
Under the Robotic Knife: A Verifiable Controller
for use of Multiple Robotic Arms in Surgery

Zachary Barnes
Department of Electrical and Computer Engineering

University of Pittsburgh
zach.a.barnes@gmail.com

Abstract— Surgical robotics are extremely complex

and potentially life-saving pieces of technology. At the

moment, they remain only in partial use and are of-

ten excceedingly expensive and unreliable in operation.

Verification is proposed as a method of developing

safer and more effective platforms. A robotic arm was

analyzed and a controller was developed for using such

an arm in a multi-arm robotic surgury platform. A

system was designed and prooved to safely avoid static

obstacles. A system was designed and verified to allow

for safe operation of robotic arms using controller placed

boundaries. A dynamic boundary system was designed

and verified for to create autonmous collision avoidance.

Lastly, A parabolic approximation method was explored,

and efficiency and complexity trade-offs are discussed in

depth.

I. INTRODUCTION

Imagine a hospital of the near future. Every room,
every piece of equipment, and, most importantly, ev-
ery patient is continually monitored. Decisions about
patient care are made in split seconds. Drugs are ad-
ministered automatically. In the operating room, sophis-
ticated robotic platforms perform complex procedures
once considered dangerous and invasive. In this place,
technology is relied upon to help people, to save lives.
Cyber-physical systems (CPS), computing systems that
interact in the physical world, are a crucial piece of
enabling technology in turning this vision into reality.

The da Vinci surgical robot is such an example
of a current cyber-physical system. Arguably, the da
Vinci is one of the most complex robots on earth. It
allows physicians beyond human control of surgeries
[1]. Commercially, the da Vinci costs around 1.5 mil-
lion dollars. Even at that astounding cost, the devices
safety has been called into question, as there have been

documented cases of malfunction and failures, many
with injuries to a patient [2]. With such an example, it
is easy to see why similar devices are not ubiquitous
in the medical field. Thus the question looms, for the
betterment of healthcare and the wellbeing of patients,
how can the development safe medical devices be
improved?

One proposed potential solution is a greater reliance
on the use of formal verification in the design and
analysis of such complex cyber-physical systems. Ver-
ification, in this sense, constitutes developing a system
model and using proof rules and logic to prove that
the controller provides safe operation. Here, verification
will be used to develop and prove safety for a controller
of a multi-limbed robotic system similar to the da Vinci
robot.

Fig. 1. The da Vinci robot surgery platform.

II. BACKGROUND

A. Differential Dynamic Logic (dL)

Using the language of hybrid programs in the envi-
ronment of differential dynamic logic, allows for the
description of a complex system in a simple manner.
These hybrid programs are constructed out of formulas,
logical statements that resolve either true or false, and
programs, which provide functionality. The character-
istic forms of programs and formulas are as follows:

Formulas ::= 6 �|� ^ |� _ |�! |8x.�|9x.�|[↵]�

Programs ::= x := ✓|x := ⇤|x0 = ✓|?H|↵;�|↵[�|↵⇤

Equation 1 is an example of the typical format of a
formula created to prove safety of a system [3].

pre ! [(ctrl;ODE)⇤](safety) (1)

This formula has the meaning that, if shown valid, all
executions of the program inside of the brackets ([]),
will satisfy the safety property [3]. The program utilizes
a control decision (ctrl) that will discretely alter the
execution of the program based on the current state
of the system. Next, the system continuously evolves
according to the set of differential equations (ODE) that
govern the operation of the system. Lastly, according to
the *, the program will repeat itself a nondeterministic
number of times [3]. What is unique about hybrid pro-
grams is that it allows for the modeling of both discrete
and continuous events, a crucial principle in CPS, in a
sound framework [3]. This allows for the utilization
of proof rules to transform a dL formula, like the
statement in equation 1, to a set of decidable formulas
in first order logic [3]. This will be done utilizing the
Hybrid Systems theorem-prover KeYmaera [4].

B. Relatable Verification Studies

Formal verification has been studied in the context
of surgical platforms before. One system that was
analyzed was that of a robotic controller to assist in
complex skull surgeries designed at Johns Hopkins
University (JHU) [5]. The system used fixed boundaries
predefined by the surgeon, which could not be crossed
with a hand-held scalpel device [5].

From this study, it was shown that verification could
reveal subtle bugs in controller software that are often
overlooked in design. This proposed research furthers
the results of the work at JHU by examining the
particular dynamics and interactions of multiple robotic
arms rather than a single hand-held scalpel. In this
study, the results are more general, in a sense, as they

will apply to any device that uses a robotic arm, even
outside the field of surgery.

III. SYSTEM SPECIFICS

The robotic arms in use commercially are often
exceedingly complex, and vary significantly in appli-
cation. Thus, in order to present a general and feasible
solution, an anthropomorphized robotic arm is consid-
ered. This arm, as its name suggests, is similar to the
human arm in its joints. It has a shoulder, elbow, and
wrist joint. Since the wrist joint is used for small minor
hand motions, it will be considered as the end of the
arm for the scope of this project.

This arm is used in the design of a verifiable con-
troller for the multi-arm situations that are inherent in
the da Vinci robot. In a three dimensional field, the
shoulder allows for rotation about the y plane and its
rotation effects both the wrist and the elbow joints. The
elbow joint rotates about the shoulder and in a plane
that corresponds to the current rotation of the shoulder.
Its rotations in that plane affect the wrist, which is also
allowed to rotate in the same plane and about the elbow
joint and its rotations affect no other joints. A model
of such a robot is shown below in Fig. 2:

Fig. 2. Anthropomorphized Robotic Arm

The point S (Sx, Sy, Sz) will be used to represent the
center for shoulder rotations. The point E (Ex, Ey, Ez)
represents the center of rotation for the elbow joint,
which the wrist rotates around. Lastly, the point W
(Wx, Wy, Wz) represents the wrist joint, which is the
end of the robot arm. The surgeon will move these arms
by specifying distinct velocities for each arm. For the
most part, smart controllers will be used to limit the
operations to remain safe.

A. Essential Properties

One of the key properties for a surgical robot is
safety. Without safe operation, the potential boon of
such robotics will be rejected. Having safety is then
especially important for complex surgeries that may
require robotic assistance, and without safe robotic con-
trols, cannot be performed. Here, certainty is crucial.

The specific safety properties for each model as
expressed in dL as in Eq. 1 will vary throughout
each model. However, in general the two concerns
that will be addressed are obstacle avoidance and arm
intersection.

Obstacle avoidance can be thought of as the need
for the surgeon to specify a particular object, namely
a crucial artery, organ, or other important biological
feature, that must remain untouched throughout the
operation. Being able to enforce this is critical in
performing surgeries near vital biological elements and
to help guard against dangerous robotic operation.
This feature also exists as a check on the surgeon to
safeguard against any possible reason for misuse of
the equipment, or emergency that may arise with the
operator.

Arm intersection is the event in which two robotic
arms collide with each other. As in the case of the
da Vinci robot, many robotic systems require the
use of multiple robotic arms. However, in a complex
operation, the intersection of two arms could prove
disastrous. The result of such an event could even be
life-threatening for the patient. Even more, these events
are less obvious than obstacle collision, and being
able to perform operations while consciously avoiding
every possible arm intersection is not feasible. Thus,
this feature seeks to provide a way to dynamically
prevent the collision of two arms during an operation to
enhance the safety of the procedure, and ease the job
of the surgeon who can focus purely on the surgical
aspects.

Another important property is that of liveness, or
relative functionality of the system. It is important that
these controllers are not overly restrictive and thus do
not allow the surgeon to perform the tasks needed. It is
also important that arms do not fall into a position in
which there are no possible safe movements, and thus
become stuck. This could also be a disastrous outcome.

This project will be formally concerned with the
obstacle avoidance and arm intersection, and keep
the liveness of the system in consideration without
exploring it in verification explicitly.

IV. STATIC OBSTACLE AVOIDANCE

A. System

With the overwhelming complexity that is inherent
in multi-armed robotic arm scenarios, reducing the
problem to something manageable is key. The explicit
nature of the motion in each direction is an example
of this complexity. Ex(t) and Ey(t) will be both be
unwieldy sinusoidals, about which reasoning directly
is very difficult. Thus, roundabout arguements focusing
on verifiable approximations are used.

First, I examine the robotic arm in a two dimensional
space. Here, I assume that the shoulder joint remains
stationary. Additionally, the obstacle to be avoided will
also be a stationary point O (obx, oby) that is located
anywhere on the two dimensional plane. This means
that the obstacle, and the joints W, S, and E will all lie
on this two dimensional plane.

Here, the system is designed to avoid collision with
the static obstacle. This representation of this model
can be seen in Figure 2 below:

Fig. 3. 2D representation of the robotic arm with a static obstacle
O.

B. Safety

In this representation, safety is the ability for the arm
to avoid collision with the obstacle. That is, no point
along the arm can collide with the obstacle. This means
that both the line segment from the shoulder to the
elbow joint, SE, and the line segment from the elbow
to the wrist, EW, should not collide with the obstacle.
This is done to ensure for the surgeon that the entire
arm, not just the tip as the wrist, will not collide with

the obstacle. This property is expressed in dL in the
following equation:

8c.(c >= 0 ^ c <= 1 !
(c ⇤ ex 6= obx _ c ⇤ ey 6= oby))^

8c.(c >= 0 ^ c <= 1 !
(c ⇤ rwx+ ex 6= obx _ c ⇤ rwy + ey 6= oby))

This formula uses quantifiers over a constant C to
specify every possible value along the vector from S
to E and from E to S. These values are indeed every
point along the line segments SE and EW. Then, safety
specifies that for every one of these points, either the x-
value of that point does not equal obx or the y-value at
that point does not equal oby. Together, this conclusion
shows that no point along those line segments is ever
in the same position as the obstacle. That is, this safety
property shows that the arm does not collide with the
obstacle at any point. Note that any obstacle that is
greater than the sum of the radii of the arms is trivially
safe, and thus these cases are not focused on.

C. Dynamics

This arm is controlled by a velocity that is set non-
deterministically in the beginning of the controller. This
models the behavior of a user specifying how they wish
the arm to rotate, such as a surgeon performing an
operation. In this case, only the elbow is allowed to
rotate and the wrist is held constant. The governing
dynamics of this system are determined by its differ-
ential equations as seen in the equation below:

ex0 = �ve ⇤ ey/re,
ey0 = ve ⇤ ex/re,
t0 = 1&t <= T

This dynamics specify circular motion about the point
S, which for simplicity, is assumed to be the origin.
Here, the model denotes a circular trajectory about S
with constant linear velocity Ve at a radius Re about the
origin. Here Ve controls the rate at which the arms can
rotate, and is allowed to be positive or negative, and
can only be a magnitude of Vm, the operating velocity
of the system. This is a simplifying assumption made
about the dynamics of the robotic system. In reality, the
arm would have to accelerate with some value before
arriving at the operating velocity of Vm, but this model
assumes Vm to be small, and the acceleration to be
large, and thus the time it takes for the arm to accelerate
will be minimal. This assumption then allows for the

discrete change of the variable for velocity from Vm
to 0 to Vm, without having to worry about relative
acceleration and deceleration. This greatly reduces the
complexity in the controller stage.

In addition, W is not allowed to rotate and is held
stationary; its final value determined as a sum of
W=E+RW. This models a situation in which the W
is not effected by the rotation of E other than its final
position. That is, W retains its relative position on its
circular path throughout the evolution of E. By the
evolution domain, t is held to be less that T, and thus
the system will be allowed to evolve at most T seconds.

D. Controller

In this initial examination of the obstacle problem,
the controller seeks to restrict the range of motion of
the robot to ensure that the arm does not collide with
the obstacle. In order to do so, the arm is restricted
to operation only in the region where it remains to
one side of the obstacle. For simplicity in this analysis,
only one position, that of obx > 0 was examined. The
controller than keeps the arm (point E and W) on the
left side of the obstacle. The decision for the controller
can be seen in the following equation:

if(

!((ve>=0 &

obx-ex-ve

*

T>0|

ve<0 & obx-ex+ve

*

T>0)&

(ve>=0 &

obx-wx-ve

*

T>0|

ve<0 & obx-wx+ve

*

T>0)))

then ve := 0

fi;

That is, the arm will have its velocity set to 0 if
it crosses over on to the right of T seconds. This is
an example of a time triggered controller, where the
system will be tested for allowed operation every T
seconds, a product of the limit on execution in the
evolution domain that t < T . Therefore, logically the
controller checks whether the arm will remain safe after
heading in T seconds in the direction of the obstacle
at a velocity of T seconds. Thus, if it is still less after
T seconds, the arm can be sure that it can allow one
evolution before it must check again.

E. Proof Methods

Many steps were taken in order to prove safety for
this relatively simple controller and system.The first
was to generalize the problem by showing that E < O

and W < O prove safety. Then the system needed
to be shown to hold these properties. Next, I used a
loop invariant to show that in each repetition of the
program under the *, the key properties held true. This
invariant included many constants and, importantly, the
fact, which is the conclusion, that E < O and W < O.
This invariant was easy to show proved safety.

Next, the proof branches with the control decisions
and the initial assignments of the value of Ve. Three
important branches of the proof are created. The first
is that V e = 0, and this is either by assignment by
the user, or by the failing of the controller. In either
condition, safety is readily shown by proving that E <
O and W < O is invariant along the evolution of the
differential equation. Intuitively, this approach means if
the arm is safely behind the obstacle, than if it doesnt
move, it remains safe.

The next branch is if V e > 0, and is reached by
passing the controller. In order to prove this branch, a
solution to the motion of E in undertaken by cutting
into the differential equation that Ex2 + Ey2 = Re2

which is easy to show through a differential invariant.
With this, it is then easy to show through differential
weakening that that Ey ¡= Re, a simple but important
result. Next, the fact that Ex0+V e⇤t � Ex is cut in as
a property. This can then be easily shown as true using a
differential invariant using the fact that Ey  Re. This
simply means that traveling at Ve in the x-direction will
always go farther than by traveling around a circle of
the same speed. With this, the control decision that it
is safe after T, and the fact that t  T , it is relatively
easy to show that this branch is safe.

The last branch proceeds identically to the one before
it except that this time V e < 0, and thus the cur needs
to be that Ex0 � V e ⇤ t � Ex. Through differential
weakening both prove.

Note that since W = E + RW and since RW does
not change, the cuts for E are the only significant part
to proving that W < O.

F. Results

Although this problem did prove easily in terms of
arguments it still took some force. The problem is that
the arguments tend to repeat themselves with only very
minute changes. Also note that the region of operation
that is limited by this controller is quite large. That is,
any and all regions greater than the obstacle are off
limits. This is indeed very restrictive for a system that
might need to have functionality near to an obstacle,
such as spinal surgery.

One simple proposed improvement is to take into
account the y direction as well. Then, the controller
would have to keep the arm either to the left or
below an obstacle in the positive quadrant. This would
additionally branch the proof making it least twice as
many arguments needed. An example of this controller
can be seen below:

if(

!((ve>=0 &

(obx-ex-ve

*

T > 0 | oby-ey-ve

*

T >0)|

ve<0 &

(obx-ex+ve

*

T > 0|oby-ey+ve

*

T >0))&

(ve>=0 &

(obx-wx-ve

*

T > 0| oby-wy-ve

*

T >0)|

ve<0 &

(obx-wx+ve

*

T > 0|oby-wy+ve

*

T >0))))

then ve := 0

fi;

Additionally, note that this problem was only in
consideration of one of four regions for placement of an
obstacle. That is, this argument for proof of the entire
system would take at least four times as many cases into
account, and would cause a great amount of branching.
Lastly, allowing for W to rotate would also have to take
as many cases into account as well.

Ultimately, while successful, this approach to avoid-
ance would be very unwieldy and complicated based
on the sheer number of cases that would need to be
considered. In order to create a system that needs
a function with potentially numerous and differently
shaped obstacles, a more elegant solution is needed,
hopefully a less restrictive one.

V. BARRIER AVOIDANCE

In expanding to tackle avoidance of arm intersection
as well as potentially differently shaped obstacles, a
new solution was needed. Here, the problem is an
innate complexity that comes along with having multi-
ple arms that rotate. Spelling out all possible potential
situations that might lead to danger is unfeasible.

Therefore, this system instead utilizes barriers to
separate the regions of operation between the robotic
arms or the arm and any obstacle. The idea being that
if a controller can set a boundary between the arm and
potential danger, and then enforce that it does not cross
the boundary, thus it will remain safe.

A. System

This system is very similar to the static obstacle
system. That is, this model is also confined to two

dimensions, the x and y plane. This means that the
joints W, S, and E will lie on this two-dimensional
plane in addition to the controller generated boundary.
This model can be seen in an overview in the following
figure:

Fig. 4. Two Robotic arms with a barrier seperating their respecitve
regions of operation. The barrier is of the form ax+by+c=0.

B. Safety

For this system, the concept of safety is slightly
different than before. Here, it ensures that the robotic
arm must fully stay on its side of the boundary that
was created at the beginning of each iteration of the
program. That is, the distance from the line to each
joint (S, E, and W) must not change sign during the
evolution. An example of unsafe behavior would be a
arm that starts above the line and some part of the arm
ends the evolution below the line. For this problem, the
case where the arm starts above the line was used, but
the argument is entirely reflexive for the case when the
arm starts below the line. The safety property for this
model can be seen in the equation below:

8x.
(8n.(n >= 0 ^ n <= 1 ^ x = sx+ (n ⇤ (ex� sx))

! sy + n ⇤ (ey � sy) > (a ⇤ x+ c)/� b))

^8x.
(8n.(n >= 0 ^ n <= 1 ^ x = ex+ (n ⇤ (wx� ex))

! ey + n ⇤ (wy � ey) > (a ⇤ x+ c)/� b))

This safety property uses once again quantifiers
along the vectors from S to E and E to W to reason
about every point along the line segments that are the
arms. This property also uses the equation

D(x0, y0) =
a ⇤ x0 + b ⇤ y0 + c

(a2 + b2)(1/2)

to represent the shortest distance from the line to the
point in consideration. A positive value for this distance
means that the point is above the line and a negative
value that the point is below the line. Here, it is denoted
that the point is above the line if that for every value
of x along the line segments, that the value of y along
those line segments is greater than the value on the line
(ie above the line).

Once again, the point of this safety property is to
show how two arms (or an arm and an obstacle) will
not collide by showing that their regions of operation
are distinct. That is, by showing the controller can keep
an arm on one side of the barrier, then the use of this
controller with two arms utilizing the same boundary
and keeping to opposite sides of that barrier can be
used to prove that the arms will not collide, and thus
remain in safe operation.

C. Dynamics

The dynamics of this model is very similar to that
of the static obstacle. Like the previous problem, these
dynamics allow for the non-deterministic assignment
of velocities to the E joint and to the W joint. These
are represented as Ve and Vw respectively and they
are limited to operation at Vm, the positive operating
velocity. Vm would also be an acceptable choice for
velocity, but for simplicity, this problem only examines
the use of a positive velocity because the arguments for
the -Vm are identical. These dynamics can be seen in
the figure below:

{ex0 = �ve ⇤ ey/re,
ey0 = ve ⇤ ex/re,

rwx0 = �vw ⇤ rwy/rw,
rwy0 = vw ⇤ rwx/rw,

t0 = 1

&t <= T}

While E operates as it has before, with circular
motion about the point S. Now, to represent W as
circular motion about the point E, a more roundabout
approach is taken. This approach is to instead rotate a
point R about the origin in the exact same path as W
would, in order to represent W as components. That is,
to represent W as the sum of E and R. As it will be seen
in the controller, both E and W can move, but only one
at time. This is an approach used that eases the strain
on the controller and decreases the complexity of the
problem without a reduction on functionality.

D. Controller

The object of this controller is also to restrict the
motion of the arm to prevent intersection by setting a
barrier do denote specific regions of operation. How-
ever, picking one barrier, and enforcing it throughout
time, while safe, would drastically reduce the operation
of the system. That is why this controller allows for the
picking of a new barrier at each time step. This barrier
can be any line of the form ax + by + c = 0, and
must also be valid in separating the regions of operation
of the arm. This control can be seen in the following
program utilizing non-deterministic assignment.

a :=

*

; b :=

*

; c :=

*

; ?(b>0);

k :=

*

; ?(k = 1/(aˆ2+bˆ2)ˆ(1/2));

?(

k

*

(a

*

sx+b

*

sy+c) > 0 &

k

*

(a

*

ex+b

*

ey+c) > 0 &

k

*

(a

*

wx+b

*

wy+c) > 0);

With this boundary in place, of which the arm is strictly
above, the controller then must enforce that the arm
will remain in this region for one time step of T. In
order to do this, the controller then checks to see if
the arm moved at a velocity (Ve, or Vw) towards the
barrier for T, that the distance from each joint (S, E,
and W) would remain positive (or that the arm would
stay above the barrier). If this is not the case, then the
velocity of the arm is set to 0. These decisions can be
seen in the program below:

if(!(k

*

(a

*

ex+b

*

ey+c)-ve

*

T > 0 &

k

*

(a

*

wx+b

*

wy+c)-ve

*

T > 0))

then ve := 0

fi;

if(!(ve=0 & k

*

(a

*

wx+b

*

wy+c)-vw

*

T > 0))

then vw := 0

fi;

t := 0;

Additionally, an illustration of the behavior of the
controller and this reasoning can be seen in Fig. 5 and
Fig. 6.

E. Proof Methods

In order to prove safety for this controller, it was
crucial to isolate what is needed to assure that the arm
will stay in its given region of operation.

The first step is in constructing a loop invariant that
stays true throughout every evolution of the program
and is also strong enough to imply the conclusion.

Fig. 5. Distances from the joints E and W initally

Fig. 6. Distances from the joints E and W at a later point in time

The invariant that was concluded can be seen in the
following code:

re > 0 & exˆ2 + eyˆ2 = reˆ2 &

rw > 0 & rwxˆ2 + rwyˆ2 = rwˆ2 &

b>0 & k = 1/(aˆ2+bˆ2)ˆ(1/2) &

wx = ex + rwx & wy = ey + rwy &

k

*

(a

*

sx+b

*

sy+c) > 0 &

k

*

(a

*

ex+b

*

ey+c) > 0 &

k

*

(a

*

wx+b

*

wy+c) > 0

This invariant was initially valid, and also satisfied
the use case for the important fact that the distance form
each point to the line remained positive throughout
execution. Now, getting this to close took some sig-
nificant massaging of the variables, mostly in dropping
out k which is a constant that stands for 1/(a2 + b2),
that serves to significantly muddle the use of quantifier
elimination. Now this can be done relatively easily by
cutting in that the points are above the line, which
can be proved knowing that the distance to the line
is positive.

Now, the more difficult portion of the proof was
to prove that this invariant is valid. In order to do

this, a series of compositions and assignments were
completed that are a result of all of the assignments,
nondeterministic and otherwise, that take place in the
beginning of the controller on each step. Then, the
important conclusions must be massaged out of the
differential equations primarily using differential cuts,
differential weakening, and differential invariant. Once
again, this is because the solutions to these differential
equations governing circular motion are not distinct
and reasoning about them is extremely complex and
difficult as they are of the form of sinusoids. Instead,
this approach allows for determining results without
stepping up the complexity.

Here, the important solution is that the distance from
each point to the line is strictly positive. Through
the assignments, the proof branches into four distinct
elements. The first is the case when both Ve and Vw are
0. This is easy to prove since the differential equations
do not alter the current states. The next case is when
both Ve and Vw are positive. This case is also easy to
prove in the fact that the controller does not allow this
state to occur and thus the preconditions fail and the
branch is shown to be trivially true.

Next, is the branch where Ve is positive, and Vw
is 0. This is the case when only the elbow joint is
rotating. The key argument here is that the rate at which
E is moving is less than the assumption made in the
controller. That is, evolving along the circular path is
slower than moving at Ve toward the barrier. This is
proven first by cutting in to the differential equation
the fact that the arm follows circular motion at a radius
of Re. With this solution it is must be shown that the
following expression is true:

(aey + bex)2  (a2 + b2) ⇤ re2

This formula was derived knowing the fact that at
any point along the path of a circle, the sum of the x
and y components are less than or equal to root 2 of
the radius, that is sin(t) + cos(t) <= 2(1/2). It can be
shown that the sum of sin and cos constructs another
sinusoid that has amplitude of root2. Thus, the sum of
two sinusoids with the amplitudes of a and b can be
shown be (a2 + b2)1/2. This result is squared to give
the equation above.

This result is extremely important in proving that
evolving along the circular path is slower than moving
at Ve toward the barrier. To show this, the current
distance from the line to from the point is recorded
using an auxiliary variable D0, and then the fact that
D0� V e ⇤ t  D is cut into the differential equation.

Using a differential invariant, this statement resolves to
the fact that 1 � k/re ⇤ (aey + bex). Then using the
result from equation X, the problem reduces to 1 � 1
which is true. Since W is a sum of E and R, which in
this case is constant, than this result was shown to apply
to W as well. With these results, differential weakening
is able to prove the final conclusion that D > 0
with the controller statement that D0 � V e ⇤ T > 0.
This was difficult for the arithmetic mainly because
of sheer number of different variable at play. Thus, in
order to close, Skolem abbreviation was used for many
formulas to reduce the problem in complexity and allow
it to reason about the logic of the statement without
confusion about the variables.

The last case where Ve is 0 and Vw is positive pro-
ceeds in an almost identical fashion except reasoning
about E is not necessary, as it does not move.

F. Results

The results from this line of inquiry into the use
of dynamic barriers was positive. Here, barriers were
successful as a means of ensuring safety for these
arms. What is even more promising is the versatility
they provide. By developing controllers that are able
to effectively handle and place barriers to motion, all
manner of different safe operations become available.
Multiple barriers could be used to show that the arm
will not collide with any number or shape of obstacles.
The initial approach by using a point was limited in
application, whereas the use of barriers can prevent
accidental collision with lines, circles, squares, or any
type of non-uniform shape. This is crucial in medical
applications because avoiding organs, arteries, specific
brain tissue, or even the spine is imperative and these
objects are not reliably approximated with any uniform
shape.

Additionally, it has been argued that these barriers
can set the boundary between two arms, but with
multiple barriers, the number of arms that can safely
operate in a confined space can increase dramatically.
This approach could very well be scaled up to include
the four robotic arms that are utilized in the da Vinci
system, or possibly even surpass this number. The
tradeoff here is that adding more arms increasingly
restricts the regions in which they can operate. These
issues would have to be weighed on a case by case
basis on what is the optimal number of arms for the
situation.

It also important to note that in this approach there
is a tradeoff as well in simplicity and efficiency in the

controller decisions. By using the approach detailed
above, in which the controller does not allow motion
if the point would cross the barrier after moving T
seconds in that direction, the controller decreases its
simplicity but it also increases how conservative it
is in restricting motion. In the first iteration of this
controller using barriers, reliance on simplicity is useful
in proving the potential for this approach. Later sections
will discuss an approach on how to improve on the
efficiency.

Additionally, one must consider the relative realism
that this model presents. While the controller is in-
deed relatively succinct and would not be too difficult
to implement, having solid approximations about the
locations of the joints in space might be difficult.
Additionally, the assumption that the joint W is not
dependent of the rotation of E is a simplification that
is rarely true in the real world. A solution to this is
proposed in the following advanced model.

G. Enhanced Barrier Avoidance

This model differs from the previous model in the
fact that it is designed to take the previous joints
rotation into account during evolution. That is, it means
that when E rotates, the W joint must rotate with it as
would happen in reality. The following figure illustrates
this concept:

Fig. 7. Location of points E and W initally, and then again
after rotation at E1 and W1. Demonstrates expected rotation of
W dependant on E.

In order to model this behavior, one could use
differential equations exclusively. However, this would
require complex calculations to establish valid motion,
and with these complex differential equations comes
even more complex differential invariants. Thus, such
an approach would greatly increase the complexity of
the system. Instead, the approach taken resembles that
of the previous model of separate evolution and a final
summation to correct the model. An examination of

the dynamics reveals that throughout an execution, the
angle between E and W should remain constant.

In order to model this discretely, direction vectors
for E and for W must be introduces into the dynamics.
These changed dynamics can be seen below:

{ex’ = ve

*

dex,

ey’ = ve

*

dey,

rwx’ = vw

*

dex,

rwy’ = vw

*

dwy,

dex’= -ve

*

dey/re,

dey’= ve

*

dex/re,

dwx’= -vw

*

dwy/rw,

dwy’= vw

*

dwx/rw,

t’ = 1

& t <= T}

Here, the direction vector changes according to the
speed and the radius, and then is used in the differential
equation for the point to create how the point evolves
based on these direction vectors. The following invari-
ants can be easily proved for this new set of dynamics:

exˆ2 + eyˆ2 = reˆ2 &

rwxˆ2 + rwyˆ2 = rwˆ2 &

ex=re

*

dey &

ey= -re

*

dex &

deyˆ2+dexˆ2=1 &

dwxˆ2+dwyˆ2=1 &

rwx= rw

*

dwy &

rwy= -rw

*

dwx

Examining these vectors in this model reveals that
the angle between then also must be constant. Thus,
in using the dot and cross product one can create a
rotation matrix for the angle of rotation between the
two direction vectors. Thus, after E evolves that the
direction vectors change, the rotation matrix is used to
generate the proper direction vectors for W. Then using
the equations for invariants, I can piece together the
location of the W as E plus R. Where R now is now
the position based on previous rotation as calculated
by the rotation matrix and added to the independent
rotation that is undergone by the joint. These equations
are summarized below.

cos := dwx

*

dex+dwy

*

dey;

sin := dwx

*

dey-dwy

*

dex;

which is calculated at the beginning of the time step.
And at the end of the time step the rotal is calculated,

wx:=ex+rwx+rw

*

(dex

*

cos+dey

*

sin);

wy:=ey+rwy-rw

*

(-dex

*

sin+dey

*

cos)

Thus using this approach allows for a discrete rep-
resentation for the joint W, which has a complex
trajectory. The positive for this is that it models the
actual behavior more closely and works to reduce the
differential complexity. However, the downside to this
approach is that the position for W is only calculated
after the differential equation and thus limits the use of
any evolution domain restriction on W.

Yet, even with the enhanced model, which more
closely describes real world behavior, there is a need
to add in more functionality into the system. This is
explored as part of the dynamic barrier model.

VI. DYNAMIC BARRIER

A. System

The previous model allowed for a barrier to be added
at the beginning of each time step and then allowed
motion so long as it did not cross the barrier. This
does indeed allow for safe operation of the system
but adds in no additional features or functionality.
Take for example the surgeon moving arm1 towards
an important element for surgery, but this is where
the barrier lies so the arm stops. Then the surgeon
must move arm2 away, reposition the barrier, and
then begin the procedure again. Such annoyances are
distracting and time draining for the surgeon. Thus, this
model proposes a dynamically adjusting barrier, and
autonomous control of the arm to keep the arm away
from the barrier but also clear room to allow the other
arm to move. An illustration of this concept can be seen
in the figure below:

Fig. 8. Robotic arm model with a moving barrier (with velocity
Vc) below the arm.

This model specifically handles the case of a moving
towards an arm directly above it, and sets the motion
according for it to remain safe.

B. Safety

As in the previous models, safety here is keeping the
arm above the barrier. That is, every point along the line
segment SE and EW must at all times remain above the
barrier. This is formalized in dL as seen below:

8n.(n >= 0 ^ n <= 1 !
a ⇤ (sx+ n ⇤ (ex� sx))+

b ⇤ (sy + n ⇤ (ey � sy)) + c > 0)^
8n.(n >= 0 ^ n <= 1 !
a ⇤ (ex+ n ⇤ (wx� ex))+

b ⇤ (ey + n ⇤ (wy � ey)) + c > 0)

C. Dynamics

This model is very similar to that of a non-moving
barrier, except for a few key differences. The first is
the fact that the W joint is not allowed to rotate, and
safe operation is achieved on moving E and having
W follow. Additionally, the line is allowed to move
linearly, and this is achieved by allowing c in ax +
by + c = 0 to evolve in the evolution according to Vc.
The overview of the dynamics can be seen below:

{ex’ = -ve

*

ey/re,

ey’ = ve

*

ex/re,

rwx’ = -vw

*

rwy/rw,

rwy’ = vw

*

rwx/rw,

c’ = -vc,

t’ = 1

& t <= T, (ey <=0 | wy <=0)}

Also, it is important to note that there is an addition
to the evolution domain which stops motion once both
W and E are at a distance away from the line greater
than S. This prevents the arms from moving into a safe
region and continuing on that path back out into danger.

D. Controller

The controller is tasked with picking a suitable
velocity for E to rotate with so that it will avoid an
impending collision with the barrier moving towards it.
Thus, first the controller allows for the nondeterministic
assignment of a velocity Vc for the barrier. It then
checks to make sure that this velocity is not too large
and will keep the barrier below the S joint. This has to
be checked because the barrier, even though its allowed
to move, must still remain shy of the S joint as it is
the base of the arm and can not move.

Next, a value is constructed for Ve such that,

V c = b ⇤ Ex ⇤ ve/re.

This assignment to velocity makes sure that that the
arm keeps up with the barrier.

E. Proof Methods

This model is proved in a singular case as a proof
of concept, where the barrier is a horizontal line and E
is to the right of S. This is the example shown in Fig.
8.

As in previous cases, the proof proceeds first by
choosing a suitable loop invariant that must remain true
in each and every time step of the program. The key
element to this invariant is the fact that the distance to
E and to W remains greater than 0. This is the same
as in the non-moving barrier. The proof then branches
into when V c = 0 and to V c > 0. When V c = 0 the
proof becomes trivial as neither the barrier nor E nor
W are moving and thus the distance remains greater
than 0.

The other branch relies on a simple argument about
this distance. First, using the facts about the Ey gar-
nered from the evolution domain, it can be showed that
along the evolution of Ex, that Ex is increasing. This is
done through an auxiliary variable ex0 and then cutting
in and proving by invariant that ex0 <= ex. With this
fact, the statement that the distance from E to the barrier
is greater than 0 can be cut in and proved by way of
differential invariant, which holds because the of the
relationship between Vc and Ve. Ultimately, this proves
that d’, or the rate that the distance changes is 0. This
fact will close this branch with a little extra work that
wasnt completed in the time scope of the project.

F. Results

The ability for an arm to autonomously adjust to a
barrier towards it is very powerful. It would allow for
the operator to easily clear room for another arm to
operate. However, this result is important for the fact
that the argument is reflexive. That is, you can turn
yourself around an imagine that you are controlling
the robot that is below the barrier, and set a Ve and
use the same approach to set a corresponding Vc that
will assure that the barrier will move away at the
same rate that the arm is moving towards it. Thus, this
becomes a solution to a dynamically moving arm and
an autonomous response by the barrier. If this result is
put together with the result that was explored in this
model, the created system is a simple way in which
one arm can autonomously avoid another arm. Special
attention would have to be paid in all of the cases in
which the autonomously moving arm can no longer

safely move or if the barrier has reached the other
arms base. This problem, however, is easily handled
by a statement at the end of controller that sets the
user operated velocity to be 0 if any of the checks fail
and Vc cannot move.

This approach in selecting a velocity that will, at all
times, make sure that the arm is moving in a direction
away from the barrier at the same rate that the barrier
is moving towards it is indeed safe. However, such an
approach comes with many problems and warnings.
The first is that the proof attempt was using a singular
case of the system, and thus the overall system would
be case based and more complex. More so, significant
problems arise in efficiency and in implementation.
This method works well when Ex is about Re and thus,
most of its motion is in the y direction. But when Ex
approaches 0, the necessary velocity blows up to a very
large number. This is not only inefficient, but also very
impractical in implementation, and generally unsafe.

Therefore, even though the result is important and
promising, the proof method needs a better argument
that is not so strong. A different, and likely more useful
argument, is to set a velocity that will at the very least
keep the arm above the boundary after one time step.
This is a different approach than previously, because
it does not seek to prove that the distance between
the line and the barrier is constant, but just remains
positive. That is, a d could be negative, but after T
seconds, that the total distance is still positive. This a
less restrictive argument, but requires a good time based
approximation of the circular path. This estimation is
explored with parabolic approximation.

VII. PARABOLIC APPROXIMATION AND EFFICIENCY

A. Introduction

In many of the previously detailed models, partic-
ularly the dynamic barrier one, there is a need to
fully examine how restrictive the controllers are, and to
develop a more efficient approximation to the circular
motion inherent in these robotic arms. This is meant to
create systems that are more function, as they restrict
less motion, as well as more realistic, that they make
reasonable decisions in control.

B. Model

One potential solution that was examined was that of
estimating the path of the arm in a parabolic fashion.
The potential benefits to this approach is that it allows
for the reasoning about the position of the arm accord-
ing to time T but also allows for a path that resembles
more closely that of the circular motion.

A specific case was examined in which the arm was
to the left of S and had a positive velocity. I also assume
that there is a barrier beneath the arm. Then in order to
prove the functionality of this approximation, the result
desired was that of Y approx <= Y actual, where Y
approx. is a parabola of the form (Xapprox)2/re +
re = Y approx. This is illustrated in the figure below.

Fig. 9. Illustration of one potential means of using parabolic
estimation for circular motion.

Xapprox is modeled as Xapprox = X0 � V e ⇤ t
and using a differential cut and invariant shown that
Xapprox <= X . Together, with cuts about the relative
motion of the arm, It was shown that in this case
Y approx <= Y actual.

C. Study

In order to understand how significant, if any, the
improvement in efficiency is, a study was undertaken
on the relative effectiveness of each controller.

D. Results

The proof results do suggest that parabolas, with x-
components approximated in a linear fashion, can be
used an approximation of the arm. The potential benefit
from this an improvement in efficiency. However, there
is a tradeoff in complexity, and using this parabolic es-
timation would indeed increase the system complexity.

An adoption of this new approximation would in-
deed change the details of all of the previous proofs.
However, the approach and overall argument would
remain the same and the controller would instead use
statements that are based on a relative position on the
parabola rather than assuming the arm moves linearly
towards the barrier.

VIII. CONCLUSION

Complexity, in hindsight, turns out to be very dif-
ficult to avoid. In the beginning of this project, a lot
of time was sunk into coming up with coming up with
a clever algorithm that would make two robots safe
in a 2D space. However, with multiple rotating joints,
and with many possible cases for an unsafe event,
simplifying assumptions are imperative.

Only once the project was stepped all the way down
to its most simple form, was progress made. It was
in the slow upwards progression that the nuances of
the situation became clearer. Initially, I had intended
to construct proof arguments separately for avoiding
obstacles and avoiding arm intersection. In working
on the projects first few iterations, it became obvious
that the using overt specification with multiple joints
requires too many cases to be manageable. It was then
that the projects focus pivoted.

After that point, I wanted to try and make a sys-
tematic and simple method that could control the arms
without relying on too many specifications. That is
when the boon of using controller-defined boundaries
became apparent. However, even simple proofs were
very time-consuming, and left a lot to be wanting in the
exploration of more efficient controllers and in better
models.

In the end, most of the goals in the proposal were
achieved for the two dimensional model. The three
dimensional model was not explored mainly for time
constraints and interest in the 2D properties yet to be
proved. However, these goals were achieved indirectly
through a barrier system, and can be used to reason
that the overall system would be valid and safe.

IX. DELIVERABLES

This project has produced the following items:
• static obstacle.key (with proof) and static

obstacle 2
Static avoidance of an obstacle in 2D using linear
approximations.

• barrier avoidance.key (with proof)
This model also deals with the same robotic arm
configuration but this controller is developed to
allow two arms to operate in the same space.
This is done by the controller setting a line of
the form ax+by+c=0 at every time step. A linear
reduction of this distance is used as an argument
for keeping the arm above the line at all times.
An identical arm would use the same argument to

show that it remains below the barrier at all times,
thus allowing for safe operation of multiple limbs.

• dynamic barrier.key (with proof)
Here, the idea is to provide functionality to the
system by allowing the controller to move the
barrier toward the arm, and have the arm au-
tonomously set the velocity needed to remain
above the arm. This is done by assuring the
direction away from the barrier is at least equal
to the velocity of the barrier.

• parabola approx.key (with proof)
In an examination of the conservative nature of
the linear reduction, a parabolic estimation of the
particles path was undergone. Here, it is shown
that a parabola constructed at the point furthest
away from the barrier can be used to estimate the
distance traveled by the arm.

• advanced barrier.key
This model better represents the interactions of
the joints. Here, a rotation matrix which remains
invariant between the direction vectors for each
arm and is used to provide relative motion for W
as E rotates.

• full safety.key

This model expresses in dL how the conclusions
reached between two arms staying on either side
of a barrier can be used to show that there will be
no intersections between the arms.

REFERENCES

[1] Bodner, J., et al. ”First experiences with the da Vinci oper-
ating robot in thoracic surgery.” European Journal of Cardio-
thoracic surgery 25.5 (2004): 844-851.

[2] Zorn, Kevin C., et al. ”Da Vinci robot error and failure rates:
single institution experience on a single three-arm robot unit
of more than 700 consecutive robot-assisted laparoscopic rad-
ical prostatectomies.” Journal of Endourology 21.11 (2007):
1341-1344.

[3] Platzer, Andre. ”Differential dynamic logic for hybrid sys-
tems.” Journal of Automated Reasoning 41.2 (2008): 143-189.

[4] Platzer, Andre, and Jan-David Quesel. ”KeYmaera: A hybrid
theorem prover for hybrid systems (system description).”
Automated Reasoning. Springer Berlin Heidelberg, 2008. 171-
178.

[5] Kouskoulas, Yanni, Andre Platzer, and Peter Kazanzides.
”Formal methods for robotic system control software.” Johns
Hopkins APL technical digest 32.2 (2013): 490.

[6] Fu, King S., Rafael C. Gonzalez, and CS George Lee.
Robotics. McGraw-Hill, New York, 1987.

