
15-424: Foundations of Cyber-Physical Systems

Lecture Notes on
Truth & Proof

André Platzer

Carnegie Mellon University
Lecture 6

1 Introduction1

Lecture 5 on Dynamical Systems & Dynamic Axioms investigated dynamic axioms for
dynamical systems, i.e. axioms in differential dynamic logic (dL) that characterize op-
erators of the dynamical systems that dL describes by hybrid programs in terms of
structurally simpler dL formulas. All it takes to understand the bigger system, thus, is
to apply the axiom and investigate the smaller remainders. That lecture did not quite
show all important axioms yet, but it still revealed enough to prove a property of a
bouncing ball. While that lecture showed exactly how all the respective local proper-
ties about the system dynamics could be proved by invoking the respective axioms, it
has not become clear yet how these individual inferences are best tied together to obtain
a well-structured proof. That’s what today’s lecture will identify.

After all, there’s more to proofs than just axioms. Proofs also have proof rules for
combining fragments of arguments into a bigger proof by proof steps. Proofs, thus,
are defined by the glue that holds axioms together into a single cohesive argument
justifying its conclusion.

Recall that our proof about the (single-hop) bouncing ball from the previous lecture
still suffered from at least two issues. While it was a sound proof and an interesting
proof, the way we had come up with it was somewhat undisciplined. We just applied
axioms seemingly at random at all kinds of places all over the logical formulas. After
we see such a proof, that is not a concern, because we can just follow its justifications
and appreciate the simplicity and elegance of the steps it took to justify the conclu-

1By both sheer coincidence and by higher reason, the title of this lecture turns out to be closely related to
the subtitle of a well-known book on mathematical logic [And02], which summarizes the philosophy
we pursue here in a way that is impossible to improve upon any further: To truth through proof.

15-424 LECTURE NOTES January 28, 2016 ANDRÉ PLATZER

http://symbolaris.com/course/fcps16.html
http://www.cs.cmu.edu/~aplatzer/andre.html
http://symbolaris.com/course/fcps16/05-dynax.pdf

L6.2 Truth & Proof

sion.2 But better structuring would certainly help us find proofs more constructively
in the first place. The second issue was that the axioms for the dynamics that Lecture
5 showed us did not actually help in proving the propositional logic and arithmetic
parts. So were were left with informal justifications of the resulting arithmetic at the
end, which leaves plenty of room for subtle mistakes in correctness arguments.

The lecture today addresses both issues by imposing more structure on proofs and,
as part of that, handle the operators of first-order logic that differential dynamic logic
inherits (propositional connectives such as ∧,∨,→) and quantifiers (∀,∃). As part of the
structuring, we will make ample and crucial use of the dynamic axioms from Lecture
5. Yet, they will be used in a more structured way than so far. In a way that focuses
their use on the top level of the formula and in the direction that actually simplifies the
formulas.

These notes are based on [Pla08, Pla10, Chapter 2.5.2], where more information can
be found in addition to more information in [Pla10, Appendix A]. Sequent calculus is
discussed in more detail also in the handbook of proof theory [Bus98]. More resources
and background material on first-order logic is also listed on the course web page.

While the previous Lecture 5 on Dynamical Systems & Dynamic Axioms laid down
the most fundamental cornerstones of the Foundations of Cyber-Physical Systems and
their rigorous reasoning principles, today’s lecture revisits these fundamental princi-
ples and shapes them into a systematic proof approach. The most important learning
goals of this lecture are:

Modeling and Control: This lecture deepens our understanding from the previous
lecture on how discrete and continuous systems relate to one another in the pres-
ence of evolution domain constraints, a topic that the previous lecture only touched
upon briefly.

Computational Thinking: Based on the core rigorous reasoning principles for CPS de-
veloped in the previous lecture, today’s lecture is devoted to reasoning rigorously
and systematically about CPS models. Systematic ways of reasoning rigorously
about CPS are, of course, critical to getting more complex CPS right. The differ-
ence between the axiomatic way of reasoning rigorously about CPS [Pla12b] as
put forth in the previous lecture and the systematic way [Pla08, Pla10] developed
in today’s lecture is not a big difference conceptually, but more a difference in
pragmatics. That does not make it less important, though, and the occasion to
revisit gives us a way of deepening our understanding of systematic CPS analy-
sis principles. Today’s lecture explains ways of developing CPS proofs and logic
proofs systematically and is an important ingredient for verifying CPS models
of appropriate scale. This lecture also adds a fourth leg to the logical trinity of
syntax, semantics, and axiomatics considered in Lecture 5. Today’s lecture adds
pragmatics, by which we mean the question of how to use axiomatics to justify

2Indeed, the proof in Lecture 5 on Dynamical Systems & Dynamic Axioms was creative in that it used
axioms quite carefully in an order that minimizes the notational complexity. But it is not easy to come
up with such (nonsystematic) shortcut proofs even if the KeYmaera X prover makes this rather easy
with its proof-by-pointing feature.

15-424 LECTURE NOTES ANDRÉ PLATZER

http://symbolaris.com/course/fcps16/05-dynax.pdf
http://symbolaris.com/course/fcps16/05-dynax.pdf
http://symbolaris.com/course/fcps16/05-dynax.pdf
http://symbolaris.com/course/fcps16/05-dynax.pdf
http://symbolaris.com/course/fcps16-resources.html
http://symbolaris.com/course/fcps16/05-dynax.pdf
http://symbolaris.com/course/fcps16/05-dynax.pdf
http://symbolaris.com/course/fcps16/05-dynax.pdf
http://symbolaris.com/course/fcps16/05-dynax.pdf

Truth & Proof L6.3

the syntactic renditions of the semantical concepts of interest. That is, how to best
go about conducting a proof to justify truth of a CPS conjecture. An understand-
ing of that follows from a more precise understanding of what a proof is and what
arithmetic does.

CPS Skills: This lecture is mostly devoted to sharpening our analytic skills for CPS.
We will also develop a slightly better intuition for the operational effects involved
in CPS in that we understand in which order we should worry about operational
effects and whether that has an impact on the overall understanding.

CT

M&C CPS

systematic reasoning for CPS
verifying CPS models at scale
pragmatics: how to use axiomatics to justify truth
structure of proofs and their arithmetic

discrete+continuous relation
with evolution domains

analytic skills for CPS

2 Truth and Proof

Truth is defined by the semantics of logical formulas. The semantics gives a mathemat-
ical meaning to formulas that, in theory, could be used to establish truth of a logical
formula. In practice, this is usually less feasible, for one thing, because quantifiers
of differential dynamic logic quantify over real numbers (after all their variables may
represent real quantities like velocities and positions). Yet, there are (uncountably) in-
finitely many of those, so determining the truth value of a universally quantified log-
ical formula directly by working with its semantics is challenging since that’d require
instantiating it with infinitely many real numbers, which would keep us busy for a
while. The same matter is even more difficult for the hybrid system dynamics involved
in modalities of differential dynamic logic formulas, because hybrid systems have so
many possible behaviors and are highly nondeterministic. Literally following all pos-
sible behaviors to check all reachable states hardly sounds like a way that would ever
enable us to stop and conclude the system would be safe. Except, of course, if we hap-
pen to be lucky and found a bug during just one execution, because that would be
enough to falsify the formula.

Yet, we are still interested in establishing whether a logical formula is true. Or, actu-
ally, whether the formula is valid, since truth of a logical formula depends on the state
(cf. definition of semantics ω ∈ [[P]] in Lecture 4 on Safety & Contracts) whereas validity
of a logical formula is independent of the state (cf. definition of validity � P), because

15-424 LECTURE NOTES ANDRÉ PLATZER

http://symbolaris.com/course/fcps16/04-contracts.pdf

L6.4 Truth & Proof

validity means truth in all states. And validity of formulas is what we ultimately care
about, because we want our safety analysis to hold in all permitted initial states of the
CPS, not just one particular initial state ω. In that sense, valid logical formulas are the
most valuable ones. We should devote all of our efforts to finding out what is valid,
because that will allow us to draw conclusions about all states, including the real world
state as well.

While exhaustive enumeration and simulation is hardly an option for systems as
challenging as CPS, the validity of logical formulas can be established by other means,
namely by producing a proof of that formula. Like the formula itself, but unlike its
semantics, a proof is a syntactical object that is amenable, e.g., to representation and
manipulation in a computer. The finite syntactical argument represented in a proof
witnesses the validity of the logical formula that it concludes. Proofs can be produced in
a machine. They can be stored to be recalled as witnesses and evidence for the validity
of their conclusion. And they can be checked by humans or machines for correctness.
They can also be inspected for analytic insights about the reasons for the validity of
a formula, which goes beyond the factual statement of validity. A proof justifies the
judgment that a logical formula is valid, which, without such a proof as evidence, is no
more than an empty claim. And empty claims would hardly be useful foundations for
building any cyber-physical systems on.

Truth and proof should be related intimately, however, because we would only want
to accept proofs that actually imply truth, i.e. proofs that imply their consequences to be
valid if their premises are. That is, proof systems should be sound in order to allow us
to draw reliable conclusions from the existence of a proof. And, in fact, this course will
exercise great care to identify sound reasoning principles. The converse and equally
intriguing question is that of completeness, i.e. whether all true formulas (again in the
sense of valid) can be proved, which turns out to be much more subtle [Pla12a] and
won’t concern us until much later in this course.

3 Sequents

The proof built from axioms in Lecture 5 on Dynamical Systems & Dynamic Axioms to
justify a safety property of a bouncing ball was creative and insightful, but also some-
what spontaneous and disorganized. In fact, it has not even quite become particularly
obvious what exactly a proof was, except that it is somehow supposed to glue axioms
together into a single cohesive argument.3 But that is not a definition of a proof.

In order to have a chance to conduct more complex proofs, we need a way of struc-
turing the proofs and keeping track of all questions that come up while working on
a proof. But despite all the lamenting about the proof from Lecture 5, it has, secretly,
been much more systematic than we were aware of. Even if it went in a non-systematic
order as far as the application order of the proof rules is concerned, we still structured
the proof quite well (unlike the ad-hoc arguments in Lecture 4 on Safety & Contracts).

3It would have been very easy to define, though, by inductively defining formulas to be provable if they
are either instances of axioms or follow from provable formulas using modus ponens [Pla12b].

15-424 LECTURE NOTES ANDRÉ PLATZER

http://symbolaris.com/course/fcps16/05-dynax.pdf
http://symbolaris.com/course/fcps16/05-dynax.pdf
http://symbolaris.com/course/fcps16/04-contracts.pdf

Truth & Proof L6.5

So part of what this lecture needs to establish is to turn this coincidence into an inten-
tional principle. Rather than just coincidentally structuring the proof well, we want to
structure all proofs well and make them all systematic by design.

Throughout this course, we will use sequents, which give us a structuring mecha-
nism for conjectures and proofs. Sequent calculus was originally developed by Gerhard
Gentzen [Gen35a, Gen35b] for studying properties of natural deduction calculi, but se-
quent calculi have been used very successfully for numerous other purposes since.

In a nutshell, sequents are essentially a standard form for logical formulas that is
convenient for proving purposes, because, intuitively, it neatly aligns all available as-
sumptions on the left and gathers what needs to be shown on the right.

Definition 1 (Sequent). A sequent is of the form

Γ ` ∆

where the antecedent Γ and succedent ∆ are finite sets of dL formulas. The semantics
of Γ ` ∆ is that of the dL formula

∧
P∈Γ P →

∨
Q∈∆Q.

The antecedent Γ can be thought of as the formulas we assume to be true, whereas
the succedent ∆ can be understood as formulas for which we want to show that at least
one of them is true assuming all formulas of Γ are true. So for proving a sequent Γ ` ∆,
we assume all Γ and want to show that one of the ∆ is true. For some simple sequents
like Γ, P ` P,∆, we directly know that they are valid, because we can certainly show P
if we assume P (in fact, we will use this we will use this as a way of finishing a proof).
For other sequents, it is more difficult to see whether they are valid (true under all
circumstances) and it is the purpose of a proof calculus to provide a means to find out.

The basic idea in sequent calculus is to successively transform all formulas such that
Γ forms a list of all assumptions and ∆ the set of formulas that we would like to con-
clude from Γ (or, to be precise, the set ∆ whose disjunction we would like to conclude
from the conjunction of all formulas in Γ). So one way of understanding sequent cal-
culus is to interpret Γ ` ∆ as the task of proving one of the formulas in the succedent
∆ from all of the formulas in the antecedent Γ. But since dL is a classical logic, not an
intuitionistic logic, we need to keep in mind that it is actually enough for proving a se-
quent Γ ` ∆ to just prove the disjunction of all formulas in ∆ from the conjunction of all
formulas in Γ. For the proof rules of real arithmetic, we will later make use of this fact
by considering sequent Γ ` ∆ as an abbreviation for the formula

∧
P∈Γ P →

∨
Q∈∆Q,

because both have the same semantics in dL.
Empty conjunctions

∧
P∈∅ P are equivalent to true . Empty disjunctions

∨
P∈∅ P are

equivalent to false .4 Hence, the sequentAmeans the same as the formulaA. The empty

4Note that true is the neutral element for the operation ∧ and false the neutral element for the operation
∨. That is A∧ true is equivalent to A for any A and A∨ false is equivalent to A. So true plays the same
role that 1 plays for multiplication. And false plays the role that 0 plays for addition. Another aspect
of sequents Γ ` ∆ that is worth mentioning is that other notations such as Γ =⇒ ∆ or Γ −→ ∆ are
also sometimes used in other contexts.

15-424 LECTURE NOTES ANDRÉ PLATZER

L6.6 Truth & Proof

sequent means the same as the formula false .

Note 2 (Nonempty trouble with empty sequents). If you ever reduce a conjecture
about your CPS to proving the empty sequent , then you are in trouble, because the empty
sequence means the same as the formula false and it is rather hard to prove false , since
false isn’t ever true. In that case, either you have taken a wrong turn in your proof, e.g., by
discarding an assumption that was actually required for the conjecture to be true, or your
CPS might take the wrong turn, because its controller can make a move that is actually
unsafe.

In order to develop sequent calculus proof rules, we will again follow the logical
guiding principle of compositionality from Lecture 5 on Dynamical Systems & Dy-
namic Axioms by devising one suitable proof rule for each of the relevant operators.
Only this time, we have two cases to worry about for each operator. One proof rule
for the case where the operator, say ∧, occurs in the antecedent (which we will call ∧L
rule) so that it is available as an assumption, and one proof rule for the case where ∧
occurs in the succedent (which we will call ∧R rule) so that it is available as an option
to prove. Fortunately, we will ultimately find a way of simultaneously handling all of
the modality operators at once with the axioms from Lecture 5 on Dynamical Systems
& Dynamic Axioms.

4 Proofs

Before developing any proof rules, let us first understand what exactly a proof is,
what it means to prove a logical formula, and how we know whether a proof rule is
sound.

Definition 2 (Global Soundness). A sequent calculus proof rule of the form

Γ1 ` ∆1 . . . Γn ` ∆n

Γ ` ∆

is sound iff the validity of all premises (i.e. the sequents Γi ` ∆i above the rule bar)
implies the validity of the conclusion (i.e. the sequent Γ ` ∆ below the rule bar):

If � (Γ1 ` ∆1) and . . . and � (Γn ` ∆n) then � (Γ ` ∆)

Recall from Def. 1 that the meaning of a sequent Γ ` ∆ is
∧

P∈Γ P →
∨

Q∈∆Q, so that

� (Γ ` ∆) stands for �
(∧

P∈Γ P →
∨

Q∈∆Q
)

.
A formula P is provable or derivable (in the dL calculus) if we can find a dL proof

for it that concludes the sequent P at the bottom from no premises (rule id will do
that) and that has only used dL sequent proof rules in between to go from the premises
to their conclusion. The shape of a dL proof, thus, is a tree with axioms at the top

15-424 LECTURE NOTES ANDRÉ PLATZER

http://symbolaris.com/course/fcps16/05-dynax.pdf
http://symbolaris.com/course/fcps16/05-dynax.pdf
http://symbolaris.com/course/fcps16/05-dynax.pdf
http://symbolaris.com/course/fcps16/05-dynax.pdf

Truth & Proof L6.7

leaves and the formula that the proof proves at the bottom root. While constructing
proofs, however, we would start with the desired goal P a the bottom that we want as
the eventual conclusion of the proof and we work our way backwards to the subgoals
until they can be proven to be valid. Once all subgoals have been proven to be valid,
they entail their respective conclusion, which, recursively, entail the original goal P .
This property of preserving truth or preserving entailment is called soundness (Def. 2).
Thus, while constructing proofs, we work bottom-up from the goal and apply all proof
rules from the desired conclusion to the required premises. Once we have found a
proof, we justify formulas conversely from the axioms top-down to the original goal,
because validity transfers from the premises to the conclusion with sound proof rules.

construct proofs upwards

x Γ1 ` ∆1 . . . Γn ` ∆n

Γ ` ∆

y validity transfers downwards

We write `dL P iff dL formula P can be proved with dL rules from dL axioms. That
is, a dL formula is inductively defined to be provable in the dL sequent calculus if it is
the conclusion (below the rule bar) of an instance of one of the dL sequent proof rules,
whose premises (above the rule bar) are all provable. A formula Q is provable from a
set Φ of formulas, denoted by Φ `dL Q, iff there is a finite subset Φ0 ⊆ Φ of formulas for
which the sequent Φ0 ` Q is provable.

5 Propositional Proof Rules

The first logical operators encountered during proofs are usually propositional logical
connectives, because many dL formulas use forms such as A → [α]B to express that
all behavior of HP α leads to safe states satisfying B when starting the system in ini-
tial states satisfyingA. For propositional logic, dL uses the standard propositional rules
with the cut rule, which are listed in Fig. 1. Each of these propositional rules decompose
the propositional structure of formulas and neatly divides everything up into assump-
tions (which will ultimately be moved to the antecedent) and what needs to be shown
(which will be moved to the succedent). The rules will be developed one at a time in
the order that is most conducive to their intuitive understanding.

Proof rule ∧L is for handling conjunctions (P ∧Q) as one of the assumptions in the
antecedent on the left of the sequent turnstile (). Assuming the conjunction P ∧Q is the
same as assuming each conjunct separately.

∧L
Γ, P,Q ` ∆

Γ, P ∧Q ` ∆

Rule ∧L expresses that if a conjunction P ∧Q is among the list of available assump-
tions in the antecedent, then we might just as well assume both conjuncts (P and Q,
respectively) separately. If we set out to prove a sequent of the form in the conclusion
(Γ, P ∧Q ` ∆), then we can justify this sequent by instead proving the sequent in the

15-424 LECTURE NOTES ANDRÉ PLATZER

L6.8 Truth & Proof

Note 4. ¬R
Γ, P ` ∆

Γ ` ¬P,∆

¬L
Γ ` P,∆

Γ,¬P ` ∆

∧R
Γ ` P,∆ Γ ` Q,∆

Γ ` P ∧Q,∆

∧L
Γ, P,Q ` ∆

Γ, P ∧Q ` ∆

∨R
Γ ` P,Q,∆

Γ ` P ∨Q,∆

∨L
Γ, P ` ∆ Γ, Q ` ∆

Γ, P ∨Q ` ∆

→R
Γ, P ` Q,∆

Γ ` P → Q,∆

→L
Γ ` P,∆ Γ, Q ` ∆

Γ, P → Q ` ∆

id
Γ, P ` P,∆

cut
Γ ` P,∆ Γ, P ` ∆

Γ ` ∆

>R
Γ ` true,∆

⊥L
Γ, false ` ∆

Figure 1: Propositional proof rules of sequent calculus

premise (Γ, P,Q ` ∆), where the only difference is that the two assumptions P and Q
are now assumed separately in the premise rather than jointly as a single conjunction
as in the conclusion. If we just keep on using proof rule ∧L often enough, then all con-
junctions in the antecedent will ultimately have been split into their pieces. Recall that
the order of formulas in a sequent Γ ` ∆ is irrelevant because Γ and ∆ are sets, so we
can always pretend that the formula that we want to apply the ∧L rule to is last in the
antecedent. So ∧L takes care of all conjunctions that appear as top-level operators in
antecedents. But there are other logical operators to worry about as well.

Proof rule proves a conjunction P ∧Q by proving P and, in a separate premise, also
proving Q:

∧R
Γ ` P,∆ Γ ` Q,∆

Γ ` P ∧Q,∆
Proof rule ∧R has to prove two premises, because if we are trying to prove a sequent

Γ ` P ∧Q,∆ with a conjunction P ∧ Q in its succedent, it would not be enough at all
to just prove Γ ` P,Q,∆, because, as in rule ∨R, this would only enable us to conclude
Γ ` P ∨Q,∆. Instead, proving a conjunction in the succedent as in the conclusion of
∧R requires proving both conjuncts, so a proof of Γ ` P,∆ and a proof of Γ ` Q,∆.
This is why rule ∧R splits the proof into two branches, one for proving Γ ` P,∆ and
one for proving Γ ` Q,∆. Indeed, if both premises of rule ∧R are valid then so is its
conclusion. To see this, it is easier to first consider the case where ∆ is empty and then
argue by cases, once for the case where the disjunction corresponding to ∆ is true and
once where it is false.

Proof rule ∨R is similar to rule ∧L but for handling disjunctions in the succedent. If
we set out to prove the sequent Γ ` P ∨Q,∆ in the conclusion with a disjunction P ∨Q
in the succedent, then we might as well split the disjunction into its two disjuncts and
prove the premise Γ ` P,Q,∆ instead, since the succedent has a disjunctive meaning
anyhow.

Similarly, proof rule ∨L handles a disjunction in the antecedent. When the assump-
tions listed in the antecedent of a sequent contain a disjunction P ∨ Q, then there is

15-424 LECTURE NOTES ANDRÉ PLATZER

Truth & Proof L6.9

no way of knowing which of the two can be assumed only that at least one of them
can be assumed to be true. Rule ∨L, thus, splits the proof into cases. The left premise
considers the case where the assumption P ∨ Q held because P was true. The right
premise considers the case where assumption P ∨ Q held because Q was true. If both
premises are valid (because we can find a proof for them), then, either way, the conclu-
sion Γ, P ∨Q ` ∆ will be valid no matter which of the two cases applies.

Proof rule→R handles implications in the succedent by using the implicational mean-
ing of sequents. The way to understand it is to recall how we would go about proving
an implication. In order to prove an implication P → Q, we would assume the left-
hand side P (which→R pushes into the assumptions listed in the antecedent) and try
to prove its right-hand side Q (which→R thus leaves in the succedent).

Proof rule→L is more involved. And one way to understand it is to recall that classi-
cal logic obeys the equivalence (P → Q) ≡ (¬P ∨Q). A direct argument explaining→L
uses that when assuming an implication P → Q, we can only assume its right-hand
side Q after we have shown its respective assumption P on its left-hand side.

Proof rule ¬R proves a negation ¬P by, instead, assuming P . Again, the easiest way
of understanding this is for an empty ∆ in which case rule ¬R expresses that the way of
proving a negation ¬P in the succedent of the conclusion is to instead assume P in the
antecedent in the premise and then proving a contradiction in the form of the empty
succedent, which is false . Alternatively, rule ¬R can be understood using the semantics
of sequents, since a conjunct P on the left-hand side of an implication is semantically
equivalent to a disjunct ¬P on the right-hand side.

Proof rule ¬L handles a negation ¬P among the assumptions in the antecedent of the
conclusion by, instead, pushing P into the succedent of the premise. Indeed, for the case
of empty ∆, if P were shown to hold assuming Γ, then Γ and ¬P imply a contradiction
in the form of the empty sequent, which is false . Again, a semantic argument using the
semantics of sequents also justifies ¬L directly.

All these propositional rules make progress by splitting operators. And that will
ultimately lead to atomic formulas, i.e. those formulas without any logical operators.
But there is no way to ever properly stop the proof yet. That is what the identity rule
id is meant for. The identity rule id closes a goal (there are no further subgoals, which
we sometimes mark by a ∗ explicitly in the proof to indicate that we didn’t just forget
to finish it), because assumption P in the antecedent trivially entails P in the succedent
(the sequent Γ, P ` P,∆ is a simple syntactic tautology). If, in our proving activities,
we ever find a sequent of the form Γ, P ` P,∆, for any formula P , we can immediately
use the identity rule id to close this part of the proof.

Rule cut is Gentzen’s cut rule [Gen35a, Gen35b] that can be used for case distinc-
tions or to prove a lemma and then use it. The right subgoal assumes any additional
formula P in the antecedent that the left subgoal shows in the succedent. Semanti-
cally: regardless of whether P is actually true or false, both cases are covered by proof
branches. Alternatively, and more intuitively, the cut rule is fundamentally a lemma
rule. The left premise proves an auxiliary lemma P in its succedent, which the right
premise then assumes in its antecedent (again consider the case of empty ∆ first). We
only use cuts in an orderly fashion to derive simple rule dualities and to simplify meta-

15-424 LECTURE NOTES ANDRÉ PLATZER

L6.10 Truth & Proof

proofs. In practical applications, cuts are not needed in theory. But in practice, complex
practical applications make use of cuts for efficiency reasons. Cuts an be used, for ex-
ample, to simplify arithmetic, or to first prove lemmas and then make ample use of
them, in a number of places in the remaining proof.

Even though we write sequent rules as if the principal formula (like P ∧ Q in rules
∧R and ∧L) were at the end of the antecedent or at the beginning of the succedent,
respectively, the sequent proof rules can be applied to other formulas in the antecedent
or succedent, respectively, because we consider their order to be irrelevant (a set).

Example 3. A very simple propositional proof of the formula

v2 ≤ 10 ∧ b > 0→ b > 0 ∧ (¬(v ≥ 0) ∨ v2 ≤ 10) (1)

is shown in Fig. 2. The proof starts with the desired proof goal as a sequent at the
bottom:

v2 ≤ 10 ∧ b > 0→ b > 0 ∧ (¬(v ≥ 0) ∨ v2 ≤ 10).

and proceeds by applying suitable sequent proof rules upwards until we run out of
subgoals and have finished the proof.

∗
id v2 ≤ 10, b > 0 ` b > 0
∧Lv2 ≤ 10 ∧ b > 0 ` b > 0

∗
id v2 ≤ 10, b > 0 ` ¬(v ≥ 0), v2 ≤ 10
∧Lv2 ≤ 10 ∧ b > 0 ` ¬(v ≥ 0), v2 ≤ 10
∨Rv2 ≤ 10 ∧ b > 0 ` ¬(v ≥ 0) ∨ v2 ≤ 10

∧R v2 ≤ 10 ∧ b > 0 ` b > 0 ∧ (¬(v ≥ 0) ∨ v2 ≤ 10)
→R ` v2 ≤ 10 ∧ b > 0→ b > 0 ∧ (¬(v ≥ 0) ∨ v2 ≤ 10)

Figure 2: A simple propositional example proof in sequent calculus

The first (i.e., bottom most) proof step applies proof rule →R to turn the implica-
tion (→) to the sequent level by moving its left-hand side into the assumptions tracked
in the antecedent. The next proof step applies rule ∧R to split the proof into the left
branch for showing that conjunct b > 0 follows from the assumptions in the antecedent
and into the right branch for showing that conjunct ¬(v ≥ 0) ∨ v2 ≤ 10 follows from
the antecedent also. On the left branch, the proof closes with an axiom id after splitting
the conjunction ∧ in the antecedent into its conjuncts with rule ∧L. We mark closed
proof goals with ∗, to indicate that we did not just stopped writing but that a subgoal
is actually proved successfully. It makes sense that the left branch closes by the axiom
rule id, because its assumption b > 0 in the antecedent trivially implies the formula
b > 0 in the succedent, because both formulas are identical. The right branch closes
with an axiom id after splitting the disjunction (∨) in the succedent with rule ∨R and
then splitting the conjunction (∧) in the antecedent with rule ∧L. On the right branch,
the first assumption formula v2 ≤ 10 in the antecedent trivially implies the last formula
in the succedent v2 ≤ 10, because both are identical, so the axiom rule id applies. Now

15-424 LECTURE NOTES ANDRÉ PLATZER

Truth & Proof L6.11

that all branches of the proof have closed (with id and marked by ∗), we know that all
leaves at the top are valid, and, hence, since the premises are valid, each application
of a proof rule ensures that their respective conclusions are valid also, by soundness.
By recursively following this proof from the leaves at the top to the original root at the
bottom, we conclude that the original goal at the bottom is valid and formula (1) is,
indeed, true under all circumstances (valid). And that is what we set out to prove, that
formula (1) is valid, which the proof in Fig. 2 justifies.

While this proof does not prove any particularly exciting formula, it still shows how
a proof can be built systematically in the dL calculus and gives an intuition as to how
validity is inherited from the premises to the conclusions. Note that the proof has been
entirely systematic. All we did to come up with it was successively inspect the top-
level operator in one of the logical formulas in the sequent and apply its corresponding
propositional proof rule to find the resulting subgoals. All the while we were doing
this, we carefully watched to see if the same formula shows up in the antecedent and
succedent, for then the axiom rule id closes that subgoal. There would be no point in
proceeding with any other proof rule if the id rule closes a subgoal.

Most interesting formulas will not be provable with the sequent proof rules we have
seen so far, because those were only for propositional connectives. Next, we, thus, set
out to find sequent proof rules for the other operators of differential dynamic logic.

6 Soundness

First, though, notice that the sequent proof rules are sound [Pla10]. We consider only
one of the proof rules here to show how soundness works. Soundness is crucial, how-
ever, so you are invited to prove soundness for the other rules (Exercise 3).

Proof. The proof rule ∧R is sound. For this, consider any instance for which both
premises Γ ` P,∆ and Γ ` Q,∆ are valid and show that the conclusion Γ ` P ∧Q,∆
is valid. To show the latter, consider any state ω. If there is a formula F ∈ Γ in
the antecedent that is not true in ω (i.e. ω 6∈ [[F]]) there is nothing to show, because
ω ∈ [[(Γ ` P ∧Q,∆)]] then holds trivially, because not all assumptions in Γ are satis-
fied in ω. Likewise, if there is a formula G ∈ ∆ in the succedent that is true in ω (i.e.
ω ∈ [[G]]) there is nothing to show, because ω ∈ [[(Γ ` P ∧Q,∆)]] then holds trivially, be-
cause one of the formulas in the succedent is already satisfied in ω. Hence, the only
interesting case to consider is the case where all formulas in F ∈ Γ are true in ω and all
formulas G ∈ ∆ are false. In that case, since both premises were assumed to be valid,
and Γ is true in ω but ∆ false in ω, the left premise implies that ω ∈ [[P]] and the right
premise implies that ω ∈ [[Q]]. Consequently, ω ∈ [[P ∧Q]] by the semantics of ∧. Thus,
ω ∈ [[(Γ ` P ∧Q,∆)]]. As the state ω was arbitrary, this implies � (Γ ` P ∧Q,∆), i.e.
the conclusion of the considered instance of ∧R is valid.

15-424 LECTURE NOTES ANDRÉ PLATZER

L6.12 Truth & Proof

7 Proofs with Dynamics

Now that we identified a left and a right proof rule for all propositional connectives
we could literally continue the logical guiding principle of connectivity and proceed to
also identify a left and a right proof rule for all operators in the modalities. For example
a pair of rules for nondeterministic choices in box modalities:

[∪]R
Γ ` [α]P ∧ [β]P,∆

Γ ` [α ∪ β]P,∆

[∪]L
Γ, [α]P ∧ [β]P ` ∆

Γ, [α ∪ β]P ` ∆

These rules directly follow from the axioms from Lecture 5 on Dynamical Systems
& Dynamic Axioms, though, and would, thus, lead to quite some unnecessary dupli-
cation of concepts.5 Furthermore, such a list of sequent rules is less flexible than the
axioms from Lecture 5 on Dynamical Systems & Dynamic Axioms are. The sequent
rules [∪]R,[∪]L can only be applied when a nondeterministic choice is at the top-level
position of a sequent, not when it occurs somewhere in a subformula such as in the fol-
lowing sequent near the bottom of the proof of single-hop bouncing balls from Lecture
5:

A ` [x′′ = −g][?x = 0; v :=−cv ∪ ?x ≥ 0]B(x, v) (2)

Thus, instead of writing down a pair of (rather redundant and quite inflexible) se-
quent rules for each dynamic axiom, we instead cover them all at once. The key obser-
vation was already phrased in Lecture 5:

Note 5 (Substituting equals for equals). If an equivalence P ↔ Q is a valid formula
then any occurrence of its left-hand side P can be replaced by its right-hand side Q (or vice
versa), equivalently.

For example, using at the underlined position in the middle of dL formula (2) the
equivalence

[?x = 0; v :=−cv ∪ ?x ≥ 0]B(x, v)↔ [?x = 0; v :=−cv]B(x, v) ∧ [?x ≥ 0]B(x, v) (3)

that is an instance of axiom [∪] [α ∪ β]P ↔ [α]P ∧ [β]Q, the formula (2) is equivalent to

A ` [x′′ = −g]
(
[?x = 0; v :=−cv]B(x, v) ∧ [?x ≥ 0]B(x, v)

)
(4)

because (4) is constructed from (2) by replacing the left-hand side of equivalence (3) by
its right-hand side.

This intuition serves us well and is perfectly sufficient for all practical purposes.
Logic is ultimately about precision, though, which is why we elaborate Note 5 as fol-
lows:

5Note the minor nuance that applying rule∧R to the premise of [∪]R will split the proof into two premises
while applying ∧L to the premise of [∪]L will not.

15-424 LECTURE NOTES ANDRÉ PLATZER

http://symbolaris.com/course/fcps16/05-dynax.pdf
http://symbolaris.com/course/fcps16/05-dynax.pdf
http://symbolaris.com/course/fcps16/05-dynax.pdf
http://symbolaris.com/course/fcps16/05-dynax.pdf
http://symbolaris.com/course/fcps16/05-dynax.pdf
http://symbolaris.com/course/fcps16/05-dynax.pdf

Truth & Proof L6.13

Lemma 4 (Contextual equivalence). Contextual equivalence rewriting rules are sound:

CER
Γ ` C(Q),∆ P ↔ Q

Γ ` C(P),∆

CEL
Γ, C(Q) ` ∆ P ↔ Q

Γ, C(P) ` ∆

Here we readC() as the context in which the formula P occurs in the formulaC(P) and
read C(Q) as the result of replacing P in that context C() by Q. While a concise tech-
nical treatment and precise definitions of contexts and soundness proof for CER,CEL is
surprisingly simple [Pla15], this intuitive understanding is enough for our purposes. If
P and Q are equivalent (second premise of CER and of CEL), then we can replace P by
Q no matter in what context C() they occur in the sequents in the succedent (CER) or
antecedent (CEL), respectively. These contextual equivalence rules provide the perfect
lifting device to use all equivalence axioms in context in any proof.

Having said that, we should still take care to use the axioms in the direction that
actually simplifies the problem at hand. The dL axioms such as axiom [∪] are primarily
meant to be used for replacing the left-hand side [α ∪ β]P by the structurally simpler
right-hand side [α]P ∧ [β]P , because that direction of use assigns meaning to [α ∪ β]P
in logically simpler terms, i.e. as a structurally simpler logical formula. Furthermore,
that direction reduces a dL formula to a formula with more formulas but smaller hybrid
programs, which will terminate after finitely many such reductions.

Finally note that we will usually not explicitly mention the use of CEL and CER in
proofs but leave it at a mention of the axiom that they invoked. For example, the se-
quent proof step reducing conclusion (2) to premise (4) using axiom [∪] (and, of course,
the implicit rule CER) would simply be written:

[∪]
A ` [x′′ = −g]

(
[?x = 0; v :=−cv]B(x, v) ∧ [?x ≥ 0]B(x, v)

)
A ` [x′′ = −g][?x = 0; v :=−cv ∪ ?x ≥ 0]B(x, v)

In fact the full proof in Lecture 5 can suddenly be made sense of as a sequent proof in
this way.

As a very simple example of a proof, see Fig. 3. This proof is not very interesting.

` v2 ≤ 10 ∧ −(−b) > 0→ b > 0 ∧ (¬(v ≥ 0) ∨ v2 ≤ 10)
[:=] ` [c := 10]

(
v2 ≤ 10 ∧ −(−b) > 0→ b > 0 ∧ (¬(v ≥ 0) ∨ v2 ≤ c)

)
[:=] ` [a :=−b][c := 10]

(
v2 ≤ 10 ∧ −a > 0→ b > 0 ∧ (¬(v ≥ 0) ∨ v2 ≤ c)

)
[;] ` [a :=−b; c := 10]

(
v2 ≤ 10 ∧ −a > 0→ b > 0 ∧ (¬(v ≥ 0) ∨ v2 ≤ c)

)
Figure 3: A simple dynamics example proof in sequent calculus

Incidentally, though, the proof in Fig. 3 ends with a premise at the top that is identical

15-424 LECTURE NOTES ANDRÉ PLATZER

http://symbolaris.com/course/fcps16/05-dynax.pdf

L6.14 Truth & Proof

to the (provable) conclusion at the bottom of Fig. 2. So gluing both proofs together leads
to a proof of the conclusion at the bottom of Fig. 3:

[a :=−b; c := 10]
(
v2 ≤ 10 ∧ −a > 0→ b > 0 ∧ (¬(v ≥ 0) ∨ v2 ≤ c)

)
The proof in Fig. 3 ends in a formula mentioning −(−b) > 0 while the proof in Fig. 2
starts with a formula mentioning b > 0 in the same place. Both formulas are, of course,
equivalent, but, in order to really glue both proofs, we still need to add a proof rule for
this arithmetic transformation. We could add the following special-purpose proof rule
for that (Exercise 1), but will ultimately decide on adding a more powerful proof rule
instead.

Γ, θ > 0 ` ∆

Γ,−(−θ) > 0 ` ∆

8 Quantifier Proof Rules

When trying to make the proof for the bouncing ball from Lecture 5 on Dynamical
Systems & Dynamic Axioms systematic by turning it into a sequent calculus proof,
the first propositional step succeeds, then a couple of steps succeed for splitting the
hybrid program, but, ultimately, the differential equation solution axiom [′] produces a
quantifier for time that needs to be handled. And, of course, a mere inspection of the
syntax of dL shows that there are logical operators that have no proof rules yet, namely
the quantifiers.

Note 7 (Quantifier sequent calculus proof rules).

∀R
Γ ` p(y),∆

Γ ` ∀x p(x),∆
(y 6∈ Γ,∆)

∀L
Γ, p(e) ` ∆

Γ, ∀x p(x) ` ∆

∃R
Γ ` p(e),∆

Γ ` ∃x p(x),∆

∃L
Γ, p(y) ` ∆

Γ,∃x p(x) ` ∆
(y 6∈ Γ,∆)

The quantifier proof rules are listed in Fig. 8 and work much as in mathematics. Con-
sider the proof rule ∀R, where we want to show a universally quantified property.
When a mathematician wants to show a universally quantified property ∀x p(x) to hold,
he could choose a fresh symbol6 y and set out to prove that p(y) holds. Once he found
a proof for p(y), the mathematician would remember that y was arbitrary and his proof
did not assume anything special about the value of y. So he would conclude that p(y)
must indeed hold for all y, and that, hence, ∀x p(x) holds true. For example, to show
that the square of all numbers is nonnegative, a mathematician could start out by say-
ing “let y be an arbitrary number”, prove y2 ≥ 0 for y, and then conclude ∀x (x2 ≥ 0),
since y was arbitrary. Proof rule ∀R makes this reasoning formally rigorous. It chooses

6In logic, these fresh symbols are known as Skolem function symbol or Herbrand function symbol, except
that here we can just use fresh variables for the same purpose.

15-424 LECTURE NOTES ANDRÉ PLATZER

http://symbolaris.com/course/fcps16/05-dynax.pdf
http://symbolaris.com/course/fcps16/05-dynax.pdf

Truth & Proof L6.15

a new variable symbol y and replaces the universally quantified formula in the succe-
dent by a formula for y. Notice, of course, that it is important to choose a new symbol y
that has not been used free anywhere else in the sequent before. Otherwise, we would
assume special properties about y in Γ,∆ that would not be justified to assume.

Consider proof rule ∃R, where we want to show an existentially quantified prop-
erty. When a mathematician proves ∃x p(x), he could directly produce any term e as
a witness for this existential property and prove that, indeed, p(e), for then he would
have shown ∃x p(x) with this witness. For example, to show that there is a number
whose cube is less than its square, a mathematician could start by saying “let me choose,
say, 2−1

2 and show the property for 2−1
2 ”. Then he could prove (2−1

2)3 < 0.52, because
0.125 < 0.25, and conclude that there, thus, is such a number, i.e., ∃x (x3 < x2), because
2−1

2 was a perfectly good witness for that. Proof rule ∃R does that. It allows the choice
of any term e for x and accepts a proof of p(e) as a proof of ∃x p(x).

However note that the claim “e is a witness” may turn out to be wrong, for ex-
ample, the choice 2 for x would have been a pretty bad start for attempting to show
∃x (x3 < x2). Consequently, proof rule ∃R is sometimes discarded in favor of a rule that
keeps both options p(e) and ∃x p(x) in the succedent. KeYmaera X instead allows undo-
ing proof steps. If the proof with e is successful, the sequent is valid and the part of the
proof can be closed successfully. If the proof with e later turns out to be unsuccessful,
another proof attempt can be started.

This approach already hints at a practical problem. If we are very smart about our
choice of the witness e, rule ∃R leads to very short and elegant proofs. If not, we may
end up going in circles without much progress in the proof. That is why KeYmaera X
allows you to specify a witness if you can find one (and you should if you can, be-
cause that gives significantly faster proofs) but also allows you to keep going without a
witness, e.g., by applying axioms to the formula p(e) without touching the quantifier.

Rules ∀L,∃L are dual to ∃R,∀L. Consider proof rule ∀L, where we have a universally
quantified formula in the assumptions (antecedent) that we can use, and not in the
succedent, which we want to show. In mathematics, when we know a universal fact,
we can use this knowledge for any particular instance. If we know that all positive
numbers have a square root, then we can also use the fact that 5 has a square root,
because 5 is a positive number. Hence from assumption ∀x (x > 0→ hasSqrt(x)) in the
antecedent, we can also assume the particular instance 5 > 0→ hasSqrt(5)) that uses 5
for x. Rule ∀L can produce an instance p(e) of the assumption ∀x p(x) for an arbitrary
term e.

Consider proof rule ∃L in which we can use an existentially quantified formula from
the antecedent. In mathematics, if we know an existential fact, then we can give a name
to the object that we then know does exist. If we know that there is a smallest integer
less than 10 that is a square, we can call it y, but we cannot denote it by a different term
like 5, because 5 may be (and in fact is) the wrong answer. Rule ∃L gives a fresh name
y to the object that exists. Since it does not make sense to give a different name for the
same existing object later, ∃x p(x) is removed from the antecedent when adding p(y) by
∃L.

15-424 LECTURE NOTES ANDRÉ PLATZER

L6.16 Truth & Proof

9 A Sequent Proof for a Non-Bouncing Ball

Recall the bouncing ball abbreviations from Lecture 5:

A
def≡ 0 ≤ x ∧ x = H ∧ v = 0 ∧ g > 0 ∧ 1 ≥ c ≥ 0

B(x, v)
def≡ 0 ≤ x ∧ x ≤ H

(x′′ = −g)
def≡ (x′ = v, v′ = −g)

And the single-hop bouncing ball formula from Lecture 5:

A→ [x′′ = −g; (?x = 0; v :=−cv ∪ ?x ≥ 0)]B(x, v)

This time, we include the evolution domain but leave out the discrete part:

A→ [x′′ = −g&x ≥ 0]B(x, v) (5)

Let there be proof, this time a proper sequent proof:

∗
RA, r≥0 ` 0≤r≤r

A, r≥0, H − g
2s

2≥0 ` B(H − g
2r

2,−gt)
[:=]A, r≥0, [x :=H − g

2s
2]x≥0 ` [x :=H − g

2r
2]B(x, v)

→LA, r≥0, 0≤r≤r → [x :=H − g
2s

2]x≥0 ` [x :=H − g
2r

2]B(x, v)
∀L A, r≥0, ∀0≤s≤r [x :=H − g

2s
2]x≥0 ` [x :=H − g

2r
2]B(x, v)

→R A, r≥0 ` ∀0≤s≤r [x :=H − g
2s

2]x≥0→ [x :=H − g
2r

2]B(x, v)
→R A ` r≥0→ (∀0≤s≤r [x :=H − g

2s
2]x≥0→ [x :=H − g

2r
2]B(x, v))

∀R A ` ∀t≥0 (∀0≤s≤t [x :=H − g
2s

2]x≥0→ [x :=H − g
2 t

2]B(x, v))
[′] A ` [x′′ = −g&x≥0]B(x, v)
→R ` A→ [x′′ = −g&x≥0]B(x, v)

This proof boldly stated that the left premise closes, except that

A, r≥0 ` 0≤r≤r

is not exactly an instance of the id rule. So even here we need simple arithmetic to
conclude that 0 ≤ r ≤ r is equivalent to r ≥ 0 by reflexivity and flipping sides, at which
point the left premise turns into a formula that can be closed by the id rule:

id
∗

A, r≥0 ` r≥0

A full formal proof and a KeYmaera X proof, thus, need an extra proof step of arithmetic
in the left premise. In paper proofs, we will frequently accept such minor steps as
abbreviations but always take care to write down the reason. In the above example, we
might, for example remark the arithmetic reason “by reflexivity of ≤ and by flipping
0 ≤ r to r ≥ 0”.

15-424 LECTURE NOTES ANDRÉ PLATZER

http://symbolaris.com/course/fcps16/05-dynax.pdf
http://symbolaris.com/course/fcps16/05-dynax.pdf

Truth & Proof L6.17

The right premise is

A, r≥0, H − g

2
s2 ≥ 0 ` B(H − g

2
r2,−gt)

which, when resolving abbreviations turns into

0 ≤ x ∧ x = H ∧ v = 0 ∧ g > 0 ∧ 1 ≥ c ≥ 0, r≥0, H − g

2
s2 ≥ 0 ` 0 ≤ H − g

2
r2 ∧H − g

2
r2 ≤ H

This sequent proves using ∧R plus simple arithmetic for the left branch

0 ≤ x ∧ x = H ∧ v = 0 ∧ g > 0 ∧ 1 ≥ c ≥ 0, r≥0, H − g

2
s2 ≥ 0 ` 0 ≤ H − g

2
r2

resulting from ∧R. We should again remark the arithmetic reason as “by flipping 0 ≤
H − g

2r
2 to H − g

2r
2 ≥ 0”. Some more arithmetic is needed on the right branch resulting

from ∧R:

0 ≤ x ∧ x = H ∧ v = 0 ∧ g > 0 ∧ 1 ≥ c ≥ 0, r≥0, H − g

2
s2 ≥ 0 ` H − g

2
r2 ≤ H

where we should remark the arithmetic reason “g > 0 and r2 ≥ 0”. Finishing the above
sequent proof up as discussed for the right premise, thus, shows that dL formula (5) at
the conclusion of the proof is provable.

Throughout this course, you are strongly advised to write down such arithmetic rea-
sons in your paper proofs to justify that the arithmetic is valid. KeYmaera X provides a
number of ways for proving arithmetic that will be discussed next.

10 Real Arithmetic

What, in general, can be done to prove real arithmetic? We managed to convince our-
selves with ad-hoc arithmetic reasons that the simple arithmetic in the above proofs
was fine. But that is neither a proper proof rule nor should we expect to get away with
such simple arithmetic arguments for the full complexity of CPS.

Later lectures will discuss the handling of real arithmetic in much more detail. For
now, the focus is on the most crucial elements for proving CPS. Differential dynamic
logic and KeYmaera X make use of a fascinating miracle: the fact that first-order logic
of real arithmetic, however challenging it might sound, is perfectly decidable [Tar51].
First-order logic of real arithmetic (FOLR) is the fragment of dL consisting of quantifiers
over reals and propositional connectives of polynomial (or rational) term arithmetic.
The most immediate way of incorporating uses of real-arithmetic reasoning into our
proofs is, thus, by the rule R that allows proofs of all sequents with formulas in FOLR
that are valid, which is decidable:

R
Γ ` ∆

(
∧
P∈Γ

P →
∨
Q∈∆

Q is valid in FOLR)

In a nutshell, the notation QE(P) denotes the use of real arithmetic reasoning on
formula P . For a formula P of first-order real arithmetic, QE(P) is a logical formula
that is equivalent to P but simpler, because QE(P) is quantifier-free.

15-424 LECTURE NOTES ANDRÉ PLATZER

L6.18 Truth & Proof

Expedition 1 (Quantifier elimination). Tarski’s seminal result proves quantifier
elimination for real arithmetic.

Definition 5 (Quantifier elimination). A first-order logic theory (such as FOLR)
admits quantifier elimination if, with each formula P , a quantifier-free formula
QE(P) can be associated effectively that is equivalent, i.e. P ↔ QE(P) is valid
(in that theory).

Theorem 6 (Tarski [Tar51]). The first-order logic of real arithmetic admits quantifier
elimination and is, thus, decidable.

That is, there is an algorithm that accepts any formula P in FOLR as input and
computes a formula QE(P) in FOLR that is equivalent to P but quantifier-free and
does not mention new symbols either.

The operation QE can further be assumed to evaluate ground formulas (i.e.,
without variables) such as 1+9

4 < 2 + 1, yielding a decision procedure for closed
formulas of this theory (i.e., formulas without free variables). For a closed for-
mula P , all it takes is to compute its quantifier-free equivalent QE(P) by quantifier
elimination. The closed formula P is closed, so has no free variables or other free
symbols, and neither will QE(P). Hence, P as well as its equivalent QE(P) are
either equivalent to true or to false . Yet, QE(P) is quantifier-free, so which one it
is can be found out simply by evaluating the (variable-free) concrete arithmetic in
QE(P).

Example 7. Quantifier elimination yields, e.g., the following equivalence by real arith-
metic:

QE(∃x (ax+ b = 0)) ≡ (a 6= 0 ∨ b = 0)

Both sides are easily seen to be equivalent, i.e.

� ∃x (ax+ b = 0)↔ (a 6= 0 ∨ b = 0)

because a linear equation with nonzero inhomogeneous part has a solution iff its linear
part is nonzero as well. The left-hand side of the equivalence may be hard to evaluate,
because it conjectures the existence of an x and it is not clear how we might get such an
x. The right-hand side, instead, is trivial to evaluate, because it is quantifier-free and
directly says to compare the values of a and b to zero and that an x such that ax+ b = 0
will exist if and only if a 6= 0 or b = 0. This is easy to check at least if a, b are either
concrete numbers or fixed parameters for your CPS. Then all you need to do is make
sure they satisfy these constraints.

Correspondingly, quantifier elimination also yields

QE(∀x (ax+ b 6= 0)) ≡ (a = 0 ∧ b 6= 0)

Where, again, both sides are easily seen to be equivalent. Which proves, the following
validity:

� a = 0 ∧ b 6= 0→ ∀x (ax+ b 6= 0)

15-424 LECTURE NOTES ANDRÉ PLATZER

Truth & Proof L6.19

Now, if we have quantifiers, QE can remove them for us. But we first need quanti-
fiers. Rules ∀R,∃R,∀L,∃R went through a lot of trouble to get rid of the quantifiers in the
first place. Oh my! That makes it kind of hard to eliminate them equivalently later on.
Certainly the proof rules in Fig. 8 have not been particularly careful about eliminating
quantifiers equivalently. Just think of what might happen if we did try to use ∃R with
the wrong witness and then weaken the ∃x p(x) away. That is cheaper than quantifier
elimination, but hardly as precise and useful.

But if we misplaced a quantifier using the rules from Fig. 8, then all we need to do is
to dream it up again and we are in business for eliminating quantifiers by QE. The key
to understanding how that works is to recall that the fresh (Skolem) variable symbols
introduced by ∀R were originally universal. And, in fact, whether they were or not, we
can always prove a property by proving it with an extra universal quantifier ∀x around.

∀i
Γ ` ∀xP,∆

Γ ` P,∆
With the rule ∀i, we can reintroduce a universal quantifier, which can then promptly

be eliminated again by QE. Wait, why did it make sense to first swallow a quantifier
with the lightweight rule ∀R and then later reintroduce it with ∀i and then eliminate it
again with the big steamroller in the form of QE?

Before you read on, see if you can find the answer for yourself.

15-424 LECTURE NOTES ANDRÉ PLATZER

L6.20 Truth & Proof

It can be pretty useful to get quantifiers out of the way first using the rules ∀R,∃R,∀L,∃L,
because other sequent rules such as propositional rules only work in the top-level, so
quantifiers need to get out of the way before any other proof rules could be applied.7 If
the formula underneath the quantifier contains modalities with hybrid programs, then
that is a bit much to ask from quantifier elimination to solve them for us as well. So the
key is to first get rid of quantifiers by using extra symbols, work out the proof argu-
ments for the remaining hybrid program modalities and then reintroduce quantifiers
by ∀i to ask quantifier elimination for the answer to the remaining real arithmetic.

11 Instantiating Real Arithmetic

Real arithmetic can be very challenging. That does not come as a surprise, because
cyber-physical systems and the behavior of dynamical systems themselves is challeng-
ing. It is amazing that differential dynamic logic reduces challenging questions about
CPS to just plain real arithmetic. Of course, that means that you may be left with
challenging arithmetic, of quite noticeable computational complexity. This is one part
where you can use your creativity to master challenging verification questions by help-
ing KeYmaera X figure them out. While there will soon be more tricks in your toolbox
to overcome the challenges of arithmetic, we discuss some of them in this lecture.

Providing instantiations for quantifier rules ∃R,∀L can significantly speed up real
arithmetic decision procedures. The proof in Sect. 9 instantiated the universal quantifier
∀s for an evolution domain constraint by the end point r of the time interval using
quantifier proof rule ∀L. This is a very common simplification that usually speeds up
arithmetic significantly (Note 10). It does not always work, because the instance one
guesses may not always be the right one. Even worse, there may not always be a single
instance that is sufficient for the proof, but that is a phenomenon that later lectures will
examine.

7The exception are contextual equivalence rules CER,CEL, which, fortunately, can even proceed within
the context of a quantifier. This can be particularly helpful for existential quantifiers.

15-424 LECTURE NOTES ANDRÉ PLATZER

Truth & Proof L6.21

Note 10 (Extreme instantiation). The proof rule ∀L for universal quantifiers in the an-
tecedent as well as the rule ∃R for existential quantifiers in the succedent allow instantia-
tion of the quantified variable x with any term e. This instantiation is very helpful if only
a single instance e is important for the argument.

This happens often for quantifiers coming from the handling of evolution domains in
proof rule [′] where an extremal value for time is all it takes. The proof steps that often help
then is instantiation of intermediate time s by the end time t:

∗
Γ, t≥0 ` 0≤t≤t, [x := y(t)]P

. . .
Γ, t≥0, [x := y(t)]Q ` [x := y(t)]P

→LΓ, t≥0, 0≤t≤t→ [x := y(t)]Q ` [x := y(t)]P
∀L Γ, t≥0, ∀0≤s≤t [x := y(s)]Q ` [x := y(t)]P
→R Γ, t≥0 ` (∀0≤s≤t [x := y(s)]Q)→ [x := y(t)]P
→R Γ ` t≥0→

(
(∀0≤s≤t [x := y(s)]Q)→ [x := y(t)]P

)
∀R Γ ` ∀t≥0

(
(∀0≤s≤t [x := y(s)]Q)→ [x := y(t)]P

)
[′] Γ ` [x′ = f(x) &Q]P

This happens so frequently that KeYmaera X defaults to just using this instantiation. Sim-
ilar instantiations can simplify arithmetic in other cases as well.

12 Weakening Real Arithmetic

Often times it is very useful to just drop arithmetic assumptions that are irrelevant for
the proof to make sure they are no distraction for real arithmetic decision procedures.

In the proof in Sect. 9, the left premise was

A, r≥0 ` 0≤r≤r

The proof of this sequent did not make use of A at all. Here, the proof worked easily.
But if A were a very complicated formula, then proving the same sequent might have
been very difficult, because our proving attempts could have been distracted by the
presence of A and all the lovely assumptions it provides. We might have applied lots of
proof rules toA before finally realizing that the sequent proves because of r≥0 ` 0≤r≤r
alone.

The same kind of distraction can happen in decision procedures for real arithmetic,
sometimes shockingly so [Pla10, Chapter 5]. Consequently, it often saves a lot of proof
effort to simplify irrelevant assumptions away as soon as they have become unneces-
sary. Fortunately, sequent calculus comes with a general-purpose proof rule for the job
called weakening (WL,WR elaborated in Sect. 13), which we can use on our example
from the left premise in the proof of Sect. 9:

r≥0 ` 0≤r≤r
WLA, r≥0 ` 0≤r≤r

15-424 LECTURE NOTES ANDRÉ PLATZER

L6.22 Truth & Proof

You are generally advised to get rid of assumptions that you no longer need. This
will help you manage the relevant facts about your CPS, will make sure you stay on
top of your CPS agenda, and will also help the arithmetic in KeYmaera X to succeed
much quicker. Just be careful not to hide an assumption that you still need. But if you
accidentally do, that can also be a valuable insight, because you found out what the
safety of your system critically depends on.

13 Structural Proof Rules

The antecedent and succedent of a sequent are considered as sets. So the order of for-
mulas is irrelevant, and we implicitly adopt what is called the exchange rule and do not
distinguish between the following two sequents

Γ, A,B ` ∆ and Γ, B,A ` ∆

ultimately sinceA∧B andB∧A are equivalent anyhow, nor do we distinguish between

Γ ` C,D,∆ and Γ ` D,C,∆

ultimately since C ∨ D and D ∨ C are equivalent. Antecedent and succedent are con-
sidered as sets, not multisets, so we implicitly adopt what is called the contraction rule
and do not distinguish between the following two sequents

Γ, A,A ` ∆ and Γ, A ` ∆

because A ∧A and A are equivalent, nor do we distinguish between

Γ ` C,C,∆ and Γ ` C,∆

because C ∨C and C are equivalent. We could adopt these exchange rules and contrac-
tion rules explicitly, but usually leave them implicit:

PR
Γ ` Q,P,∆
Γ ` P,Q,∆

PL
Γ, Q, P ` ∆

Γ, P,Q ` ∆

cR
Γ ` P, P,∆

Γ ` P,∆

cL
Γ, P, P ` ∆

Γ, P ` ∆

The only structural rule of sequent calculus that we will find reason to use explicitly
in practice is the weakening proof rule (alias hide rule) that can be used to remove or hide
formulas from the antecedent (WL) or succedent (WR), respectively:

WR
Γ ` ∆

Γ ` P,∆

WL
Γ ` ∆

Γ, P ` ∆

Weakening rules are sound, since it is fine (in all structural logics) to prove a sequent
with more formulas in the antecedent or succedent by a proof that uses only some of

15-424 LECTURE NOTES ANDRÉ PLATZER

Truth & Proof L6.23

those formulas. This is different in substructural logics such as linear logic. Proof rule
WL proves the conclusion Γ, P ` ∆ from the premise Γ ` ∆, which dropped the as-
sumption P . Surely, if premise Γ ` ∆ is valid, then conclusion Γ, P ` ∆ is valid as well,
because it even has one more (unused) assumption available, namely P . Proof rule WR
proves the conclusion Γ ` P,∆ from the premise Γ ` ∆, which is fine because Γ ` ∆
just has one less (disjunctive) option in its succedent. For this, recall that succedents
have a disjunctive meaning.

At first sight, weakening may sound like a stupid thing to do in any proof, because
rule WL discards available assumptions (P in the antecedent) and rule WR discards
available options (P in the succedent) for proving the statement. This seems to make it
harder to prove the statement after using a weakening rule. But weakening is actually
useful for managing computational and conceptual proof complexity by enabling us
to throw away irrelevant assumptions. These assumptions may have been crucial for
another part of the proof, but have just become irrelevant for the particular sequent at
hand, which can, thus, be simplified to Γ ` ∆. Weakening, thus, streamlines proofs,
which can, e.g., also help speed up arithmetic immensely (Sect. 12).

Of course, the oppose of the weakening rules would be terribly unsound. We cannot
just invent extra assumptions out of thin air. But once we have the assumptions, we
are free to not use them. That is, the premise of WL implies the conclusion but not vice
versa.

14 Applying Equations by Substitution

If we have an equation x = e among our assumptions (in the antecedent), it is often sig-
nificantly more efficient to use that equation for substituting e for all other occurrences
of x instead of waiting for a real arithmetic decision procedure to figure this out. If we
have x = e among our assumptions, then any (free) occurrence of x can be replaced by
e, both in the succedent as well as in the antecedent:

=R
Γ, x = e ` p(e),∆
Γ, x = e ` p(x),∆

=L
Γ, x = e, p(e) ` ∆

Γ, x = e, p(x) ` ∆

It would be okay to use the equation in the other direction for replacing all occur-
rences of e by x, because the equation e = x is equivalent to x = e. Both proof rules,
=R and =L apply an equation x = e from the antecedent to an occurrence of x in the
antecedent or succedent to substitute e for x. By using the proof rule sufficiently often,
multiple occurrences of x in Γ and ∆ can be substituted.

Quantifier elimination would have been able to prove the same fact, but with sig-
nificantly more time and effort. So you are advised to exploit these proof shortcuts
whenever you spot them.

15-424 LECTURE NOTES ANDRÉ PLATZER

L6.24 Truth & Proof

15 Creatively Cutting Real Arithmetic

Weakening is not the only propositional proof rule that can help speed your arithmetic.
The cut rule is not just a logical curiosity, but can actually be shockingly helpful in
practice [Boo84]. It can speed up real arithmetic a lot when using a cut to replace a
difficult arithmetic formula by a simpler one that is sufficient for the proof.

For example, suppose p(x) is a big and very complicated formula of first-order real
arithmetic. Then proving the following formula

(x− y)2 ≤ 0 ∧ p(y)→ p(x)

by just real arithmetic will turn out to be surprisingly difficult and can take ages (even
if it ultimately terminates). Yet, thinking about it, (x−y)2 ≤ 0 implies that y = x, which
should make the rest of the proof easy since, p(y) should easily imply p(x) if, indeed,
x = y. How do we exhibit a proof based on these thoughts?

The critical idea to make such a proof work is to use cut for a creative cut with the
suitable arithmetic. So we choose x = y as the cut formula P in cut and proceed as
follows:

∗
R (x− y)2 ≤ 0 ` x = y

WR (x− y)2 ≤ 0 ` x = y, p(x)
WL(x− y)2 ≤ 0, p(y) ` x = y, p(x)

∗
id p(y), x = y ` p(y)
=R p(y), x = y ` p(x)
WL(x− y)2 ≤ 0, p(y), x = y ` p(x)

cut (x− y)2 ≤ 0, p(y) ` p(x)
∧L (x− y)2 ≤ 0 ∧ p(y) ` p(x)
→R ` (x− y)2 ≤ 0 ∧ p(y)→ p(x)

Indeed, the left premise proves easily using real arithmetic. The right premise proves
comparably easily as well. This proof uses proof rule =R that is discussed next. Ob-
serve that proofs like this one benefit a lot from weakening to get rid of superfluous
assumptions to simplify the resulting arithmetic.

16 Summary

The differential dynamic logic sequent proof rules that we have seen in this lecture are
summarized in Fig. 4. They are sound [Pla08]. There are further proof rules of differ-
ential dynamic logic that later lectures will examine [Pla08, Pla12b, Pla12a, Pla15]. In
addition to having seen the foundation and working principles of how systematic CPS
proofs assemble arguments, this lecture discussed techniques to tame the complexity
of arithmetic, which can become somewhat challenging for complicated systems.

15-424 LECTURE NOTES ANDRÉ PLATZER

Truth & Proof L6.25

Note 11.

¬R
Γ, P ` ∆

Γ ` ¬P,∆

¬L
Γ ` P,∆

Γ,¬P ` ∆

∧R
Γ ` P,∆ Γ ` Q,∆

Γ ` P ∧Q,∆

∧L
Γ, P,Q ` ∆

Γ, P ∧Q ` ∆

∨R
Γ ` P,Q,∆

Γ ` P ∨Q,∆

∨L
Γ, P ` ∆ Γ, Q ` ∆

Γ, P ∨Q ` ∆

→R
Γ, P ` Q,∆

Γ ` P → Q,∆

→L
Γ ` P,∆ Γ, Q ` ∆

Γ, P → Q ` ∆

id
Γ, P ` P,∆

cut
Γ ` P,∆ Γ, P ` ∆

Γ ` ∆

>R
Γ ` true,∆

⊥L
Γ, false ` ∆

∀R
Γ ` p(y),∆

Γ ` ∀x p(x),∆
(y 6∈ Γ,∆)

∀L
Γ, p(e) ` ∆

Γ, ∀x p(x) ` ∆

∃R
Γ ` p(e),∆

Γ ` ∃x p(x),∆

∃L
Γ, p(y) ` ∆

Γ,∃x p(x) ` ∆
(y 6∈ Γ,∆)

CER
Γ ` C(Q),∆ P ↔ Q

Γ ` C(P),∆

CEL
Γ, C(Q) ` ∆ P ↔ Q

Γ, C(P) ` ∆

=R
Γ, x = e ` p(e),∆
Γ, x = e ` p(x),∆

=L
Γ, x = e, p(e) ` ∆

Γ, x = e, p(x) ` ∆

Figure 4: Proof rules of the dL sequent calculus considered in this lecture

Exercises

Exercise 1. Prove soundness of the following special purpose proof rule from p. 24 and
use it to continue the proof in Fig. 3 similar to the proof in Fig. 2:

R21
Γ, θ > 0 ` ∆

Γ,−(−θ) > 0 ` ∆

Exercise 2 (*). Since we are not adding proof rule R21 from p. 24 to the dL proof cal-
culus, show how you can derive the same proof step using a creative combination of
arithmetic and the other proof rules.

Exercise 3. Prove soundness for the structural and propositional sequent proof rules
considered in this lecture.

Exercise 4. Prove soundness for the dynamic sequent proof rules that this lecture dis-
cussed briefly but did not purse. You can use a general argument how soundness of
the dynamic sequent proof rules follows from soundness of the dL axioms considered
in Lecture 5 on Dynamical Systems & Dynamic Axioms, but first need to prove sound-
ness of those dL axioms.

Exercise 5. Let y(t) be the solution at time t of the differential equation x′ = f(x) with

15-424 LECTURE NOTES ANDRÉ PLATZER

http://symbolaris.com/course/fcps16/05-dynax.pdf

L6.26 Truth & Proof

initial value y(0) = x. Show that the following sequent proof rule that checks the
evolution domain Q at the end is sound:

R22
Γ ` ∀t≥0

(
[x := y(t)](Q→ P)

)
,∆

Γ ` [x′ = θ&Q]P,∆

Would the following also be a sound axiom? Prove or disprove.

R23 [x′ = θ&Q]P ↔ ∀t≥0
(
[x := y(t)](Q→ P)

)
Exercise 6 (*). Generalize solution proof rules [′] and 〈′〉 for differential equations to the
case of differential equation systems:

x′1 = e1, . . , x
′
n = en &Q

First consider the easier case where Q ≡ true .

References

[And02] Peter B. Andrews. An Introduction to Mathematical Logic and Type Theory: To
Truth Through Proof. Kluwer, 2nd edition, 2002.

[Boo84] George Boolos. Don’t eliminate cut. Journal of Philosophical Logic, 1984. doi:
10.1007/BF00247711.

[Bus98] Samuel R. Buss. An introduction to proof theory. In Samuel R. Buss, editor,
Handbook of Proof Theory, chapter 1, pages 1–78. Elsevier, 1998.

[Gen35a] Gerhard Gentzen. Untersuchungen über das logische Schließen. I. Math.
Zeit., 39(2):176–210, 1935.

[Gen35b] Gerhard Gentzen. Untersuchungen über das logische Schließen. II. Math.
Zeit., 39(3):405–431, 1935.

[LIC12] Proceedings of the 27th Annual ACM/IEEE Symposium on Logic in Computer Sci-
ence, LICS 2012, Dubrovnik, Croatia, June 25–28, 2012. IEEE, 2012.

[Pla08] André Platzer. Differential dynamic logic for hybrid systems. J. Autom. Reas.,
41(2):143–189, 2008. doi:10.1007/s10817-008-9103-8.

[Pla10] André Platzer. Logical Analysis of Hybrid Systems: Proving Theorems for Complex
Dynamics. Springer, Heidelberg, 2010. doi:10.1007/978-3-642-14509-4.

[Pla12a] André Platzer. The complete proof theory of hybrid systems. In LICS [LIC12],
pages 541–550. doi:10.1109/LICS.2012.64.

[Pla12b] André Platzer. Logics of dynamical systems. In LICS [LIC12], pages 13–24.
doi:10.1109/LICS.2012.13.

[Pla15] André Platzer. A uniform substitution calculus for differential dynamic logic.
In Amy Felty and Aart Middeldorp, editors, CADE, volume 9195 of LNCS,
pages 467–481. Springer, 2015. doi:10.1007/978-3-319-21401-6_32.

[Tar51] Alfred Tarski. A Decision Method for Elementary Algebra and Geometry. Univer-
sity of California Press, Berkeley, 2nd edition, 1951.

15-424 LECTURE NOTES ANDRÉ PLATZER

http://dx.doi.org/10.1007/BF00247711
http://dx.doi.org/10.1007/BF00247711
http://dx.doi.org/10.1007/s10817-008-9103-8
http://dx.doi.org/10.1007/978-3-642-14509-4
http://dx.doi.org/10.1109/LICS.2012.64
http://dx.doi.org/10.1109/LICS.2012.13
http://dx.doi.org/10.1007/978-3-319-21401-6_32

	Introduction1
	Truth and Proof
	Sequents
	Proofs
	Propositional Proof Rules
	Soundness
	Proofs with Dynamics
	Quantifier Proof Rules
	A Sequent Proof for a Non-Bouncing Ball
	Real Arithmetic
	Instantiating Real Arithmetic
	Weakening Real Arithmetic
	Structural Proof Rules
	Applying Equations by Substitution
	Creatively Cutting Real Arithmetic
	Summary

