
15-424/15-624 Recitation 9
dTL semantics

1. dTL: intuition for those pesky semantics!

In dTL, you have to keep track of the entire execution of a program, not just the end
states like in dL. Thus, every time a piece of program is executed, a new function µ is
appended to a trace.

This function is, for ODEs, the solution to the IVP (initial value problem, ODE +
starting state). For example, if the previous state ended at x = 1, and x′ = 1 is
executed, then one of the potential µ’s domain’s is (0, 5), µ(0)(x) = 1, and µ(5)(x) = 6.

For assignments or tests, it’s like the solution to the IVP, but it takes 0 time, and
the starting state is whatever was effected by the transformation. Let’s continue the
previous example, where µ(5)(x) = 5. Now, x := x + 1 is executed. Then you will
append a new µ1, which is only defined for 0, and µ(0)(x) = 7.

To simplify things, the notation µ̂ transforms a regular state µ into a trace component,
i.e. µ(x) = µ̂(0)(x), for all variables. This ensures traces are only made up of functions.

Now consider the following program

α ≡ a := −b; z′ = v, v′ = a; ?v ≥ 0; a := A; z′ = v, v′ = a

This program corresponds to the scenario where a robot first decides to brake, then
accelerates. Since braking can’t make robots go backwards, there’s a test in between
the ODEs that ensures this holds.

There are two potential sets of traces here. One set in which the test failed, and one
set in which it didn’t. Let’s start with the one where it failed.

• Failed test: The traces will be of the form (µ̂0, µ̂1, ϕ1, Λ̂). Assignment creates two
states, the origin and end states, resp. µ̂0 and µ̂1. These are defined similarly to
dL, where µ1 = µ0[x 7→ J−bKµ0 ]. Then, ϕ is simply the solution to the IVP for
some duration t, so ϕ1(0) = µ1. Because the test failed, we know that ϕ(t)(x) < 0.
Finally, the system transitions to the error state because of the failed test - but
the trace is not eliminated, like it is in dL!

• Passed test: The traces will be of the form (µ̂0, µ̂1, ϕ1, µ̂2, µ̂3, ϕ2). The half of the
trace is the same. Here, however, ϕ1(t) = µ̂2, where t is however long the first
ODE evolved for. The assignment is as before, so µ3 = µ2[x 7→ J−bKµ2 ]. Finally,
the ϕ2 is the solution to the IVP starting at µ̂3. It can evolve for however long!

These two sets of traces define all the possible executions of the problem. Let’s analyse
all temporal properties that can can be derived from this program for the question
v < 0. Assume −b is negative and A is positive.
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• 〈α〉3v < 0: valid. If v starts negative, we can just pick that state to prove v < 0.
Even if v starts out positive, there’s a trace that can make it negative before
failing the test. Since traces are not pruned, even when they fail tests, we can
take that, and the first state at which v became negative during that trace, to
satisfy v < 0.

• 〈α〉2v < 0: satisfiable. It’s falsifiable whenever v starts positive. No matter how
the program executes, that initial state will ensure that no trace will have negative
v throughout. It’s satisfiable if we choose a trace where v starts negative. It will
stay negative no matter how long it evolves, and even though it won’t pass the
test, we can still use that trace as a witness for the satisfiability of 2v < 0.

• [α]3v < 0: unsatisfiable. We must consider all possible traces of the program, in
particular, the one where v starts positive but does not evolve for long enough for
v to become negative.

• [α]2v < 0: unsatisfiable. The same reasoning as above can be used, since this
property is even stronger than the 3 one.

Hopefully this illustrates how difficulty in proving these progresses as we change from
3 to 2 modalities in the hybrid program sense as well as the temporal sense. Notice
how getting to pick a trace is still stronger than getting to pick whether the property
needs to hold throughout or just at some point!

2. dTL semantics and proof rules

The fact that these two sets of traces result from interpreting the program helps us
better understand the sequence proof rule.

[α]2φ ∧ [α][β]2φ
[α; β]2φ

The RHS of the conjunction is obvious - we know it from dL, but why do we need that
first one? Partly, we need to check that property for the first set of traces, the ones
where the test failed. Traces in dTL are like weeds! No matter how much you try to
prune them, they always come back.

More accurately, we need it because without a temporal modality, [α]φ only looks
at the end of the traces. In other words, what [α][β]2φ checks is whether φ holds
throughout traces of β, where you start at an end state of α. It doesn’t actually check
that φ holds throughout α, but that’s what we want to happen.

3. We also checked a question that everyone got wrong in the exam, including your TAs!
But unfortunately, no solutions can be given out on the interwebs, so have a smiley ,.
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