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1. Introduction

In Lecture 1, we have learned about the characteristic features of cyber-physical systems
(CPS): they combine cyber capabilities (computation and/or communication as well as
control) with physical capabilities (motion or other physical processes). Cars, aircraft,
and robots are prime examples, because they move physically in space in a way that
is determined by discrete computerized control algorithms that are adjusting the ac-
tuators (e.g., brakes) based on sensor readings of the physical state. Designing these
algorithms to control CPSs is challenging due to their tight coupling with physical be-
havior. At the same time, it is vital that these algorithms be correct, since we rely on
CPSs for safety-critical tasks like keeping aircraft from colliding.

Note 1 (Significance of CPS safety). How can we provide people with cyber-physical
systems they can bet their lives on? – Jeannette Wing

Since CPS combine cyber and physical capabilities, we need to understand both to
understand CPS. It is not enough to understand both capabilities only in isolation,
though, because we also need to understand how the cyber and the physics work to-
gether, i.e. what happens when they interface and interact, because this is what CPSs
are all about.

Note 2 (CPS). Cyber-physical systems combine cyber capabilities with physical capabili-
ties to solve problems that neither part could solve alone.

You already have experience with models of computation and algorithms for the
cyber part of CPS, because you have seen the use of programming languages for com-
puter programming in previous courses. In CPS, we do not program computers, but
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L2.2 Differential Equations & Domains

rather program CPSs instead. Hence, we program computers that interact with physics
to achieve their goals. In this lecture, we study models of physics and the most elemen-
tary part of how they can interact with the cyber part. Physics by and large is obviously
a deep subject. But for CPS one of the most fundamental models of physics is sufficient,
that of ordinary differential equations.

While this lecture covers the most important parts of differential equations, it is not to
be understood as doing complete diligence to the fascinating area of ordinary differen-
tial equations. The crucial part about differential equations that you need to get started
with the course is an intuition about differential equations as well as an understanding
of their precise meaning. This will be developed in today’s lecture. Subsequently, we
will be coming back to the topic of differential equations for a deeper understanding
of differential equations and their proof principles a number of times at a later part of
the course. The other important aspect that today’s lecture develops is first-order logic
of real arithmetic for the purpose of representing domains and domain constraints of
differential equations.

You are advised to refer back to your differential equations course and follow the
supplementary information1 available on the course web page as needed during this
course to refresh your knowledge of differential equations. We refer, e.g., to the book
by Walter [Wal98] for details and proofs about differential equations. There is a lot of
further background on differential equations in the literature [Har64, Rei71, EEHJ96].

These lecture notes are based on material on cyber-physical systems, hybrid pro-
grams, and logic [Pla12, Pla10, Pla08, Pla07]. Cyber-physical systems play an impor-
tant role in numerous domains [Pre07, LS10, Alu11, LSC+12] with applications in cars
[DGV96], aircraft [TPS98], robots [PKV09], and power plants [FKV04], chemical pro-
cesses [RKR10, KGDB10], medical models [GBF+11, KAS+11, LSC+12], and even an
importance for understanding biological systems [Tiw11].

More information about CPS can be found in [Pla10, Chapter 1]. Differential equa-
tions and domains are described in [Pla10, Chapter 2.2,2.3] in more detail.

The most important learning goals of this lecture are:

Modeling and Control: We develop an understanding of one core principle behind
CPS: the case of continuous dynamics and differential equations with evolution
domains as models for the physics part of CPS. We introduce first-order logic
of real arithmetic as the modeling language for describing evolution domains of
differential equations.

Computational Thinking: Both the significance of meaning and the descriptive power
of differential equations will play key roles, foreshadowing many important as-
pects underlying the proper understanding of cyber-physical systems. We will
also begin to learn to carefully distinguish between between syntax (which is
notation) and semantics (what carries meaning), a core principle for computer
science that continues to be crucial for CPS.

1http://symbolaris.com/course/fcps14-resources.html
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Differential Equations & Domains L2.3

CPS Skills: We develop an intuition for the continuous operational effects of CPS and
devote significant attention to understanding the exact semantics of differential
equations, which has some subtleties in store for us.

2. Differential Equations as Models of Continuous Physical
Processes

Differential equations model processes in which the (state) variables of a system evolve
continuously in time. A differential equation concisely describes how the system evolves
over time. It describes how the variables change locally, so it, basically, indicates the di-
rection in which the variables evolve at each point in space. Fig. 1 shows the respective
directions in which the system evolves by a vector at each point and illustrates one
solution as a curve in space which follows those vectors everywhere. Of course, the
figure would be rather cluttered if we would literally try to indicate the vector at each
and every point, of which there are uncountably infinitely many. But this is a shortcom-
ing only of our illustration. Differential equations actually define such a vector for the
direction of evolution at every point in space.

Figure 1: Vector field (left) and vector field with one solution of a differential equation
(right)

As an example, suppose we have a car whose position is denoted by x. How the
value of variable x changes over time depends on how fast the car is driving. Let v
denote the velocity of the car. Since v is the velocity of the car, its position x changes
such that its derivative x′ is v, which we write by the differential equation x′ = v. This
differential equation is supposed to mean that the time-derivative of the position x is
the velocity v. So how x evolves depends on v. If the velocity is v = 0, then the position
x does not change at all. If v > 0, then the position x keeps on increasing over time.
How fast x increases depends on the value of v, bigger v give quicker changes in x.

Of course, the velocity v, itself, may also be subject to change over time. The car
might accelerate, so let a denote its acceleration. Then the velocity v changes with time-
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L2.4 Differential Equations & Domains

derivative a, so v′ = a. Overall, the car then follows the differential equation (system):2

x′ = v, v′ = a

That is, the position x of the car changes with time-derivative v, which, in turn, changes
with time-derivative a.

What we mean by this differential equation, intuitively, is that the system has a vector
field where all vectors point into direction a. And that the system is always supposed
to follow exactly in the direction of those vectors at every point. What does this mean
exactly? How can we understand it doing that at all of the infinitely many points?

To sharpen our intuition for this aspect, consider a one-dimensional differential equa-
tion with a position x that changes over time t starting at initial state 1 at initial time
0. [

x′(t) = 1
4x(t)

x(0) = 1

]
For a number of different time discretization steps ∆ ∈ {4, 2, 1, 12}, Fig. 2 illustrates
what a pseudo-solution would look like that only respects the differential equation at
the times that are integer multiples of ∆ and is in blissful ignorance of the differen-
tial equation in between these grid points. The true solution of the differential equa-
tion should, however, also have respected the direction that the differential equation
prescribes at all the other uncountably infinitely time points in between. Because the
differential equation is well-behaved, these discretizations still approach the true con-
tinuous solution x(t) = e

t
4 as ∆ gets smaller.
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Figure 2: Discretizations of differential equations with discretization time step ∆

2 Note that the value of x changes over time, so it is really a function of time. Hence, the notation
x′(t) = v(t), v′(t) = a is sometimes used. It is customary, however, to suppress the argument t for time
and just write x′ = v, v′ = a instead.
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Differential Equations & Domains L2.5

3. The Meaning of Differential Equations

We can relate an intuitive concept to how differential equations describe the direction
of the evolution of a system as a vector field Fig. 1. But what exactly is a vector field?
What does it mean to describe directions of evolutions at every point in space? Could
these directions not possibly contradict each other so that the description becomes ambiguous?
What is the exact meaning of a differential equation in the first place?

The only way to truly understand any system is to understand exactly what each of
its pieces does. CPSs are demanding and misunderstandings about their effect often
have far-reaching consequences.

Note 3 (Importance of meaning). The physical impacts of CPSs do not leave much
room for failure, so we immediately want to get into the mood of consistently studying the
behavior and exact meaning of all relevant aspects of CPS.

An ordinary differential equation in explicit form is an equation y′(t) = f(t, y) where
y′(t) is meant to be the derivative of y with respect to time t and f is a function of time
t and current state y. A solution is a differentiable function Y which satisfies this equa-
tion when substituted into the differential equation, i.e., when substituting Y (t) for y
and the derivative Y ′(t) of Y at t for y′(t). In the next lecture, we will study an elegant
definition of solution of differential equations that is well-attuned with the concepts in
this class. But first, we consider the (equivalent) classical definition of solution.

Definition 1 (Ordinary differential equation). Let f : D → Rn be a function on a
domain D ⊆ R×Rn. The function Y : I → Rn is a solution on the interval I ⊆ R of
the initial value problem [

y′(t) = f(t, y)
y(t0) = y0

]
(1)

with ordinary differential equation (ODE) y′ = f(t, y), if, for all t ∈ I

1. (t, Y (t)) ∈ D,

2. time-derivative Y ′(t) exists and is Y ′(t) = f(t, Y (t)),

3. Y (t0) = y0, especially t0 ∈ I .

If f : D → Rn is continuous, then it is easy to see that Y : I → Rn is continuously
differentiable, because its derivative Y ′(t) is f(t, Y (t)). Similarly if f is k-times
continuously differentiable then Y is k + 1-times continuously differentiable. The
definition is accordingly for higher-order differential equations, i.e., differential
equations involving higher-order derivatives y(n)(t) for n > 1.

Let us consider the intuition for this definition. A differential equation (system) can
be thought of as a vector field such as the one in Fig. 1, where, at each point, the vec-
tor shows in which direction the solution evolves. At every point, the vector would
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L2.6 Differential Equations & Domains

correspond to the right-hand side of the differential equation. A solution of a differen-
tial equation adheres to this vector field at every point, i.e., the solution (e.g., the solid
curve in Fig. 1) locally follows the direction indicated by the vector of the right-hand
side of the differential equation. There are many solutions of the differential equation
corresponding to the vector field illustrated in Fig. 1. For the particular initial value
problem, however, a solution also has to start at the prescribed position y0 at time t0
and then follow the differential equations or vector field from this point. In general,
there could still be multiple solutions for the same initial value problem, but not for
well-behaved differential equations (Appendix B).

4. A Tiny Compendium of Differential Equation Examples

While cyber-physical systems do not necessitate a treatment and understanding of ev-
ery differential equation you could ever think of, they do still benefit from a working
intuition about differential equations and their relationships to their solutions.

Example 2 (A constant differential equation). Some differential equations are easy to
solve. The initial value problem [

x′(t) = 5
x(0) = 2

]
describes that x initially starts at 3 and always changes at the rate 5. It has the solution
x(t) = 5t+ 2. How could we verify that this is indeed a solution? This can be checked
easily by inserting the solution into the differential equation and initial value equation:[

(x(t))′ = (5t+ 2)′ = 5
x(0) = 5 · 0 + 2 = 2

]
Example 3 (A linear differential equation). Consider the initial value problem[

x′(t) = −2x(t)
x(1) = 5

]
in which the rate of change of x(t) depends on the current value of x(t) and is in fact
−2x(t), so the rate of change gets smaller as x(t) gets bigger. This problem has the
solution x(t) = 5e−2(t−1). The test, again, is to insert the solution into the (differential)
equations of the initial value problems and check:[

(5e−2(t−1))′ = −10e−2(t−1) = −2x(t)

x(1) = 5e−2(1−1) = 5

]
Example 4 (Another linear differential equation). The initial value problem[

x′(t) = 1
4x(t)

x(0) = 1

]
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Differential Equations & Domains L2.7

shown with different discretizations in Fig. 2 has the true continuous solution x(t) = e
t
4 ,

which can be checked in the same way as for the previous example:[
(e

t
4 )′ = e

t
4 ( t

4)′ = e
t
4
1
4 = 1

4x(t)

e
0
4 = 1

]
Example 5 (Accelerated motion on a straight line). Consider the following important
differential equation system x′ = v, v′ = a and the initial value problem

x′(t) = v(t)
v′(t) = a
x(0) = x0
v(0) = v0


This differential equation represents that the position x(t) changes with a time-derivative
equal to the respective current velocity v(t), which, in turn, changes with a time-derivative
equal to the acceleration a, which remains constant. The position and velocity start at
the initial values x0 and v0. Note that this initial value problem is a symbolic initial value
problem with symbols x0, v0 as initial values (not specific numbers like 5 and 2.3). More-
over, the differential equation has a constant symbol a, and not a specific number like
0.6, in the differential equation. In vectorial notation, the initial value problem with
this differential equation system corresponds to a vectorial system when we denote
y(t) := (x(t), v(t)), i.e., with dimension n = 2 in Def. 1: y′(t) =

(
x
v

)′
(t) =

(
v(t)
a

)
y(0) =

(
x
v

)
(0) =

(
x0
v0

)


The solution of this initial value problem is

x(t) =
a

2
t2 + v0t+ x0

v(t) = at+ v0

We can show that this is the solution by inserting the solution into the (differential)
equations of the initial value problems and checking:

(a2 t
2 + v0t+ x0)

′ = 2a
2 t+ v0 = v(t)

(at+ v0)
′ = a

x(0) = a
202 + v00 + x0 = x0

v(0) = a0 + v0 = v0


Example 6 (A two dimensional linear differential equation). Consider the differential
equation system x′ = y, y′ = −x and the initial value problem

x′(t) = y(t)
y′(t) = −x(t)
x(0) = 1
y(0) = 1
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in which the rate of change of x(t) gets bigger as y(t) gets bigger but, simultaneously,
the rate of change of y(t) is −x(t) so it gets smaller as x(t) gets bigger and vice versa.
This differential equation describes a rotational effect (Fig. 3) with solution of this initial
value being

x(t) = cos(t) + sin(t)

y(t) = cos(t)− sin(t)

We can show that this is the solution by inserting the solution into the (differential)
equations of the initial value problems and checking:

(cos(t) + sin(t))′ = − sin(t) + cos(t) = y(t)
(cos(t)− sin(t))′ = − sin(t)− cos(t) = −x(t)

x(0) = cos(0) + sin(0) = 1
y(0) = cos(0)− sin(0) = 1



Figure 3: A solution of the rotational differential equations x and y over time t (left) and
in phase space with coordinates y over x (right)

Example 7 (Time square oscillator). Consider the following differential equation system
x′(t) = t2y, y′(t) = −t2x, which explicitly mentions the time variable t, and the initial
value problem 

x′(t) = t2y
y′(t) = −t2x
x(0) = 0
y(0) = 1

 (2)

The solution shown in Fig. 4(left) illustrates that the system stays bounded but oscillates
increasingly fast. In this case, the solution is x(t) = sin

(
t3

3

)
y(t) = cos

(
t3

3

)  (3)
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Figure 4: A solution of the time square oscillator (left) and of the damped oscillator
(right) up to time 6.5

Note that there is no need to mention time variable t itself directly as we could just as
well have added an extra clock variable s with differential equation s′ = 1 and initial
value s(0) = 0 to serve as a proxy for time t. This leads to a system equivalent to (2):

x′(t) = s2y
y′(t) = −s2x
s′(t) = 1
x(0) = 0
y(0) = 1
s(0) = 0


Example 8 (Damped oscillator). Consider the linear differential equation x′ = y, y′ =
−4x− 0.8y and the initial value problem

x′(t) = y
y′(t) = −4x− 0.8y
x(0) = 1
y(0) = 0

 (4)

The solution shown in Fig. 4(right) illustrates that the dynamical system decays over
time. In this case, the explicit global solution representing the dynamical system is
more difficult.

Note 5 (Descriptive power of differential equations). As a general phenomenon, ob-
serve that solutions of differential equations can be much more involved than the differ-
ential equations themselves, which is part of the representational and descriptive power of
differential equations. Pretty simple differential equations can describe quite complicated
physical processes.
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L2.10 Differential Equations & Domains

5. Domains of Differential Equations

Now we understand exactly what a differential equation is and how it describes a con-
tinuous physical process. In CPS, however, physical processes are not running in isola-
tion but interact with cyber elements such as computers or embedded systems. When
and how do physics and cyber elements interact? The first thing we need to under-
stand for that is how to describe when physics stops so that the cyber elements take
control of what happens next. Obviously, physics does not literally stop evolving, but
rather keeps on evolving all the time. Yet, the cyber parts only take effect every now
and then, because it only provides input into physics by way of its actuators every once
in a while. So, our intuition may imagine physics “pauses” for a period of duration 0
and lets the cyber take action to influence the inputs that physics is based on. In fact,
cyber may interact with physics over a period of time or after computing for some time
to reach a decision. But the phenomenon is still the same. At some point, cyber is done
sensing and deliberating and deems it time to act. At which moment of time physics
needs to “pause” for a conceptual period of time of imaginary duration 0 to give cyber
a chance to act.

The cyber and the physics could interface in more than one way. Physics might
evolve and the cyber elements interrupt to inspect measurements about the state of
the system periodically to decide what to do next. Or the physics might trigger certain
conditions or events that cause cyber elements to compute their respective responses to
these events. Another way to look at that is that a differential equation that a system
follows forever without further intervention by anything would not describe a particu-
larly well-controlled system. All those ways have in common that our model of physics
needs to specify when it stops evolving to give cyber a chance to perform its task.

This information is what is a called an evolution domain Q of a differential equation,
which describes a region that the system cannot leave while following that particular
continuous mode of the system. If the system were ever about to leave this region, it
would stop evolving right away (for the purpose of giving the cyber parts of the system
a chance to act) before it leaves the evolution domain.

Note 6 (Evolution domain constraints). A differential equation x′ = f(x) with evo-
lution domain Q is denoted by

x′ = f(x) &Q

using a conjunctive notation (&) between the differential equation and its evolution do-
main. This notation x′ = f(x) &Q signifies that the system obeys both the differential
equation x′ = f(x) and the evolution domain Q. That is, the system follows this differen-
tial equation for any duration while inside the region Q, but is never allowed to leave the
region described by Q. So the system evolution has to stop while the state is still in Q.

If, e.g., t is a time variable with t′ = 1, then x′ = v, v′ = a, t′ = 1 & t ≤ ε describes
a system that follows the differential equation at most until time t = ε and not any

further, because the evolution domain Q
def≡ (t ≤ ε) would be violated after time ε.
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That can be a useful model for the kind of physics that gives the cyber elements a

chance to act at the latest at time ε. The evolution domain Q
def≡ (v ≥ 0), instead,

restricts the system x′ = v, v′ = a& v ≥ 0 to nonnegative velocities. Should the velocity
ever become negative while following the differential equation x′ = v, v′ = a, then the
system stops before that happens.

In the left two scenarios illustrated in Fig. 5, the system starts at time 0 inside the
evolution domainQ that is depicted as a shaded green region in Fig. 5. Then the system
follows the differential equation x′ = f(x) for any period of time, but has to stop before
it leaves Q. Here, it stops at time r0 (left) or r (middle, right) respectively.

t

x

Q

x′ = f(x)

0 r0
t

x

Q

x′ = f(x)

0 r t

x

Q

Q
x′ = f(x)

0 r s

Figure 5: System x′ = f(x) &Q follows the differential equation x′ = f(x) for any dura-
tion r but cannot leave the (shaded) evolution domain Q.

In contrast, consider the scenario shown on the right of Fig. 5. The system is not
allowed to evolve until time s, because—even if the system were back in the evolution
domain Q at that time—it has already left the evolution domain Q between time r
and s (indicated by dotted lines), which is not allowed. Consequently, the continuous
evolution on the right of Fig. 5 will also stop at time r at the latest and cannot continue
any further.

Now that we know what the evolution domain constraintQ of a differential equation
is supposed to do, the question is how we can properly describe it in a CPS model? We
will need some logic for that. For one thing, we should start getting precise about how
to describe the evolution domain Q for a differential equation. Its most critical bit are
which points satisfy Q and which ones doesn’t, which is what logic is good at making
precise.

6. Continuous Programs: Syntax

After these preparations for understanding differential equations and domains, we
start developing a programming language for cyber-physical systems. Ultimately, this
programming language of hybrid programs will contain more features than just differen-
tial equations. But this most crucial feature is what we start with in this lecture. This
course develops this programming language and its understanding and its analysis in
layers one after the other. We will discuss the principles behind its design in the next
lecture in more details and just start with continuous programs for now.
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Continuous Programs. The first element of the syntax of hybrid programs are purely
continuous programs.

Note 7. Layer 1 of hybrid programs (HPs) are continuous programs. These are defined
by the following grammar (α is a HP, x is a variable, e is any term possibly containing x,
and Q a formula of first-order logic of real arithmetic):

α ::= x′ = e&Q

This means that a hybrid programα consists of a single statement of the form x′ = e&Q.
In later lectures, we will add more statements to hybrid programs, but focus on differ-
ential equations for now. The formula Q is called evolution domain constraint of the
continuous evolution x′ = e&Q. What form Q can take will be defined below. But it has
to enable an unambiguous definition of which points satisfy Q and which points do
not. Further x is a variable but is also allowed to be a vector of variables and, then, e
is a vector of terms of the same dimension. This corresponds to the case of differential
equation systems such as:

x′ = v, v′ = a& (v ≥ 0 ∧ v ≤ 10)

Differential equations are allowed without an evolution domain constraint Q as well,
for example:

x′ = y, y′ = x+ y2

which corresponds to choosing true for Q, since the formula true is true everywhere
and, thus, actually imposes no condition on the state whatsoever.

Terms. A rigorous definition of the syntax of hybrid programs also depends on defin-
ing what a term e is and what a formula Q of first-order logic of real arithmetic is.

Definition 9 (Terms). A term e is a polynomial term defined by the grammar
(where e, ẽ are terms, x a variable, and c a rational number constant):

e, ẽ ::= x | c | e+ ẽ | e · ẽ

This means that a term e (or a term ẽ)3 is either a variable x, or a rational number
constant c ∈ Q such as 0 or 1 or 5

7 , or a sum of terms e, ẽ, or a product of terms e, ẽ,
which are again built of this form recursively. Subtraction e − ẽ is another useful case,
but it turns out that it is already included, because the subtraction term e− ẽ is already

3 From a formal languages and grammar perspective, it would be fine to use the equivalent grammar

e ::= x | c | e+ e | e · e

We use the slightly more verbose form just to emphasize that a term can be a sum e+ ẽ of any arbitrary
and possibly different terms e, ẽ and does not have to consist of sums e+ e of one and the same term e.
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Differential Equations & Domains L2.13

definable by the term e + (−1) · ẽ. That is why we will not worry about subtraction in
developing the theory, but use it in our examples regardless.

First-order Formulas. The formulas of first-order logic of real arithmetic are defined
as usual in first-order logic, except that it uses the specific language of real arithmetic,
for example e ≥ ẽ for greater-or-equal. First-order logic supports the logical connec-
tives not (¬), and (∧), or (∨), implies (→), biimplication or equivalence (↔), as well as
quantifiers for all (∀) and exists (∃).

Definition 10 (Formulas of first-order logic of real arithmetic). The formulas of
first-order logic of real arithmetic are defined by the following grammar (where P,Q
are formulas of first-order logic of real arithmetic, e, ẽ are terms, and x a variable):

P,Q ::= e = ẽ | e ≥ ẽ | ¬P | P ∧Q | P ∨Q | P → Q | P ↔ Q | ∀xP | ∃xP

The usual abbreviations are allowed, such as e ≤ ẽ for ẽ ≥ e and e < ẽ for ¬(e ≥ ẽ).

7. Continuous Programs: Semantics

Note 10 (Syntax vs. Semantics). Syntax just defines arbitrary notation. Its meaning is
defined by the semantics.

Terms. The meaning of a continuous evolution x′ = e&Q depends on understanding
the meaning of terms e. A term e is a syntactic expression. Its value depends on the
interpretation of the variables appearing in the term e. What values those variables
have changes depending on the state of the CPS. A state ω is a mapping from variables
to real numbers. The set of states is denoted S.

Definition 11 (Semantics of terms). The value of term e in state ω ∈ S is a real
number denoted [[e]]ω and is defined by induction on the structure of term e:

[[x]]ω = ω(x) if x is a variable
[[c]]ω = c if c ∈ Q is a rational constant

[[e+ ẽ]]ω = [[e]]ω + [[ẽ]]ω

[[e · ẽ]]ω = [[e]]ω · [[ẽ]]ω

That is, the value of a variable x in state ω is defined by the state ω, which is a mapping
from variables to real numbers. And the value of a term of the form e+ ẽ in a state ω is
the sum of the values of the subterms e and ẽ in ω, respectively. Likewise, the value of
a term of the form e · ẽ in a state ω is the product of the values of the subterms e and ẽ in
ω, respectively. Each term has a value in every state, because each case of the syntactic
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L2.14 Differential Equations & Domains

form of terms (Def. 9) has been given a semantics. That is, the semantics of a term is a
mapping from states to the real value that the term evaluates to in the respective state.

The value of a variable-free term like 4 + 5 · 2 does not depend on the state ω at all.
In this case, the value is 14. The value of a term with variables, like 4 + x · 2, depends
on what value the variable x has in state ω. Suppose ω(x) = 5, then [[4 + x · 2]]ω = 14.
If ν(x) = 2, then [[4 + x · 2]]ν = 8. While, technically, the state is a mapping from all
variables to real numbers, it turns out that the values it gives to most variables are
immaterial, only the values of its free variables have any influence [Pla15]. So while the
value of 4 + x · 2 very much depends on the value of x, it does not depend on the value
that variable y has since y does not even occur.

First-order Formulas. Unlike for terms, the value of a logical formula is not a real
number but instead true or false . Whether a logical formula evaluates to true or false
depends on the interpretation of its symbols. In first-order logic of real arithmetic, the
meaning of all symbols except the variables is fixed. The meaning of terms and of
formulas of first-order logic of real arithmetic is as usual in first-order logic, except that
+ really means addition, · means multiplication, ≥ means greater or equals, and that
the quantifiers ∀x and ∃x quantify over the reals. The meaning of the variables is again
determined by the state of the CPS.

For the definition of the semantics, we need state modifications, i.e. ways of changing
a given state ω around by changing the value of a variable x but leaving the values of
all other variables alone. Let ωd

x ∈ S denote the state that agrees with state ω ∈ S except
for the interpretation of variable x, which is changed to the value d ∈ R:

ωd
x(y) =

{
d if y is the variable x
ω(y) otherwise

We write ω ∈ [[F ]] to indicate that F evaluates to true in state ω and define it as follows.
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Definition 12 (First-order logic semantics). The satisfaction relation ω ∈ [[P ]] for a
first-order formula P of real arithmetic in state ω is defined inductively:

• ω ∈ [[(e = ẽ)]] iff [[e]]ω = [[ẽ]]ω
That is, an equation is true in a state ω iff the terms on both sides evaluate to
the same number.

• ω ∈ [[(e ≥ ẽ)]] iff [[e]]ω ≥ [[ẽ]]ω
That is, a greater-or-equals inequality is true in a state ω iff the term on the
left evaluate to a number that is greater or equal to the value of the right
term.

• ω ∈ [[¬P ]] iff ω 6∈ [[P ]], i.e. if it is not the case that ω ∈ [[P ]]
That is, a negated formula ¬P is true in state ω iff the formula P itself is not
true in ω.

• ω ∈ [[P ∧Q]] iff ω ∈ [[P ]] and ω ∈ [[Q]]
That is, a conjunction is true in a state iff both conjuncts are true in said state.

• ω ∈ [[P ∨Q]] iff ω ∈ [[P ]] or ω ∈ [[Q]]
That is, a disjunction is true in a state iff either of its disjuncts is true in said
state.

• ω ∈ [[P → Q]] iff ω 6∈ [[P ]] or ω ∈ [[Q]]
That is, an implication is true in a state iff either its left-hand side is false or
its right-hand side true in said state.

• ω ∈ [[P ↔ Q]] iff (ω ∈ [[P ]] and ω ∈ [[Q]]) or (ω 6∈ [[P ]] or ω 6∈ [[Q]])
That is, a biimplication is true in a state iff both sides are true or both sides
are false in said state.

• ω ∈ [[∀xP ]] iff ωd
x ∈ [[P ]] for all d ∈ R

That is, a universally quantified formula ∀xP is true in a state iff its ker-
nel P is true in all variations of the state, no matter what real number d the
quantified variable x evaluates to in the variation ωd

x.

• ω ∈ [[∃xP ]] iff ωd
x ∈ [[P ]] for some d ∈ R

That is, an existentially quantified formula ∃xP is true in a state iff its kernel
P is true in some variation of the state, for a suitable real number d that the
quantified variable x evaluates to in the variation ωd

x.

If ω ∈ [[P ]], then we say that P is true at ω or that ω is a model of P . A formula P
is valid, written � P , iff ω ∈ [[P ]] for all states ω. A formula P is a consequence of a
set of formulas Γ, written Γ � P , iff, for each ω: ω ∈ [[Q]] for all Q ∈ Γ implies that
ω ∈ [[P ]].

15-424 LECTURE NOTES ANDRÉ PLATZER
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The most exciting formulas are the ones that are valid, i.e., � P , because that means
they are true no matter what state a system is in. Valid formulas, and how to find out
whether a formula is valid, will keep us busy quite a while in this course. Consequences
of a formula set Γ are also amazing, because, even if they may not be valid per se,
they are true whenever Γ is. For today’s lecture, however, it is more important which
formulas are true in a given state.

With the semantics, we know how to evaluate whether an evolution domain Q of a
continuous evolution x′ = e&Q is true in a particular state ω or not. If ω ∈ [[Q]], then
the evolution domain Q holds in that state. Otherwise (i.e. if ω 6∈ [[Q]]), Q does not hold
in ω. Yet, in which states ω do we even need to check the evolution domain? We need to
find some way of saying that the evolution domain constraint Q is checked for whether
it is true (i.e. ω ∈ [[Q]]) in all states ω along the solution of the differential equation.

Continuous Programs. The semantics of continuous programs surely depends on
the semantics of its pieces, which include terms and formulas. The latter have now
been defined so that the next step is giving continuous programs themselves a proper
semantics.

There is more than one way to define the meaning of a program, including defining
a denotational semantics, an operational semantics, a structural operational semantics,
an axiomatic semantics. We will be in a better position to appreciate several nuances
of these aspects in later lectures. In order to keep things simple, all we care about for
now is the observation that running a continuous program x′ = e&Q takes the system
from an initial state ω to a new state ν. And, in fact, one crucial aspect to notice is that
there is not only one state ν that x′ = e&Q can reach from ω just like there is not only
one solution of the differential equation x′ = e. Even in cases where there is a unique
solution of maximal duration, there are still many different solutions differing only in
the duration of the solution. Thus, the continuous program x′ = e&Q can lead from
initial state ω to more than one possible state ν. Which states ν are reachable from an
initial state ω along the continuous program x′ = e&Q exactly? Well these should be
the states ν that can be connected from ω by a solution of the differential equation x′ = e
that remains entirely within the set of states where the evolution domain constraint Q
holds true. Giving this a precise meaning requires going back and forth between syntax
and semantics carefully.
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Definition 13 (Semantics of continuous programs). The state ν is reachable from
initial state ω by the continuous program x′1 = e1, . . . , x

′
n = en &Q iff there is a

solution (or flow) ϕ of some duration r ≥ 0 along x′1 = e1, . . . , x
′
n = en &Q from

state ω to state ν, i.e. a function ϕ : [0, r]→ S such that:

• initial and final states match: ϕ(0) = ω, ϕ(r) = ν;

• ϕ respects the differential equations: For each variable xi, the valuation [[xi]]ϕ(ζ) =
ϕ(ζ)(xi) of xi at state ϕ(ζ) is continuous in ζ on [0, r] and has a derivative of
value [[ei]]ϕ(ζ) at each time ζ ∈ (0, r), i.e.,

dϕ(t)(xi)

dt
(ζ) = [[ei]]ϕ(ζ)

• the value of other variables z 6∈ {x1, . . . , xn} remains constant, that is, we
have [[z]]ϕ(ζ) = [[z]]ω for all ζ ∈ [0, r];

• and ϕ respects the evolution domain at all times: ϕ(ζ) |= Q for each ζ ∈ [0, r].

The next lecture will introduce a notation for this and just write

(ω, ν) ∈ [[x′1 = e1, . . . , x
′
n = en &Q]]

to indicate that state ν is reachable from initial state ω by the continuous program
x′1 = e1, . . . , x

′
n = en &Q.

Observe that this definition is explicit about the fact that variables without differ-
ential equations do not change during a continuous program. The semantics of HP is
explicit change: nothing changes unless (an assignment or) a differential equation speci-
fies how. Also observe the explicit passing from syntax to semantics4 by the use of the
valuation function [[·]] in Def. 13.

Finally note that for duration r = 0, the condition on respecting the differential equa-
tion is trivially satisfied, because Def. 13 only requires the time-derivative of the value
of xi to match with its right-hand side ei in the open interval (0, r), which, for r = 0,
is the empty interval. Observe that this is a good choice for the semantics, because for
r = 0, the meaning of a derivative at the only point in time 0 would not even be well-
defined, so it would not be meaningful to refer to it. Consequently, the only conditions
that Def. 13 imposes for duration 0 are that the initial state ω and final state ν are the
same and that the evolution domain constraint Q is respected at that state: ω ∈ [[Q]].

4This important aspect is often overlooked. Informally, one might say that x obeys x′ = e, but this cer-
tainly cannot mean that the equation x′ = e holds true, because it is not even clear what the meaning
of x′ would be, nor does e have a single value, because it is a syntactic term whose value depends on
the state by Def. 11. A syntactic variable x has a meaning in a state but x′ does not. The semantical
valuation of x along a function ϕ, instead, can have a well-defined derivative. This requires passing
back and forth between syntax and semantics.
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Note 14 (Operators and (informal) meaning in first-order logic of real arithmetic
(FOL)).

FOL Operator Meaning
e = ẽ equals true iff values of e and ẽ are equal
e ≥ ẽ equals true iff value of e greater-or-equal to ẽ
¬φ negation / not true if φ is false
φ ∧ ψ conjunction / and true if both φ and ψ are true
φ ∨ ψ disjunction / or true if φ is true or if ψ is true
φ→ ψ implication / implies true if φ is false or ψ is true
φ↔ ψ bi-implication / equivalent true if φ and ψ are both true or both false
∀xφ universal quantifier / for all true if φ is true for all values of variable x
∃xφ existential quantifier / exists true if φ is true for some values of variable x

8. Summary

This lecture gave a precise semantics to differential equations and presented first-order
logic of real arithmetic, which we use for the evolution domain constraints within
which differential equations are supposed to stay. The operators in first-order logic
of real arithmetic and their informal meaning is summarized in Note 14.

A. Existence Theorems

For your reference, this appendix contains a short primer on some important results
about differential equations [Pla10, Appendix B].

There are several classical theorems that guarantee existence and/or uniqueness of
solutions of differential equations (not necessarily closed-form solutions with elemen-
tary functions, though). The existence theorem is due to Peano [Pea90]. A proof can be
found in [Wal98, Theorem 10.IX].

Theorem 14 (Existence theorem of Peano). Let f : D → Rn be a continuous function on
an open, connected domain D ⊆ R× Rn. Then, the initial value problem (1) with (t0, y0) ∈ D
has a solution. Further, every solution of (1) can be continued arbitrarily close to the boundary
of D.

Peano’s theorem only proves that a solution exists, not for what duration it exists.
Still, it shows that every solution can be continued arbitrarily close to the boundary of
the domain D. That is, the closure of the graph of the solution, when restricted to
[0, 0]× Rn, is not a compact subset of D. In particular, there is a global solution on the
interval [0,∞) if D = Rn+1 then.

Peano’s theorem shows the existence of solutions of continuous differential equations
on open, connected domains, but there can still be multiple solutions.
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Example 15. The initial value problem with the following continuous differential equa-
tion [

y′ = 3
√
|y|

y(0) = 0

]
has multiple solutions:

y(t) = 0

y(t) =

(
2

3
t

) 3
2

y(t) =

{
0 for t ≤ s(
2
3(t− s)

) 3
2 for t > s

where s ≥ 0 is any nonnegative real number.

B. Existence and Uniqueness Theorems

As usual, Ck(D,Rn) denotes the space of k times continuously differentiable functions
from domain D to Rn.

If we know that the differential equation (its right-hand side) is continuously dif-
ferentiable on an open, connected domain, then the Picard-Lindelöf theorem gives a
stronger result than Peano’s theorem. It shows that there is a unique solution (except,
of course, that the restriction of any solution to a sub-interval is again a solution). For
this, recall that a function f : D → Rn with D ⊆ R × Rn is called Lipschitz continuous
with respect to y iff there is an L ∈ R such that for all (t, y), (t, ȳ) ∈ D,

‖f(t, y)− f(t, ȳ)‖ ≤ L‖y − ȳ‖.

If, for instance, ∂f(t,y)
∂y exists and is bounded on D, then f is Lipschitz continuous

with L = max(t,y)∈D ‖
∂f(t,y)

∂y ‖ by mean value theorem. Similarly, f is locally Lipschitz
continuous iff for each (t, y) ∈ D, there is a neighbourhood in which f is Lipschitz con-
tinuous. In particular, if f is continuously differentiable, i.e., f ∈ C1(D,Rn), then f is
locally Lipschitz continuous.

Most importantly, Picard-Lindelöf’s theorem [Lin94], which is also known as the
Cauchy-Lipschitz theorem, guarantees existence and uniqueness of solutions. As re-
strictions of solutions are always solutions, we understand uniqueness up to restric-
tions. A proof can be found in [Wal98, Theorem 10.VI]

Theorem 16 (Uniqueness theorem of Picard-Lindelöf). In addition to the assumptions of
Theorem 14, let f be locally Lipschitz continuous with respect to y (for instance, f ∈ C1(D,Rn)
is sufficient). Then, there is a unique solution of the initial value problem (1).

Picard-Lindelöf’s theorem does not show the duration of the solution, but shows
only that the solution is unique. Under the assumptions of Picard-Lindelöf’s theorem,
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every solution can be extended to a solution of maximal duration arbitrarily close to
the boundary of D by Peano’s theorem, however. The solution is unique, except that
all restrictions of the solution to a sub-interval are also solutions.

Example 17. The initial value problem[
y′ = y2

y(0) = 1

]
has the unique maximal solution y(t) = 1

1−t on the domain t < 1. This solution cannot
be extended to include the singularity at t = 1.

The following global uniqueness theorem shows a stronger property when the do-
main is [0, a]× Rn. It is a corollary to Theorems 14 and 16, but used prominently in
the proof of Theorem 16, and is of independent interest. A direct proof of the follow-
ing global version of the Picard-Lindelöf theorem can be found in [Wal98, Proposi-
tion 10.VII].

Corollary 18 (Global uniqueness theorem of Picard-Lindelöf). Let f : [0, a] × Rn → Rn

be a continuous function that is Lipschitz continuous with respect to y. Then, there is a unique
solution of the initial value problem (1) on [0, a].

Exercises

Exercise 1. Subtraction e− ẽ is already included as a term, because it is definable. What
about negation −e? What about division e/ẽ and powers eẽ?

Exercise 2. Review the basic theory of ordinary differential equations and examples.

Exercise 3. Review the syntax and semantics of first-order logic.

Exercise 4. A number of differential equations and some suggested solutions are listed
in Table 1. Are these all solutions? Are there other solutions? In what ways are the
solutions be considered more complicated than their differential equations?

Exercise 5 (**). What exactly would change and/or go wrong in which cases if Def. 13
were to demand that the derivative condition of the differential equation is respected
at all times ζ ∈ [0, r] rather than at all times ζ ∈ (0, r) in an open interval?
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