
15-424/15-624 Recitation 12
Game proofs

1. Dual operators

The dual operators of differential game logic are particularly sneaky. They’ll let you
think they’re easy and trivial, them BAM, they’ll hit you with a particularly gnarly
stick. That’s a true story if there ever was one.

What went wrong with the following proof?

*
` 0 = 0[:=]

` [x := 0]x = 0
` 1 = 0[:=]

` [x := 1]x = 0
[∪]

` [x := 0 ∪ x := 1]x = 0
ind ` [(x := 0 ∪ x := 1)∗]x = 0
〈d〉 ` 〈(x := 0 ∪ x := 1)×〉x = 0

The end property says that Angel wants to get x = 0, and she can achieve that in each
iteration of the loop, but Demon can decide to repeat. We saw that he isn’t allowed
to repeat indefinitely, so Angel should win.

What happened is that when converted the Demon loop into an Angel loop, we forgot
that there were a lot more duals hanging around. For this reason, we highly encourage
you to rewrite all programs using only dual operators, and removing all Demon-specific
notation like α ∩ β and α×.

In this case, we’d get:

(x := 0 ∪ x := 1)× ≡ ((((x := 0)d ∪ (x := 1)d)
d
)
∗
)
d

Since assignment is deterministic, that reduces to:

(((x := 0 ∪ x := 1)d)
∗
)
d

So we had actually forgotten a few dual operators. Silly TAs. Because we fully under-
stand dual operators, the proof now has no chance of going wrong! FACT!

*
` 0 = 0, 〈x := 1〉x = 0

[:=]
` 〈x := 0〉x = 0, 〈x := 1〉x = 0

〈∪〉]
` 〈x := 0 ∪ x := 1〉x = 0

[d]
`
[
((x := 0 ∪ x := 1)d

]
x = 0

ind
`
[(

(x := 0 ∪ x := 1)d
)∗]

x = 0
〈d〉
`
〈((

(x := 0 ∪ x := 1)d
)∗)d〉

x = 0

1



2. Convergence

With loops inside box modalities, we know we can use invariants. Using invariants for
loops inside diamond-modalities is overkill since the property only needs to hold at the
end of one of the iterations.

This is relevant because Angel needs to be able to do something easily about loops!

So we have a convergence rule, which states that as long as we keep making progress
towards a point at which our property is satisfied, we are good! To this end, we’ll be
playing a game we like to call “get to 0”. It involves, unsurprisingly, getting to 0!

Γ ` ∃v.ϕ(v) ` ∀v ≥ 0.ϕ(v)→ 〈α〉ϕ(v − 1) ∃v ≤ 0.ϕ(v) ` φ
con’

Γ ` 〈α∗〉φ,∆

The idea here is that we’ll try to prove a convergence property ϕ. If ever this property
holds for a negative number, it has to imply our desired property φ. So all we have to
prove is that it makes “progress” towards, and past 0!

Let’s examine each branch and see what it says (I’m giddy with excitement already)!

(a) In the conditions under which we start, Γ, we can prove that there’s some number
for which a convergence property ϕ holds. If the number is negative, awesome. If
it’s not, then we move on to the next branch!

(b) If ϕ holds for any positive number v, then it will hold for v− 1 after one iteration
of the loop. In other words, by continuously iterating the loop, which Angel can
easily choose to do, she can get ϕ to hold for a negative value!

(c) The concluding branch! If the property holds for some negative value (and we
ensured it does with the two previous branches), then the desired property φ can
be proved.

The problem now, like for invariants, is coming up with the convergence property!
Let’s start with the simple example from lecture.

x > 0 ` 〈(x := x− 1)∗〉x < 1

Notice how we want to get x to be smaller than 1 specifically. It helps us to think
backwards form the third branch. What kind of property for negative v guarantees
that x < 1? Well, if x < v + 1, then in the worst case scenario, v would be 0, and
we’d have our property v < 1. If n was any smaller, we’d just be making it easier on
ourselves! So we use that as a candidate property.

∗R ` ∃v.x < v + 1

*R
v ≥ 0, x < v + 1 ` x− 1 < v〈:=〉
v ≥ 0, x < v + 1 ` 〈x--〉x < v→r
v ≥ 0 ` x < v + 1→ 〈x--〉x < v

∀r ` ∀v ≥ 0.x < v + 1→ 〈x--〉x < v
*QE ∃v ≤ 0.x < v + 1 ` φ

con’ ` 〈(x--)∗〉x < 1

2



That worked out! Aren’t we glad we have QE!

3. A more complex con’ example

So now that we’ve got a full understanding of the simpler proof under our belts, let’s
try using the con’ rule to prove a more complex game.

` 〈x := 0; (x′ = −1)d; (x := x+ 1)∗〉x > 0

So Angel lets Demon make x as small as he wants to. She maybe even goes make a
cup of tea while this is happening - who knows! Anyway, when she comes back, x is
really super small. The good news is that Angel is in heaven, which is really one big
permanent holiday, so she gets to keep adding 1 to x, however many times she wants.
And she wants to make sure that x becomes positive again, not negative like before.

We can use x > −v as our convergence property, and start with decomposing our
problem.

to be continued...
t ≥ 0 ` {x := −t}〈(x := x+ 1)∗〉x > 0

[:=]
t ≥ 0 ` {x := 0}[x := x− t]〈(x := x+ 1)∗〉x > 0

∀r,→r ` {x := 0}∀t ≥ 0.[x := x− t]〈(x := x+ 1)∗〉x > 0
ODE ` {x := 0}[x′ = −1]〈(x := x+ 1)∗〉x > 0

〈d〉
` {x := 0}〈(x′ = −1)d〉〈(x := x+ 1)∗〉x > 0

〈:=〉
` 〈x := 0〉〈(x′ = −1)d〉〈(x := x+ 1)∗〉x > 0

〈; 〉
` 〈x := 0〉〈(x′ = −1)d; (x := x+ 1)∗〉x > 0

〈; 〉
` 〈x := 0; (x′ = −1)d; (x := x+ 1)∗〉x > 0

There are a couple of cool things happening! First of all, notice how we applied some
rules to inner formulas instead of only to the outer-most formula! We are now allowed
to do that because we had equivalences instead of proof rules (which only go one way).
Second, we get to have fun carrying a delayed assignment around! YAY!

Where do we carry the delayed assignment to though? Every branch? The key issue
here is that the assignment only applies to the original variables, i.e. the ones that
Γ mentioned. It gets passed around as context - if the context isn’t there because of
soundness, then neither should the delayed assignment!

*R
t ≥ 0 ` −t > −t− 1∃rv 7→ -t-1
t ≥ 0 ` ∃v.− t > −v{:=}

t ≥ 0 ` {x := −t}∃v.x > −v The big branch!
*QE ∃v ≤ 0.x > −v ` x > 0

con’
t ≥ 0 ` {x := −t}〈(x := x+ 1)∗〉x > 0

And finally, the last branch is very similar to the one from the simple example.

3



*R
v ≥ 0, x > −v ` x+ 1 < −v + 1〈:=〉
v ≥ 0, x > −v ` 〈x++〉x > −v + 1→r
v ≥ 0 ` x > −v → 〈x++〉x > −v + 1

∀r ` ∀v ≥ 0.x > −v → 〈x++〉x > −v + 1

And thus is the proof concluded, and the Angel hath won this most epic Battle of the
Tea & Holidays.

4


