
15-424/15-624 Recitation 1
Logic, Syntax, Semantics and Hybrid Programs

1. Empty sets!

You already know how to work with conjunction and disjunction, i.e. φ1∧φ2 and φ1∨φ2.
You can keep making the formula bigger by adding conjuncts, such as φ1∨φ2∨φ3, but
that can become pretty cumbersome.

In fact, sometimes it’s easier to make a conjunction of all the elements in some set A.
If we know that A = {φ1, φ2, φ3}, then we could rewrite the above example simply as∧
A. So much prettier!

We can now look at what happens when we start removing elements from the set A.

(a)
∧
A = φ1 ∧ φ2 ∧ φ3 A = {φ1, φ2, φ3}

(b)
∧
A = φ1 ∧ φ2 A = {φ1, φ2}

(c)
∧
A = φ1 A = {φ1}

(d)
∧
A =??? A = {}

What do we do with the empty set? Well, we know that for any conjunction to be
true, all of its conjuncts need to be true. When A = {}, are all the conjuncts true?
Why, I’m glad you asked! Yes, yes they are, because there aren’t any.

∧
{} = true

How about
∨
A when A = {}? We can apply a similar reasoning. For a disjunction

to be true, at least one of the disjuncts needs to be true. Can we find a disjunct in
A = {} that is true? Can we find a disjunct at all? Nope! So, in fact, it’s impossible
to satisfy a disjunction under these conditions.

∨
{} = false

2. Syntax vs. Semantics. FIGHT!

The difference between syntax and semantics is extremely important.

Recall that syntax refers to what we can write down, the form, but not the meaning.
It’s semantics that gives syntax its meaning. The meaning of different things is... well,
different! In particular:

• Terms, like x3 + xy, return values.

• Programs, like x := 6; y′ = 2 & H, change state.

• Formulas, like φ→ (ψ1 ∧ ψ2), are either true or false.

1

But why is the difference between syntax and semantics important? Because we want
to be able to reason and express things about the real numbers R such as continuous
time, or a position in space (this is semantics). And yet... since we are using computers,
we are only able to write down things which are finitely representable (this is syntax).
Even if you had too much time on your hands and wrote down a lot of digits1, you still
wouldn’t be exact, and exactness is important for safety!

With syntax we could decide to write anything - any symbols we want! We could even
write things like:

a ♥ b

That’s syntax. But then we’d have to find a meaning for it (semantics), and it turns out
that the meaning of love is even trickier than the meaning of cyber-physical systems!

So we decide to stick with some basic arithmetic. Given some state ν, which assigns
values to variables, we can get the meaning of addition:

Jθ1 + θ2Kν = Jθ1Kν + Jθ2Kν

Is the + on the left the same as the one on the right? It’s confusing, but it isn’t. The
left one is the symbol for addition (syntax), whereas the one on the right is actual
addition (semantics). We could’ve used different symbols, such as θ1 ⊕ θ2:

Jθ1 ⊕ θ2Kν = Jθ1Kν + Jθ2Kν

This would make it more obvious what is syntax and semantics, but it would also
require lots of new symbols. Since we are pros at distinguishing syntax and semantics
now, we’ll stick with reusing the same symbol while being aware of the difference.

For the formula ∀x.x > y, we mean to say that for all possible d ∈ R, d > y is true.
So, could we write the semantics to be the following?

ν |= ∀x.x > y iff ν |= d > y for all d ∈ R

There’s a bit of a problem... We just substituted a real number (semantics) into the
formula (syntax). That means that because π is a real number, we might have to write
it, and we’ve already established that an eternity of typing is way too much for us.

So, because cyber-physical systems are all about state change, we can try doing that
instead.

ν |= ∀x.x > y iff ν[x 7→ d] |= x > y for all d ∈ R

That’s much better! Because state is a semantic entity, we can change that without
having to worry too much, and the formula remains remains syntactically acceptable!

1http://www.geom.uiuc.edu/~huberty/math5337/groupe/digits.html

2

http://www.geom.uiuc.edu/~huberty/math5337/groupe/digits.html

3. Differential equations as a program

Let’s try to get an intuitive understanding of the transition relation for ODEs as hybrid
programs:

(ν, ω) ∈ ρ (x′ = f (x) & H)

So, when is it that we can get from ν to ω by following the differential equation with
domains specified by x′ = f (x) & H?

Notice how we know the initial state, ν, making this an initial value problem. Because
theorems, we also know that there is a solution to the differential equation, which we
will call ϕ. But what does ϕ look like? It’s a function that will tells us what the state
is at each moment of time.

ϕ : R≥0 → Rn

Since that’s the case, if the differential equation doesn’t evolve, then clearly we must
be at the initial state!

ϕ(0) = ν

Since we are relating ν and ω, then we must somehow be able to reach ω. That means
that at some point (in time!), the state must be ω! So, there is some time t ∈ R≥0,
such that

ϕ(t) = ω

We aren’t done yet though, since we haven’t handled the domain H. The idea here is
that if ϕ ever leads us to a state outside of H, it’s game over. We’re not allowed out
of H, ever. Didn’t you see the stop sign? Geez.

So we must always be within H. Remember that it’s ϕ that tells us “where we are”,
and that “always” refers to all the time between being at ν and being at ω. In more
mathy parlance, what we are saying is that for every r ∈ R such that 0 ≤ r ≤ t,

ϕ(r) |= H

These four conditions should hopefully give you an intuitive understanding of how
differential equations with domains behave as hybrid programs!

3

