
15-424/15-624 Recitation 3
Did you prove what you meant to prove?

Mostly copied over from last year’s notes! Thanks Sarah!

1. Examples

What’s the difference between the following hybrid programs α, β, and γ?

α ≡ {x′ = v, v′ = a & v ≥ 0}

β ≡ {x′ = v, v′ = a & v ≥ 0}; ?(v = 0) (Bad idea! See below.)

γ ≡ t := 0; {x′ = v, v′ = a, t′ = 1 & t ≤ T}; ?(t = T )

φ(x, v):

Now let φ(x, v) be a property that holds after (or in some cases during) the execution of each of these
hybrid programs. In the remainder of these notes, I will use φ and φ(x, v) interchangeably. We write
φ so that it explicitly depends on state variables x, v because these are the only continuously evolving
variables. They describe the physical state of the system. Most often the properties we want to prove
are focused on the continuous state variables of the system. That doesn’t mean other variables won’t
also be used, but the state variables are crucial.

[α]φ(x, v):

Suppose you have found a proof of property [α]φ(x, v). This means that φ(x, v) holds at the end of
every run of the hybrid program. Since α can stop at all possible times such that the evolution domain
v ≥ 0 still holds, we’ve actually ensured that property φ(x, v) holds throughout the nondeterministic
evolution. This is great, since we often want to prove properties about the system for the entire time
it runs, rather than just when it stops.

[β]φ(x, v):

Now suppose you have found a proof of property [β]φ(x, v). Again, this means that φ(x, v) holds at
the end of every run of β; HOWEVER, some runs of β have been omitted, specifically whenever the
velocity does not end with value exactly zero. This means, first, that φ(x, v) only holds at the end of
the run, not necessarily throughout. But it has the bad and unintended effect that if you happen to
have set your acceleration to be a positive value, and if velocity starts positive, too, then your system
will never brake to a stop, so it is excused from satisfying property φ(x, v). In general, it is a bad idea
to add tests that guard on state variables (like x, v in this example), because those are the variables
that we want to prove properties about.

[γ]φ(x, v):

In this case, we still have a guard, but it is on time instead of on the system state. The variable t has
simple and well defined dynamics, so we aren’t too worried about it exhibiting unexpected behaviour.
Additionally, forcing the evolution to stop only after it has evolved for some minimum time is a
behaviour we can actually build into the real cyber-physical system. Compare this to trying to build
a system that has to force the velocity of a robot to be zero. Now, even though this is a system we
can actually implement, we still have to be careful in proving properties about it. Because we have



disallowed runs that evolve for less time than T , the property is no longer guaranteed to hold at those
times.

If we removed the test, then we’d be saying that the property had to hold throughout all durations
up to T . Typically, these programs are repeated using α∗, which means that at most time T will pass
before the program loops again. The idea is that in real systems, the control loop is guaranteed to run
every T time units, thus keeping the CPS safe. Without a bound on how often the controller must
execute it would be impossible to guarantee any safety properties!

Executive Summary:

Suppose we have found proofs for [α]φ, [β]φ, and [γ]φ. Then, property φ holds throughout all executions
of α. Property φ only holds at the end of some (but not all) executions of β. And property φ holds at
the end of all executions of γ.

Generally we want to prove things throughout all executions of a hybrid program, so we design our
HPs to look like α. Sometimes we want to prove properties that hold only at the end of a hybrid
program, so we design our HPs to look like γ. We NEVER want to prove a property that only holds
sometimes, so we avoid including tests on state variables, like in β.

2. Soundness.

Here goes a quick, direct, formal proof of the ∪ axiom.

[α ∪ β]φ↔ [α]φ ∧ [β]φ

The axiom is of the form φ1 ↔ φ2. The idea is to apply the semantics definitions of the formulas
and programs to one side, say φ1 until we reach a clear understanding of what the formula means
(in a combination of math and English). Then we shuffle that understanding around a bit to get the
meaning of φ2, and then syntactically rebuild φ2 from the semantics.

Let’s try it! To prove the axiom is sound, we must show it holds for all states ν. To prove an equivalence,
we have to prove implication from both sides. Let’s start with [α ∪ β]φ→ [α]φ ∧ [β]φ.

Let ν be an arbitrary state. Assume ν |= [α ∪ β]φ.

ν |= [α ∪ β]φ iff
for all ω such that (ν, ω) ∈ ρ(α ∪ β), then ω |= φ iff
for all ω such that (ν, ω) ∈ ρ(α) ∪ ρ(β), then ω |= φ iff
for all ω such that (ν, ω) ∈ ρ(α) or (ν, ω) ∈ ρ(β), then ω |= φ iff
for all ω such that (ν, ω) ∈ ρ(α) then ω |= φ and for all ω such that (ν, ω) ∈ ρ(α) then ω |= φ iff
ν |= [α]φ and ν |= [β]φ iff
ν |= [α]φ ∧ [β]φ

But ’lo and behold, all of the steps are in fact equivalences! So instead of proving a single direction of
the equivalence, we actually proved both directions at once. This isn’t always the case, so be careful!

And that’s how you do a no-bullsh*t axiom proof!

3. Quiz

Suppose you have a proof for the following dL formula:

[t := 0;

{x′ = v, v′ = a, t′ = 1 & t ≤ T};
?(t = T );

{x′ = v, v′ = a, t′ = 1}] φ(x, v)



For what values of t do you know that your hybrid program ensures the property φ(x, v)?

Solution: Property φ holds for all t ≥ T . Because the guard ?(t = T ) only allows runs where the
first differential equation evolved for exactly T time, the hybrid program can only terminate at or after
t = T .


