15-424/15-624 Recitation 6 Differential invariants and differential cuts Notes based on Khalil Ghorbal's (kghorbal@cs.cmu.edu)

1. Recall the three main proof rules: Differential Invariant, Differential Cut, Differential Weakening

The Cut rule "cuts" $A \to B$ into $A \to C \land C \to B$ (if such a C exists). So, if one can prove that C holds, from A, then it's safe to assume it in order to prove B (also, originally, from A). The same intuition can be used in the differential context. As long as you prove that a given property already holds throughout the ODE's execution, then it's safe to assume it by putting it in the domain.

$$DC \frac{F \vdash [x' = \theta \& H]C \qquad F \vdash [x' = \theta \& H \land C]F}{F \vdash [x' = \theta \& H]F}$$

The differential weakening rule is trivial (the invariant is enforced by design) and essentially used to close the proof after a DC. The general proof technique in this case is to diff-cut in enough properties so that they end up implying the final condition.

$$DW \frac{H \vdash F}{F \vdash [x' = \theta \& H]F}$$

The differential invariant rule is essentially used to lift a property about the differential terms to a property about their derivatives. In conjunction with the D operator, the property is rewritten using the θ (right-hand side of the differential equation), which we can deal with as a first-order logic formula.

$$DI \frac{H \vdash F'^{\theta}_{x'}}{F \vdash [x' = \theta \& H]F}$$

2. The D operator on first-order real-arithmetic: what intuitions to keep in mind

To prove that a differentiable real function: $f: \mathbb{R}_+ \to \mathbb{R}; t \mapsto f(t)$ has a constant sign $(f(t) \leq 0, \text{ say})$, it is sufficient to prove that $f(0) \leq 0$ and its derivative w.r.t. to the variable t is also non-positive: $f'(t) \leq 0$

$$f(0) \leq 0 \land f'(t) \leq 0 \to f(t) \leq 0, \forall t \geq 0$$

Following the same reasoning, given two functions f and q, one has:

$$f(0) \leq 0 \land g(0) \leq 0 \land f'(t) \leq 0 \land g'(t) \leq 0 \rightarrow f(t) \leq 0 \land g(t) \leq 0, \forall t \geq 0$$

which also implies that $f(t) \leq 0$ or $g(t) \leq 0$, $\forall t \geq 0$. This should give an intuition about why we need to switch from \forall to \land for the D operator to be sound. Observe that all of these transformations are sufficient conditions. This means, that the differential invariant rule is sound but, alone, is not complete directly.

3. Case Study: 3D Lotka-Volterra

The following predator/pray model describes the behavior of the biomasses x, y and z of three distinct species. We want to prove that none of the three involved species will disappear: that is we reach an equilibrium cycle.

```
\programVariables {
    R x,y,z;
}

\problem{
    x != 0 & y != 0 & z !=0
        ->
        \[
        {x'=x*(y-z),y'=y*(z-x),z'=z*(x-y)}
    \] (x != 0 & y!=0 & z!=0)
}
```

- (a) Apply a DI first (with the postcondition as differential invariant). Observe that the proof does not close because the condition asks about separate properties for x, y and z.
- (b) Apply a DC with $xyz \neq 0$ (which is equivalent to the post-condition, but links explicitly the involved variables).
- (c) Close the proof by a DI and DW.

Quiz

- 1. Can you prove that $y > 0 \land x < 0 \rightarrow [x' = x, y' = y]x \neq y$? Explain why or why not.
- 2. Can you prove $x < x_o \to [a := \frac{v^2}{2(x-x_o)}; \{x' = v, v' = a, v \ge 0\}]x \le x_o$ using DI instead of ODE (solving the differential equation)? Write down your DI.