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1: Abstract

This paper provides a formal proof of the safety of a time triggered velocity PID controller that are
subject to random force disturbances. This proof is verified using the Keymaera proof assistant.
Specifically, this paper shows that given sufficient initial conditions on the gains of the controller,
the resulting velocity will remain in some safe range vmin ≤ v ≤ vmax. Time triggered velocity PID
controllers are frequently used in industrial applications to achieve a desired velocity in the face of
unknown variables in the system. They can be combined with more complicated controllers. This
paper shows how a hybrid controller that contains a velocity PID controller can also be shown to
be safe. One such system that relies on a velocity controller is the European Train Control System.
Proving that a velocity PID controller remains safe in the face of sufficiently small random forces is
critical in guaranteeing that the overall behaviour of the system is not only safe in the worst case,
but also that it functions correctly under normal operating circumstances.

2: Introduction

PID controllers are feedback based controllers used frequently in industrial applications. PID
controllers attempt to minimize the difference between some target state and the current state.
Control is applied to the system based on 3 terms, position, which is simply the difference between
the desired state and the current state, integral, which is the sum of previous errors, and derivative,
which is rate at which the system is changing. PID controllers are highly useful in systems where
the mechanics of the system are not fully understood because they are agnostic to the underlying
system. However, PID controllers provide no guarantees about the safety of the controller. In order
to ensure the safety of PID based controllers some formal verification is necessary for the system.

One such way of verifying the safety of a PID controller is to use proof assistance software such as
Keymaera. Keymera is a powerful tool that has been used to prove the safety of real world systems
such as the breaking mechanism on trains [1]. Prooving the safety of PID controllers provides
additional safety guarantees about complex systems.

3: Existing Research

There has been extensive research on the topic of PID controllers. Research into formal verification
of PID controllers has also been conducted.

Platzer et Quesel [1] investigated the safety of PI controllers as they applied to the European Train
Control System (ETCS). The ETCS system relies on PI controllers to regulate velocity control.
In order to prove that the PI controller was safe, the upper and lower bounds, A and -b, for the
acceleration of the ETCS system was used. It was shown that given some velocity v at time t that
was in the evolution domain of an ideal velocity controller, that same velocity was also reachable
at time t given a sufficient PI controller. It should be noted that the integral term s evolved
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integral term is taken to be time-triggered.

Arechiga et Loos,Platzer,Krough [2] further the results of [1] to the case of PID controllers for
velocity. They examine the case of an Intelligent Cruise Control (ICC) system and its formal
verification using an automated theorem prover. Similar to [1], the system is constrained to accel-
erations a ∈ [−B,A]. Furthermore, the integral term z is constrained to be in [zmin, zmax] Formally,
the PID controller is described as

h(xs(t), zs(t)) =


apid −B ≤ apid ≤ A
A apid > A
−B apid < −B

Where zs ∈ [zmin, zmax] and apid is pure PID velocity controller. Furthermore, this system is divided
into to two regions of operation, SAFEε consists of regions where any a ∈ [−B,A] is considered
safe, and SAFEε which is the complementary region. The apid controller is only exercised in the
SAFEε region, and formal proof techniques were used to show that the output of the system in
this region was always safe.

4: General Approach

This project attempts to formally prove safety properties about velocity PID controllers. Unlike
prior research in [1] and [2], this project will attempt to prove safety constraints on velocity PID
controllers themselves, as opposed to proving safety constraints on PID controlled systems. The key
difference here is that the PID controller is allowed to operate in all regions of the system, instead
of relying on a fallback controller to ensure the safety of the system. Specifically, the project will
focus on a one dimensional time-triggered control system. A PID controller will be responsible for
controlling the velocity of a system that evolves according to Newtonian physics. Formally, the
system evolves according to

v′ = a

.

a will be controlled by a canonical PID controller of the form

a = KP (vset − v) + KI(vi)−KD(a)

Where vset is the controller setpoint, v is the velocity, a is the acceleration, and vi is the integral
term, or more formally

vi(t) =

∫ t

0
(vset − v(t))dt

Here, the P term is considered to be (vset − v), the I term is taken to be vi and the D term is
considered to be |a|. The controller is time triggered, meaning that all the P, I,D components are
determined at the beginning of an iteration of the controller and the system is allowed to evolve
given these values of P , I and D for some t ≤ T .

The controller will also be subject to random disturbances of the form F where F ∈ [−Fmax, Fmax].

With the random disturbances, the system now evolves according to

a+ = a + F
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v′ = a+

With random disturbances, the P term remains as vset − v. Likewise, the I term remains as vi.
However, the D term is now taken to be a+ = a+F . Thus, the overall action of our controller can
be described as

a = Kp(vset− v) + KI(vi)−KD(a+)

.

This system is considered to be safe if it can be shown for some vmin < vmax such that ∀t ≥ 0,
vmin ≤ v(t) ≤ vmax. It should be noted that this is a sufficient condition for non-divergence of the
controller, but does not ensure convergence of the controller.

This safety condition provides strong guarantees for the general safety of mechanical systems that
contain velocity controllers. Primarily, this result suffices to show that if some mechanical system is
considered unsafe when operating outside a given velocity range, then the system does not require
intervention by a safety controller. Furthermore, it provides guarantees on the velocity during
the controller operation that can in turn be used to provide guarantees about the position during
control.

4: dL Formalization

This section formalizes the controller described in section (3). It uses hybrid program syntax and
dL notation that is described in depth in [1].

Let Kp,Ki,Kd be positive real constant coefficients of the PID controller.

Let I be the integral term of the PID controller.

Let Imax be the maximum integral term of the PID controller.

Let vmin < vmax be the safety constraints on the velocity of the system.

Let Fmin ≤ Fmax be the minimum and maximum values for the force disturbance F on the system.

Let 0 ≤ T be a time trigger of the control system.

Let vset be the set point of the controller.

Let v be the current velocity of the controller.

Let a be the current acceleration of the controller.

Let L be some logical formula of the above variables that guarantees the safety of the system,
described in section (6).

The system evolution can be described as :

E ≡ F := ∗; ?(F ≤ Fmax&F ≥ −Fmax); t := 0; v′ = a + F, t′ = 1&t ≤ T ;

The system control can be described as :

C ≡ I := I + T (vset − v);

(I := I; ?(I >= −Imax&I <= Imax))++((I := −Imax; ?(I < −Imax))++(I := Imax; ?(I > Imax)));

a := Kp(vset − v) + Ki(I)

a := a−Kd(a + F )
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The dL formula that is equivalent to the safety of this system is then

(L ∧ t = 0 ∧ I = 0)→ {(C;E; )∗}[vmin ≤ v ≤ vmax]

5: Intermediate Results

(a)

In this step, the safety of a P controller was proved with no disturbance and explicitly set gains.
Furthermore, the set point of the controller, vset was taken to be 0. Additionally, we had safety
constraints of the form −vmax <= v <= vmax. Specifically, the system evolved according to

v′ = a

. The controllers action was taken to be

a = Kp ∗ (−v)

.

The key initial condition required to prove this controller safe was Kp = 1
T . We can see that at

each iteration of the controller, |∆v| <= |Kp ∗ T ∗ v|. By setting Kp = 1
T , we have ensured that at

any iteration, |∆v| <= |v|. In essence, we have ensured that the controller never ”overshoots” the
set point in any iteration. A formal proof of this using the Keymaera Proof Assistant is attached
(project_ss1.key.proof).

(b)

In this step, the safety of a PI controller was proved with no disturbance and a range of valid gains.
Furthermore, the set point of the controller, vset was taken to be 0. Additionally, we had safety
constraints of the form −vmax <= v <= vmax. The system evolved according to

v′ = a

. The controllers action was taken to be

a = Kp ∗ (−v) + Ki ∗ I

. The integral term I, was initially set to be 0. Upon each iteration of the controller, The I term
is updated according to

I = I − v ∗ T

. Furthermore, a new term Imax is introduced to bound the absolute value of I. Thus, at each
iteration, a new value of I is computed according to

I = Max(Min(I − vT, Imax),−Imax)

. The introduction of an Imax term is not as artificial as it may first appear. Bounds on the
integral term are often introduced in industrial applications. In previous examinations of safety
properties of PID controllers, bounds on the integral term have been used as well [2]. Furthermore,
the canonical representation of a controller in Keymaera allows the system to evolve for any t such
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that 0 <= t <= T , where T is the time trigger on the system. Clearly this representation would
prove problematic for proving boundedness on the I term.

In order to prove the safety of this controller, the initial condition

vmax ∗Kp ≥ Imax ∗Ki

was introduced. This condition ensures that at vmax, the action of the P term will always be greater
that the action of the I term. The action of the P term will always force the control output towards
the set point, and so at vmax, the controller must accelerate towards the set point. In conjunction
with Kp ∗ T <= 1, this initial condition is in fact sufficient to show that the controller will never
exceed the set point throughout the entire execution of the controller. A formal proof of this using
the Keymaera Proof Assistant is attached (project_ss2.key.proof).

(c)

In this step, the safety of a PI controller with random force disturbances was proven. The set
point of the controller, vset was taken to be 0. Additionally, we had safety constraints of the form
−vmax <= v <= vmax. The system evolved according to

v′ = a + F

where F ∈ [−Fmax, Fmax] is a bounded random force. It should be noted that the random force
was constant throughout a full execution of the dynamics. However, because the dynamics are
allowed to evolve for any amount of time t such that 0 ≤ t ≤ T , cases in which the random force
changes rapidly are accounted for in this proof. The action of the controller remained unchanged
from part (b) with

I = Max(Min(I − vT, Imax),−Imax)

and
a = Kp ∗ (−v) + Ki ∗ I

In order to prove the safety of this controller, the initial condition

vmax ∗Kp ≥ Imax ∗Ki

from part (b) was strengthened:

vmax ∗Kp ≥ Imax ∗Ki + Fmax

. This condition ensures that at vmax, the action of the P term will always be greater that the
action of the I term as well as the F term. The action of the P term will always force the control
output towards the set point, and so at vmax, the controller must accelerate towards the set point,
regardless of the values of the I term and the random force F. A formal proof of this using the
Keymaera Proof Assistant is attached (project_ss3.key.proof).

(d)

In this step, the safety of a PID controller with random force disturbances was proven. The set
point of the controller, vset was taken to be 0. Additionally, we had safety constraints of the form
−vmax <= v <= vmax. The system evolved according to

v′ = a + F
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where F ∈ [−Fmax, Fmax] is a bounded random force. The action of the controller was

I = Max(Min(I − vT, Imax),−Imax)

and
a = Kp ∗ (−v) + Ki ∗ I; a = a−Kd(a + F )

The action of the controller is a slight adaptation of the originally proposed controller

a = Kp ∗ (−v) + Ki ∗ I −Kd ∗ (a + F )

This deviation from the canonical form of a PID controller was made such that for each iteration
of the control loop, the D term opposes the controllers output. The challenge with verifying the
canonical controller is that under a time triggered system, on iterations where the sign of the
acceleration changes, the action of the D term acts with the acceleration on the next iteration.

In a canonical PID controller, the intention of the D term is to oppose the change in the error of
the controller. This leads to more rapid settle times of the controller (the time it takes for the
controller to stabilize on the set point). Thus, it should be considered a satisfactory substitution
to implement the PID control in two steps if it ensures that the derivative term will always oppose
the current change in error (velocity).

In order to prove this controller, the initial condition from part (c) was modified such that the Imax
and P terms were scaled by 1 − Kd. In the modified controller, the D term always acts against
the current direction of motion. However, Fmax term was scaled by 1 + Kd because the evolution
has a total contribution of random forces that can be described as F1 −Kd ∗ F0, where F1 is the
random force generated during this iteration, and F0 is the random force generated by the previous
iteration. Because they are independent, the total random force contribution in this iteration can
be as high as (1 + Kd)Fmax.

This leads to the new initial condition

(1−Kd) ∗ Vmax ∗Kp ≥ (1 + Kd) ∗ Fmax + (1−Kd) ∗ Imax ∗Ki

A formal proof of this using the Keymaera Proof Assistant is attached (project_ss4.key.proof).

(e) In this step, the safety of a PID controller with random force disturbances was proven. The set
point of the controller, vset was constrained such that vmin ≤ vset ≤ vmax. The safety constraint
was of the form vmin ≤ v ≤ vmax. A more detailed description of the key initial constraints is
described in the following section.

A formal proof using the Keymaera Proof Assistant is attached (project_ss5.key.proof).

6: Proof Sketch

In section (4), a dL formalization of the PID controller as well as the safety condition was presented.
This section presents an overview of the initial conditions used to prove the controller’s safety,
as well as an informal overview of some of the key steps used in proving this controller to be
safe. A formal proof using the Keymaera Proof Assistant can be found in the accompanying file
(project_ss5.key.proof).

The full set of initial conditions used were

1. T > 0 ∧ Imax ≥ 0 ∧ Fmax ≥ 0
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2. Kp ≥ 0 ∧Ki ≥ 0 ∧Kd ≥ 0

3. I = 0 ∧ F = 0

4. vmin ≤ v ≤ vmax

5. vmin ≤ vset ≤ vmax

6. Kp ∗ T ≤ 1

7. Kd ≤ 1

8. (1−Kd)(vmax − vset) ∗Kp ≥ (1 + Kd) ∗ Fmax + (1−Kd) ∗ Imax ∗Ki

9. (1−Kd)(vset − vmin) ∗Kp ≥ (1 + Kd) ∗ Fmax + (1−Kd) ∗ Imax ∗Ki

The initial conditions in (1) are intuitive properties of the system. The initial conditions in (2)
simplify the notion of a PID controller to accept constants that are strictly positive. The initial
conditions in (3) set the integral term and random force term to be 0 initially.

The initial conditions (4) and (5) ensure that both the target set point and initial velocity are
within the safety bounds of the system.

The initial condition (6) ensures that in any iteration of the controller, the change in velocity
resulting from the P term is at most the offset between the velocity and the set point. This is used
to show that the P term will never overshoot the set point in a given iteration.

The initial condition (7) ensures that the D term does not cause the system to become unstable by
ensuring that it acts as a multiplicative constant (less than 1) on the P and I terms.

Initial conditions (8) and (9) are used to show that at the safety boundaries of the controller.

On each iteration of the control loop, the value of I is updated according to

I = Max(Min(I + (vset − v) ∗ T, Imax),−Imax)

and a is updated according to

a = Kp ∗ (−v) + Ki ∗ I; a = a−Kd(a + F )

The system evolves according to
v′ = a + F

, where −Fmax ≤ F ≤ Fmax

In order to show the safety of the system, we must show inductively that after each iteration of the
control loop, we have both

1. v ≤ vmax

2. v ≥ vmin

Clearly this holds initially. Additionally, at any point during the controller’s evolution, we have

−Imax ≤ I ≤ Imax

.
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After the system evolves for some 0 ≤ t ≤ T , we can see that the velocity can be expressed as

v = v0 + (a + F )t = v0 + (1−Kd)(Kp(vset − v) + KiI −Kd(F
−)) ∗ t + F ∗ t

Note that vmin ≤ v0 ≤ vmax is the velocity before the current execution of the controller, and F−

is the random force from the last execution of the controller. Then clearly we have

((1 + Kd) ∗ −Fmax + (1−Kd) ∗ −Imax ∗Ki)t + v0 ≤

v0 + (1−Kd)(Kp(vset − v) + KiI −Kd(F
−)) ∗ t + Ft ≤

((1 + Kd)Fmax + (1−Kd)Imax ∗Ki)t + v0

Invoking initial conditions (8) and (9) gives

(1−Kd)(vmin − vset) ∗Kp ∗ t + v0 ≤ ((1 + Kd) ∗ −Fmax + (1−Kd) ∗ −Imax ∗Ki)t + v0 ≤

v ≤

((1 + Kd)Fmax + (1−Kd)Imax ∗Ki)t + v0 ≤ (1−Kd)(vmax − vset) ∗Kp ∗ t + v0

Now invoking (7) and (6) gives the desired property

vmin ≤ v ≤ vmax

.

Because this property holds inductively, it must hold for any number of executions of the control
loop.

7: Applications

PID controllers are frequently used in situations where the exact dynamics of the system are
unknown. The system examined in this paper is specifically referred to as a velocity controller.
The input to the controller is some target velocity, vset and the output is some acceleration to reach
the velocity, a. Consider the case of a cruise control system for a car. A PID velocity controller
can be used to achieve a desired velocity. The controller output, a, could be used to compute how
much fuel to deliver to the engines in order to produce the desired acceleration in the car. While
it may seem like a simpler controller could be sufficient to produce the desired velocity, a PID
controller proves more robust in the event of non-deterministic forces. For example, a deterministic
controller would need to account for numerous external forces such as variable friction due to
weather conditions. However, a PID controller does not require a detailed model to successfully
achieve its target velocity.

Additionally, PID controllers are often used in conjunction with other controllers. Consider the
case of some robotic arm that is given a planned trajectory to achieve some arbitrary goal. This
trajectory consists of a set of target points, target velocities, v1, v2, v3... and target forces to be
applied to the robotic arm F1, F2, F3... at each successive iteration of the control loop. While many
of the dynamics of the system act deterministically, for example gravity and friction, some forces
may be left un-accounted for such as air friction. Frequently, the controller will consist of two
primary terms, a feed-forward term used to counteract the known dynamics of the system, as well
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as a PID controller to account for the unknown dynamics of the system. In this case, the output
of the controller in the ith iteration could be expressed as ai = Fi + PID(vi), where PID(vi)
represents a velocity PID controller with set point vi.

In both of the above applications, a formal proof of the safety of a PID controller as it has been
presented in this paper is critical. While many cyber-physical systems rely on emergency controllers
wrapped around the fine grained controllers to absolutely guarantee safety properties, It is impor-
tant to know that for some small force disturbances, F ∈ [−Fmax, Fmax], the PID controller will
behave safely and not require the intervention of emergency controllers. Furthermore, formalizing
these proofs in a proof verification system eliminates the possibility of incorrect proofs. It is clear
how the safety guarantees provided in this paper would apply to the safety of a cruise control
system that must remain between some velocity vmin ≤ v ≤ vmax under normal operation.

However, even more complicated systems such as the robotic arm with a feedforward term also
benefit from a formal proof of a PID velocity controller. If the feedforward term properly accounts
for all known constant forces on the system, eg gravity, friction, then any additional force will cause
the system to evolve according to the canonical

v′ = a + F

. It is now clear that the verified velocity controller proven in this paper can ensure that robotic
arms velocity will differ at most by some fixed amount if it can be shown that the feedforward
component differs from the actual force on the arm at all times by at most Fmax. Thus, even more
complicated system can benefit from this formal proof a velocity PID controller.
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