15-424/15-624 Recitation 8
Proof intuitions and KeYmaera specifics

1. A diversion: what if there’s no sequent?

Take the proof rule for [U].

y Lole A 0
[a U B¢

Where did that darned sequent (F) go? Do we need it? What does it mean if it’s

not where?! The answer to these questions and more in the next paragraph, so keep

reading!

If there’s no sequent, then the understanding is that the rule can be applied to either
the antecedent or the succedent of a sequent! Notice how the proof will end up looking
different depending on which side it is.

In the antecedent, we’ll get to use Ar and simply add both sides of the conjunction to
the assumptions. The proof doesn’t branch. In the succedent, we now have to prove
two things, meaning the proof will branch.

2. A simpler unwind rule

How can we deal with (a*)¢? Of course, with a proof rule, but which one! There’s a
very general one in the lecture notes, but your TAs are enormous procrastinators, and
prefer simpler rules.

The meaning of the formula is clear enough: is there an execution of a* such that ¢
holds at the end. In other words, can we find a number of iterations n of the program
« which leads us to stop at a state where ¢ holds?

This is actually a family of proof rules! There’s one for each n € N. If we can get away
with simpler rules by using these “families” instead of a single rule, why shouldn’t we?

Well, we dare you to try to prove a non-trivial property using this rule! Can you figure
out the exact n for which this will work? When dealing with complex systems, the clear
answer to that is going to be a flat “no”. In other words, we're simplifying the rule
itself, but unfortunately we are giving the prover (whether that’s you or KeYmaera)
the burden of figuring out the hard choice. And that’s not very helpful, which is why
the other rule is used.

Now, because we procrastinated and came up with a new proof rule, that comes back
and bites us in the ***. We have to prove its soundness!

Let v be any state. By assumption v = (a™)¢, for some n € Ny and thus

there is p s.t. (v,) € p(a™) and p = ¢.

We must show that v |= ()@, which holds iff there is m € Ny s.t. (v,w) € p(a™) and
w = ¢. We just take m =n and p = w.

. Rule application order

Very often, proofs will have very similar branches. To reduce our workload, it’s useful
to avoid branching if we can. Take the following proof.

. x>y bk (a)e,(B)¢ Vi y <0k ()¢, (B)¢
<U>x>yF<a>V<ﬁ>¢ <U>y<0F<Oz V{(B)¢
x>yk (aUpB)o y<0kF{(aUpB)o

V
g r>yVy<0F {(aUp)o

Well, that’s no good! Two of those branches are essentially the same! It’s also very
likely that the proof would continue to be replicated on both branches, sometimes
to the point where only the QE arithmetic at the end is different. The extra work
happened because we decided to branch earlier rather than later. As long as you have
non-branching rules that don’t require any user interaction, you should do those!

z>ykH{a)g, (B¢ y<0F ()¢, (B)¢
r>yVy <0k (g, (8)¢
<u; x>yVy<0k{a)V (3o
r>yVy<0F{(aUpB)¢

Vi

Ah, much better. So remember, procrastinate your branching!

. Delayed assignment

The substitution rule for assignment is really nice and simple.

o
==

But in reality, the substitution rule is a hipster. It only applies to programs before
they are cool, such as when you add loops and ODEs. Take the following very simple
example bouncing ball example, where the ball has just hit the ground and is going to
bounce.

‘ [z = —cv, v = Ao

=] [v:=—cv][r =v,v" = Alp

In this instance, the property is mainstream and cool because it contains an ODE. So
the substitution rule can’t be applied, and the above proof is unsound. The problem
that the assignment is only meaningful at time ¢ = 0 of the ODE, but the substitution
is making changes throughout the execution of the ODE.

A similar phenomenon can be seen in the following:

=1
v = 3@ =2+ 19

This clearly changes the behaviour of the program in a fundamental way. The cool
insight is that instead of applying the substitution immediately, we can delay it, much
like KeYmaera does. After we get rid of the programs, it’s then possible to perform
the substitution!

[z =2 — cvt + 1A% v == —cv + at]o
{v:=—cv}r =2+ vt + A%, v =0+ at]¢

L Hvi= v} = 0,0 = Al

=] [v:= —cv][r) =v,v" = Alp

update simpl.
ODE solve

Notice that after applying ODE solve, all the occurrences of v and x refer to theiroriginal
values, which is why it’s become sound to perform the substitution. In loops and ODEs,
an occurrence of a variable refers to their value at whatever iteration or time of the
loop or ODE it refers to.

. ind loop vs ind loop (global)

There are two variants of loop rules that can be used in KeYmaera. One of them allows
you to keep your original assumptions, the other one does not. They do so by using
the ¥ construct, which universally quantifies all of the bound variables of program «.

What this essentially does is it “hides” the original value of the variable. Thus, it
allows you to keep all the information that you had from before, since the relevant
parts have been “hidden” through quantification.

You are encouraged to look at the attached inv.key program, and prove it with the
invariant > 0, using both ind and ind (global) rules. You'll notice that, to keep
things sound, one of them hides information about the non-relevant y, whereas as the
other does not.

When previous information about non-bound variables is hidden, you must include it
in the invariant (since it doesn’t change anyway). When it isn’t, you have perhaps too
much arithmetic lying around, and that might put a strain on QE. But you can always
hide that information later.

