x′ = f(x) &Q]C,∆ Γ ` [x′ = f(x) & (Q ∧ C)]F ,∆

Γ ` [x′ = f(x) &Q]F,∆

The differential cut rule works like a cut, but for differential equations. Recall the cut
rule from Lecture 6 which can be used to prove a formula C on the left premise and
then assume it on the right premise:

cut
Γ ` C,∆ Γ, C ` ∆

Γ ` ∆

Similarly, differential cut rule DC proves a property C of a differential equation in
the left premise and then assumes C to hold in the right premise, except that it assumes
C to hold during a differential equation by restricting the behavior of the system. In
the right premise, rule DC restricts the system evolution to the subdomain Q ∧ C of
Q, which changes the system dynamics but is a pseudo-restriction, because the left
premise proves that C is an invariant anyhow (e.g. using rule dI). Note that rule DC is
special in that it changes the dynamics of the system (it adds a constraint to the system
evolution domain region), but it is still sound, because this change does not reduce the
reachable set, thanks to the left premise; see Fig. 6

Figure 6: If the solution of the differential equation can never leave region C and enter
the red region ¬C (left), then this unreachable region ¬C can be cut out of the
state space without changing the dynamics of the system (right)

The benefit of rule DC is that C will (soundly) be available as an extra assumption for
all subsequent dI uses on the right premise (see, e.g., the use of the evolution domain
constraint in Example 15). In particular, the differential cut rule DC can be used to
strengthen the right premise with more and more auxiliary differential invariants C
that will be available as extra assumptions on the right premise, once they have been
proven to be differential invariants in the left premise.

Proving the robot formula (6) in a sound way is now easy using a differential cut DC
by ω(x− 1) = −w ∧ ω(y − 2) = v:
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∗
R ` ωv = −(−ωv) ∧ ωw = ωw

` [x′ := v][y′ :=w][v′ := ωw][w′ :=−ωv](ωx′ = −w′ ∧ ωy′ = v′)
dIω . . ` [x′=v . .](ω(x−1)=−w∧ω(y−2)=v)

∗
Rω(x−1)=−w∧ω(y−2)=v ` 2(x− 1)v + 2(y − 2)w ≥ 0

ω(x−1)=−w∧ω(y−2)=v ` [x′ := v][y′ :=w](2(x− 1)x′ + 2(y − 2)y′ ≥ 0)
dI (x−1)2+(y−2)2≥p2 ` [x′=v, y′=w, v′=ωw,w′=−ωv&ω(x−1)=−w∧ω(y−2)=v](x−1)2+(y−2)2≥p2

DC (x−1)2+(y−2)2≥p2, ω(x−1)=−w∧ω(y−2)=v ` [x′ = v, y′ = w, v′ = ωw,w′ = −ωv](x− 1)2 + (y − 2)2 ≥ p2

Amazing. Now we have a proper sound proof of the quite nontrivial robot motion
property (6). And it even is a surprisingly short proof.

See�Curved motion model�
It is not always enough to just do a single differential cut. Sometimes, you may

want to do a differential cut with a formula C, then use C on the right premise of
DC to prove a second differential cut with a formula D and then on its right premise
have C ∧ D available to continue the proof; see Fig. 7. For example, we could also
have gotten a proof of (6) by first doing a differential cut with ω(x− 1) = −w, then
continue with a differential cut with ω(y − 2) = v, and then finally use both to prove
the postcondition (Exercise 4). Using this differential cut process repeatedly has turned
out to be extremely useful in practice and even simplifies the invariant search, because
it leads to several simpler properties to find and prove instead of a single complex
property [PC08, PC09, Pla10b].

Figure 7: If the solution of the differential equation can never leave region D and enter
the top red region ¬D (left), then this unreachable region ¬D can also be cut
out of the state space without changing the dynamics of the system (right)

Proof of Soundness of DC. For simplicity, consider only the case where Q ≡ true here.
Rule DC is sound using the fact that the left premise implies that every solution ϕ that
satisfies x′ = f(x) also satisfies C all along the solution. Thus, if solution ϕ satisfies
x′ = f(x), it also satisfies x′ = f(x) &C, so that the right premise entails the conclusion.
The proof is accordingly for the case

See� Tutorial Video on Differential Invariants, Differential Cuts�
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14. Differential Weakening Again

Observe how differential weakening from Sect. 3 can be useful in combination with
differential cuts. For example, after having performed the differential cut illustrated in
Fig. 6 and, then, subsequently, performing the differential cut illustrated in Fig. 7, all un-
safe blue regions have been cut out of the state space, so that the system in Fig. 7(right) is
trivially safe by differential weakening, because there are no more unsafe blue regions.
That is, the ultimate evolution domain constraint Q ∧ C ∧D after the two differential
cuts with C and with D trivially implies the safety condition F , i.e. Q ∧ C ∧D ` F is
valid. But notice that it took the two differential cuts to make differential weakening
useful. The original evolution domain constraint Q was not strong enough to imply
safety, since there were still unsafe blue regions in the original system in Fig. 6(left) and
even still in the intermediate system in Fig. 7(left) obtained after one differential cut
with C.

15. Summary

This lecture introduced very powerful proof rules for differential invariants, with which
you can prove even complicated properties of differential equations in easy ways. Just
like in the case of loops, where the search for invariants is nontrivial, differential invari-
ants also require some smarts (or good automatic procedures) to be found. Yet, once
differential invariants have been identified, the proof follows easily.

Note 10 (Proof rules for differential equations). The following are sound proof rules
for differential equations:

dI
Q ` F ′f(x)x′

F ` [x′ = f(x) &Q]F
dW

Q ` F
Γ ` [x′ = f(x) &Q]F,∆

DC
Γ ` [x′ = f(x) &Q]C,∆ Γ ` [x′ = f(x) & (Q ∧ C)]F ,∆

Γ ` [x′ = f(x) &Q]F,∆

A. Proving Aerodynamic Bouncing Balls

This section studies a hybrid system with differential invariants. Remember the bounc-
ing ball that was proved in Lecture 7 on Loops & Invariants?

The little acrophobic bouncing ball graduated from its study of loops and control
and yearningly thinks back of its joyful time when it was studying continuous behav-
ior. Caught up in nostalgia, the bouncing ball suddenly discovers that it unabashedly
neglected the effect that air has on bouncing balls all the time. It sure is fun to fly
through the air, so the little bouncing ball swiftly decides to make up for that oversight
by including a proper aerodynamical model into its favorite differential equation. The
effect that air has on the bouncing ball is air resistance and, it turns out, air resistance
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gets stronger the faster the ball is flying. After a couple of experiments, the little bounc-
ing ball finds out that air resistance is quadratic in the velocity with an aerodynamic
damping factor r > 0.

Now the strange thing with air is that air is always against the flying ball. Air always
provides resistance, no matter which direction the ball is flying. If the ball is hurrying
up, the air holds it back and slows it down by decreasing its positive speed v > 0. If
the ball is rushing back down to the ground, the air still holds the ball back and slows it
down, only then that actually means increasing the negative velocity v < 0, because that
corresponds to decreasing the absolute value |v|. How could that be modeled properly?

One way of modeling this situation would be to use the (discontinuous) sign function
sign v that has value 1 for v > 0, value -1 for v < 0, and value 0 for v = 0:

x′ = v, v′ = −g − (sign v)rv2 &x ≥ 0 (7)

That, however, gives a differential equation with a difficult right-hand side. Instead, the
little bouncing ball learned to appreciate the philosophy behind hybrid systems, which
advocates for keeping the continuous dynamics simple and moving discontinuities and
switching aspects to where they belong: the discrete dynamics. After all, switching and
discontinuities is what the discrete dynamics is good at.

Consequently, the little bouncing ball decides to split modes and separate the up-
ward flying part v ≥ 0 from the downward flying part v ≤ 0 and offer the system a
nondeterministic choice between the two:1

x ≤ H ∧ v = 0 ∧ x ≥ 0 ∧ g > 0 ∧ 1 ≥ c ≥ 0 ∧ r ≥ 0→[(
if(x = 0) v :=−cv;

(x′ = v, v′ = −g − rv2 &x ≥ 0 ∧ v ≥ 0 ∪ x′ = v, v′ = −g + rv2 &x ≥ 0 ∧ v ≤ 0)
)∗]

(0 ≤ x ≤ H)
(8)

In pleasant anticipation of the new behavior that this aerodynamic bouncing ball model
provides, the little bouncing ball is eager to give it a try. Before daring to bounce around
with this model, though, the acrophobic bouncing ball first wants to be convinced that
it would be safe to use, i.e. the model actually satisfies the height limit property in (8).
So the bouncing ball first sets out on a proof adventure. After writing down several
ingenious proof steps, the bouncing ball finds out that its previous proof does not carry
over. For one thing, the nonlinear differential equations can no longer be solved quite
so easily. That makes the solution axiom [′] rather useless. But, fortunately, the little
bouncing ball brightens up again as it remembers that unsolvable differential equations
was what differential invariants were good at. And the ball was rather keen on trying
them in the wild, anyhow.

Yet, first things first. The first step of the proof after→R is the search for an invari-
ant for the loop induction proof rule loop. Yet, since the proof of (8) cannot work by

1Note that the reason for splitting modes and offering a nondeterministic choice in between are not
controller events as they have been in Lecture 8 on Events & Responses, but, rather, come from the
physical model itself. The mechanism is the same, though, whatever the reason for splitting.
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solving the differential equations, we will also need to identify differential invariants
for the differential equations. If we are lucky, maybe the same invariant could even
work for both? Whenever we are in such a situation, we can search from both ends and
either identify an invariant for the loop first and then try to adapt it to the differential
equation, or, instead, look for a differential invariant first.

Since we know the loop invariant for the ordinary bouncing ball from Lecture 7, let’s
look at the loop first. The loop invariant for the ordinary bouncing ball was

2gx = 2gH − v2 ∧ x ≥ 0

We cannot really expect that invariant to work out for the aerodynamic ball (8) as well,
because the whole point of the air resistance is that it slows the ball down. Since air
resistance always works against the ball’s motion, the height is expected to be less:

Ex,v
def≡ 2gx ≤ 2gH − v2 ∧ x ≥ 0 (9)

In order to check right away whether this invariant that we suspect to be a loop invari-
ant works for the differential equations as well, the bouncing ball checks for differential
invariance:

∗
R g > 0 ∧ r ≥ 0, x ≥ 0 ∧ v ≥ 0 ` 2gv ≤ 2gv + 2rv3

g > 0 ∧ r ≥ 0, x ≥ 0 ∧ v ≥ 0 ` 2gv ≤ −2v(−g − rv2)
[′:=] g > 0 ∧ r ≥ 0, x ≥ 0 ∧ v ≥ 0 ` [x′ := v][v′ :=−g − rv2](2gx′ ≤ −2vv′)

dI g > 0 ∧ r ≥ 0, 2gx ≤ 2gH − v2 ` [x′ = v, v′ = −g − rv2 &x ≥ 0 ∧ v ≥ 0] 2gx ≤ 2gH − v2

Note that for this proof to work, it is essential to keep the constants g > 0 ∧ r ≥ 0
around, or at least r ≥ 0. The easiest way of doing that is to perform a differential
cut DC with g > 0 ∧ r ≥ 0 and prove it to be a (trivial) differential invariant, because
both parameters do not change, to make g > 0 ∧ r ≥ 0 available in the evolution do-
main constraint for the rest of the proof.2

The differential invariant proof for the other differential equation in (8) works as well:

∗
R g > 0 ∧ r ≥ 0, x ≥ 0 ∧ v ≤ 0 ` 2gv ≤ 2gv − 2rv3

g > 0 ∧ r ≥ 0, x ≥ 0 ∧ v ≤ 0 ` 2gv ≤ −2v(−g + rv2)
[′:=] g > 0 ∧ r ≥ 0, x ≥ 0 ∧ v ≤ 0 ` [x′ := v][v′ :=−g + rv2]2gx′ ≤ −2vv′

dI g > 0 ∧ r ≥ 0, 2gx ≤ 2gH − v2 ` [x′ = v, v′ = −g + rv2 &x ≥ 0 ∧ v ≤ 0] 2gx ≤ 2gH − v2

After this preparation, the rest of the proof of (8) is a matter of checking whether (9) is
also a loop invariant. Except that the above two sequent proofs do not actually quite

2Since this happens so frequently, KeYmaera implements a proof rule that, similar to the local version of
loop invariants, keeps context assumptions around, which is fine as long as they are constant.
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prove that (9) is a differential invariant, but only that its left conjunct 2gx ≤ 2gH − v2 is.
Would it work to add the right conjunct x ≥ 0 and prove it to be a differential invariant?

Not exactly, because dI would lead to (x′ ≥ 0)vx′ ≡ v ≥ 0, which is obviously not al-
ways true for bouncing balls (except in the mode x ≥ 0 ∧ v ≥ 0). However, after prov-
ing the above differential invariants, a differential weakening argument by dW easily
shows that the relevant part x ≥ 0 of the evolution domain constraint always holds
after the differential equation.

∗
. . ` [x′ = v, v′ = −g + rv2 & x ≥ 0 ∧ v ≤ 0] 2gx ≤ 2gH − v2

∗
?? x ≥ 0 ∧ v ≤ 0 ∧ 2gx ≤ 2gH − v2 ` 2gx ≤ 2gH − v2 ∧ x ≥ 0

dW 2gx ≤ 2gH − v2 ` [x′ = v, v′ = −g + rv2 & x ≥ 0 ∧ v ≤ 0 ∧ 2gx ≤ 2gH − v2](2gx ≤ 2gH − v2 ∧ x ≥ 0)
DC . . 2gx ≤ 2gH − v2 ` [x′ = v, v′ = −g + rv2 & x ≥ 0 ∧ v ≤ 0](2gx ≤ 2gH − v2 ∧ x ≥ 0)

Now, what is left to do is a matter of proving (9) to be a loop invariant of (8).
Without the usual abbreviations this proof is hopeless to fit on a page:

Ax,v
def≡ x ≤ H ∧ v = 0 ∧ x ≥ 0 ∧ g > 0 ∧ 1 ≥ c ≥ 0 ∧ r ≥ 0

Bx,v
def≡ 0 ≤ x ∧ x ≤ H

(x′′ . . v ≥ 0)
def≡ (x′ = v, v′ = −g − rv2 &x ≥ 0 ∧ v ≥ 0)

(x′′ . . v ≤ 0)
def≡ (x′ = v, v′ = −g + rv2 &x ≥ 0 ∧ v ≤ 0)

Ex,v
def≡ 2gx ≤ 2gH − v2 ∧ x ≥ 0

loop

Ax,v ` Ex,v [;]

MR

Ex,v ` [if(x = 0) v :=−cv]Ex,v[∪]

∧R
Ex,v ` [x′′ . . v ≥ 0]Ex,v Ex,v ` [x′′ . . v ≤ 0]Ex,v

Ex,v ` [x′′ . . v ≥ 0]Ex,v ∧ [x′′ . . v ≤ 0]Ex,v

Ex,v ` [x′′ . . v ≥ 0 ∪ x′′ . . v ≤ 0]Ex,v

Ex,v ` [if(x = 0) v :=−cv][x′′ . . v ≥ 0 ∪ x′′ . . v ≤ 0]Ex,v

Ex,v ` [if(x = 0) v :=−cv; (x′′ . . v ≥ 0 ∪ x′′ . . v ≤ 0)]Ex,v
Ex,v ` Bx,v

Ax,v ` [(if(x = 0) v :=−cv; (x′′ . . v ≥ 0 ∪ x′′ . . v ≤ 0))∗]Bx,v

The first and last premise prove by simple arithmetic using g > 0 ∧ v2 ≥ 0. The third
and fourth premise have been proved above by a differential cut with a subsequent dif-
ferential invariant and differential weakening. That only leaves the second premise to
worry about, which proves as follows:

Ex,v, x = 0 ` Ex,−cv
[:=]Ex,v, x = 0 ` [v :=−cv]Ex,v

→R Ex,v ` x = 0→ [v :=−cv]Ex,v

[?] Ex,v ` [?x = 0][v :=−cv]Ex,v

[;] Ex,v ` [?x = 0; v :=−cv]Ex,v

∗
id Ex,v, x 6= 0 ` Ex,v

→R Ex,v ` x 6= 0→ Ex,v

[?] Ex,v ` [?x 6= 0]Ex,v

∧R Ex,v ` [?x = 0; v :=−cv]Ex,v ∧ [?x 6= 0]Ex,v

[∪] Ex,v ` [?x = 0; v :=−cv ∪ ?x 6= 0]Ex,v

Ex,v ` [if(x = 0) v :=−cv]Ex,v

This sequent proof first expands the if() , recalling that it is an abbreviation for a choice
with tests. The right resulting premise proves trivially by axiom (there was no state
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change in the corresponding part of the execution), the left premise proves by arith-
metic, because 2gH − v2 ≤ 2gH − (−cv)2 since 1 ≥ c ≥ 0.

This completes the sequent proof for the safety of the aerodynamic bouncing ball
expressed in dL formula (8). That is pretty neat!

See�Aerodynamic bouncing ball model�
It is about time for the newly upgraded aerodynamic acrophobic bouncing ball to no-

tice a subtlety in its (provably safe) model. The bouncing ball had innocently split the
differential equation (7) into two modes, one for v ≥ 0 and one for v ≤ 0 when develop-
ing the model (8). This seemingly innocuous step would have required more thought
than the little bouncing ball had put in at the time. Of course, the single differential
equation (7) could, in principle, switch between velocity v ≥ 0 and v ≤ 0 any arbitrary
number of times during a single continuous evolution. The HP in (8) that split the
mode, however, enforces that the ground controller if(x = 0) v :=−cv will run in be-
tween switching from the mode v ≥ 0 to the mode v ≤ 0 or back. On its way up when
gravity is just about to win over and pull the ball back down again, that is of no con-
sequence, because the trigger condition x = 0 will not be the case then anyhow, unless
the ball really started the day without much energy (x = v = 0). On its way down, the
condition will very well be true, namely when the ball is currently on the ground and
just inverted its velocity. In that case, however, the evolution domain constraint x ≥ 0
would have forced a ground controller action in the original system already anyhow.

So even if, in this particular model, the system could not in fact actually switch back
and forth between the two modes too much in ways that would really matter, it is
important to understand how to properly split modes in general, because that will be
crucial for other systems. What the little bouncing ball should have done to become
aerodynamical in a systematic way is to add an additional mini-loop around just the
two differential equations, so that the system could switch modes without enforcing
a discrete ground controller action to happen. This leads to the following dL formula
with a systematical mode split, which is provably safe just the same (Exercise 5):

x ≤ H ∧ v = 0 ∧ x ≥ 0 ∧ g > 0 ∧ 1 ≥ c ≥ 0 ∧ r ≥ 0→[(
if(x = 0) v :=−cv;

(x′ = v, v′ = −g − rv2 &x ≥ 0 ∧ v ≥ 0 ∪ x′ = v, v′ = −g + rv2 &x ≥ 0 ∧ v ≤ 0)∗
)∗]

(0 ≤ x ≤ H)
(10)

Exercises

Exercise 1. Show that the following variation of the differential weakening rule dW
would be unsound:

Γ, Q ` P,∆
Γ ` [x′ = f(x) &Q]P,∆
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Exercise 2. We have chosen to define

(θ < η)′ ≡ ((θ)′ < (η)′)

Prove that the following slightly relaxed definition would also give a sound proof rule
for differential invariants:

(θ < η)′ ≡ ((θ)′ ≤ (η)′)

Exercise 3. We have defined

(θ 6= η)′ ≡ ((θ)′ = (η)′)

Suppose you remove this definition so that you can no longer use the differential in-
variant proof rule for formulas involving 6=. Can you derive a proof rule to prove such
differential invariants regardless? If so, how? If not, why not?

Exercise 4. Prove dL formula(6) by first doing a differential cut with ω(x− 1) = −e, then
continue with a differential cut with ω(y − 2) = d, and then finally use both to prove the
original postcondition. Compare this proof to the proof in Sect. 13.

Exercise 5. The aerodynamic bouncing ball model silently imposed that no mode switch-
ing could happen without ground control being executed first. Even if that is not an
issue for the bouncing ball, prove the more general formula (10) with its extra loop
regardless. Compare the resulting proof to the sequent proof for (8).

Exercise 6. The least that the proof rules for differential equations get to assume is the
evolution domain constraint Q, because the system does not evolve outside it. Prove
the following slightly stronger formulation of dI that assumes Q to hold initially:

dI
Q ` [x′ := f(x)](F )′

[?Q]F ` [x′ = f(x) &Q]F

Exercise 7. Prove the following definitions to be sound for the differential invariant
proof rule:

true ′ ≡ true

false ′ ≡ true

Show how you can use those to prove the formula

A→ [x′ = f(x) &Q]B

in the case where A→ ¬Q is provable, i.e. where the system initially starts outside the
evolution domain constraint Q.
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[PC08] André Platzer and Edmund M. Clarke. Computing differential invariants of
hybrid systems as fixedpoints. In Aarti Gupta and Sharad Malik, editors,
CAV, volume 5123 of LNCS, pages 176–189. Springer, 2008. doi:10.1007/

978-3-540-70545-1_17.
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[Pla08] André Platzer. Differential Dynamic Logics: Automated Theorem Proving for Hy-

brid Systems. PhD thesis, Department of Computing Science, University of
Oldenburg, Dec 2008. Appeared with Springer.
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