Asteroid Approach Final Report
15-424 Foundations of Cyber-Physical Systems
Kerry Snyder



Abstract

The recent identification of near earth objects with the potential to either harm earth or
provide boundless wealth has lead to an uptake in the number of space missions directed at
asteroids and comets by both public entities and private companies. One key need shared
between all of these missions is the ability to safely approach and land on an asteroid. This
research tackles the problem of safely and efficiently controlling a spacecraft to softly
touchdown on an asteroid so that a wide variety of scientific and commercial tasks can be
accomplished. Safety conditions in a reduced dimension space are derived from physical
equations and then proven using the logical verification tool KeYmara. Then, efficiency
conditions are explored and compared to fuel use information from an actual asteroid landing
mission.



Introduction

In 1986, the ESA’s Giotto spacecraft returned the first close up images of a comet or
asteroid, passing within 596 km of Halley’s Comet. The NEAR Shoemaker mission, which
was launched by NASA ten years later, studied the asteroids 253 Mathilde and 433 Eros and
ended its mission by successfully soft-landing on Eros. More recently, the Asteroid Redirect
Mission has been proposed by NASA to move an asteroid into lunar orbit to be studied by
humans. All of these missions share a common theme which is a small but very expensive
spacecraft approaching a very large misshapen rock. It is therefore imperative that these
missions can safely approach and function in close proximity with an asteroid.

This work studies the logical verification of various aspects of an asteroid probe
mission. Such verification has a broad impact in the field of space robotics. The recent
Rosetta comet landing mission by ESA cost a total of 1.6 billion EUR or almost 2 billion USD.
Further, it took almost a month for the team to plan and execute a rendezvous with the comet,
a very challenging mission with a somewhat disappointing ending. The older NEAR mission
only cost 224 million, but spent over a year orbiting EROS before its final soft touchdown was
planned and executed. Finally, the Asteroid Redirect Mission requires human safe operations,
so verifiable safety is of utmost importance.

Figure 1: Rosetta probe and Philae Lander near Comet 67P/Churyumov-Gerasimenko. Credit: ESA




Figure 2: Regolith from the asteroid 433 Eros, imaged by NEAR Shoemaker during its descent to the surface. Credit:
NASA

The Asteroid Redirect Mission Concept of Operations describes many of the key
phases of an asteroid approach mission. Once the vehicle has come within 100-200km of the
target, it spends some time orbiting and surveying the target until enough knowledge is
gained to make a safe approach. This knowledge includes size, shape, rotational rate, albedo,
and gravity. Once a trajectory has been planned, the vehicle begins its “descent” with some
degree of remote monitoring and control and eventually completes its landing or approach. As
the distance between the satellite and the asteroid decreases, the risk of damage increases,
which is why the planning process typically takes months rather than hours.

Prior Work

In the past, probabilistic methods have been the standard means of verification of
spacecraft systems, particularly monte carlo experiments. These methods involve simulating
the system and controller for a certain amount of time from a distribution of input conditions
and then fitting a distribution to the output states in order to determine expected performance
and dispersion[2]. In order to compute a statistically significant posterior distribution, hundreds
of thousands to tens of millions of runs of the simulation and controller are necessary which
takes significant time and computational power. This method has been applied to the study of
the probability of collision of satellites rendezvousing in orbit, a similar problem, with 50,000 to
500,000 runs taking hours to days to run[3]. It also has heritage in the Apollo missions, such
as determining crew safety in an early launch abort [4].

In recent years, formal verification of Cyber-Physical Space Systems has been studied
with increasing effort. A chinese team considered model checking and theorem proving in the
study of the descent guidance of a lunar lander and were able to verify a variety of safety
properties during one of six phases of descent to the lunar surface[5]. Another study looked
again at the problem of satellite rendezvous, from the perspective of model checking rather
than monte carlo analysis[6]. This publication focused in particular on orbital dynamics for
satellite operation in earth orbit and was able to verify safety in circular orbits in the presence
of sensing and thrust uncertainties. The primary difference between this prior work and the
work of this research is the location and relative sizes in the approach. For the approach of an
asteroid, the gravity and orbit of the earth is often minimal whereas the gravity of the target
itself is not. This introduces challenges as the spacecraft is always accelerating towards the
target. These challenges and others are addressed in this research.

Developments

Model Development



The first step in verifying an asteroid-satellite cyber-physical system is developing a
physical model of the continuous time dynamics and the discrete control system. The
dynamical model was developed with many simplifying assumptions. First, motion is only
considered in two axes, the vector of approach between the asteroid and satellite and “roll
rotation about that axis. This covers the primary control objective of the asteroid redirect
mission is to approach very close to an asteroid, match its rotational rate, and then either
capture it or retrieve a sample. Next, acceleration due to gravity was modeled as a single
constant value. In reality, most asteroids have a very noncircular shape and highly nonuniform
density, both of which contribute to what is known as a “lumpy” gravity model. In order to
properly navigate and plan a guidance trajectory, these differences are very important.
However, for the actual control, a simplified gravitational acceleration is sufficient. This also
leads to straightforward differential equation solutions in the initial system, greatly simplifying
the initial safety proof.

”

Figure 3: Gravitational Topography model of the asteroid 433 Eros computed by the NEAR mission. Credit: NASA

For the discrete part of the hybrid system, a time triggered controller was developed to
match a realistic real-time satellite control system. At a fixed but arbitrary time constant, the
controller uses perfect knowledge of the state of the system to decide whether or not it is
necessary to brake. To do so, it determines the distance that it will accelerate due to gravity
over the next time step and compares this to the amount of distance that it would take to
brake at that end velocity. If the distance traveled is beyond the braking threshold distance,
the asteroid will chose to brake over the next time step. If it is not, it will be able to safely



accelerate and take control after a full time step. Since the controller is time triggered, this
decision is repeated and a loop invariant is required for non-trivial proofs.
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Equation 1: Control Decision, the true case is acceleration and the false case is braking

The final consideration that | had planned was the inclusion of an evolution domain in
the differential equations describing the state. The evolution constraint was that the controller
ceases as soon as velocity reaches zero. In a real system, an approach would consist of
multiple temporary pauses, potentially with the satellite moving opposite the direction of the
target asteroid. The other evolution domain constraints are more realistic, as the final
touchdown (at p = 0) should complete the operation of the controller and safety, such that this
is not a crash, must be considered separately. In the development of this model, one
constraint that | did not initially consider is the relative magnitude of the braking acceleration
versus the gravitational acceleration of the asteroid. In retrospect, it makes sense that the
braking acceleration must be strictly greater than the gravitational acceleration in order for the
vehicle to come to a stop as it must cancel the gravity of the asteroid and also decrease its
velocity.

Safety Condition

Due to the aforementioned evolution domain constraints, a stronger safety condition
that accounts for both position and velocity is needed. Since we will know nothing about time,
this condition must be invariant of any knowledge about the time so far or the time remaining.
This naturally leads to the following well known equation of motion: v? =2+ 2(g=B)pr—po) -

From this equation, we can fill in the properties of our single dimension asteroid-satellite
system and find an invariant on the evolution of the system that leads to a safety proof. The
initial velocity v; is the current velocity of the spacecraft. The final velocity v, is zero, as the

satellite must come to a complete stop. The acceleration is the net acceleration when braking,
which is simply g— B . The final position p, is the surface of the asteroid, located atp =0, and

the initial position p; is the current position of the spacecraft, p . Finally, for clarity, this

equation is solved for p, which yields p > ﬁ%.

This safety condition also serves as part of the loop invariant since it provides a
convenient abstraction of the relationship between position and velocity necessary for safety
to be maintained. This loop invariant and the solutions to the differential equations are enough
to verify this same condition as a safety property and validate the overall hybrid system
automatically in KeYmara. This yields a solid base system that is further iterated in the

following sections.

Rotation Matching

The next control operation that is needed for an asteroid approach mission is rotation
rate matching. Many near earth asteroids have been observed to rotate at a variety of rates,
typically with a period of “between one hour and one day”[7]. This is rather slow in comparison
to the thrust capabilities of space probes, which typically either use reaction wheels or



monopropellant thrusters. Reaction wheels use flywheels and the conservation of angular
momentum to impart changes in rotational velocity, which allows for very precise pointing.
Thrusters impart an offset force tangent to the desired rotation axis and can be modulated at
different lengths of time to produce varying magnitudes of thrust. Either of these methods can
can produce a somewhat arbitrary change in rotational velocity over a given period of time.
For this reason, the rotation matching part of the controller computes the thrust necessary to
match rates with the asteroid over the next time step and then applies that thrust. Proof of this
property becomes trivial with two additions: adding a precondition that we are at least one
time step away from the asteroid and adding a test after the differential equation that only
allows physics to run for exactly the time step duration. Although these conditions are limiting,
they are valid for a real world system. Both of the aforementioned rotational actuators can
vary their angular acceleration output and most control systems run as a hard real-time fixed
rate control loop with (verifiably) no possibility of other time steps. Finally, as modeled the
asteroid rotation rate must be greater than the satellite rotation rate, since these cases mirror
each other. Proving both at the same time only compounds the branch space without yielding
any new knowledge.

An alternative model that was implemented but not proven was moving the thrust
velocity physics to the discrete portion of the cyber-physical system. Instead of imparting an
angular acceleration over a certain amount of time, this system would represent an
instantaneous change in angular velocity. This more closely matches the profile of the
cold-gas thruster than the previous model, although differential mechanics would probably
also be necessary for a complete system model. The precondition for such a model would be
that the distance to the asteroid will not be covered in fewer than n timesteps, where the
difference between the rotational rates of the asteroid and probe differ by less than n* T .

Fuel Use

The next critical modeling concern in an asteroid-satellite system is that of fuel use.
Typically, the dry mass of a satellite or deep space probe is less than half of the total mass at
takeoff, with the rest taken up by fuel. Any accurate model of spacecraft dynamics must
consider changing mass, as the acceleration due to the thrust of a rocket engine depends on
both the theoretically constant force output of the engine and the current instantaneous mass.
For these reasons, dynamic mass and fuel use were the next modeling and proving
challenges that | tackled.

The dynamic mass system requires a variety of new variables (only one of which
actually varies over time) which | will define first for clarity. First, m tracks the actual current
mass of the satellite, which varies over time due to fuel use. The value of m at the beginning
of operation is defined as mi, which also serves as an upper bound for m throughout the
propagation of this model. Both m and mi are initialized to the sum of dm and M , which are
dry mass and fuel mass, respectively. The dry mass of the system is the mass of the physical
components of the satellite and empty fuel tanks and serves as a lower bound on m. The fuel
mass shall be initialized based the stopping requirements.



Some other new variables are necessary to replace the constant braking acceleration
used in the previous model. First, the force output of the engine is defined as f, which is
modeled as a constant value. Although noise, vacuum, and ramp-up effects exist that can
vary this value, these changes are out of scope of this project and can be reasonably
approximated with a constant value. Next, the specific impulse I, of the engine must be
modeled. Specific impulse is an efficiency measure that relates mass of fuel used to the firing
time and force output of the engine. As this value is typically computed with respect to earth
gravity, its constant value is also included and initialized.

Based on this concept of mass, we can begin modifying the original physics model to
account for changing mass. The first change is in the acceleration value. Braking is no longer
a fixed acceleration constant but rather it is defined as the force output of the engine divided
by the current mass:“—?. Since mass is also changing with time, this immediately complicates
the differential equations and implies that a proof will need to use invariant based methods
rather than the direct ODE solution. The actual change in mass over time depends on the
thrust force of the engine, its specific impulse, and the gravitational acceleration of earth:

%j,l = [’T‘gﬁ One note is that a has been changed to a binary flag deciding whether or not the

spacecraft should thrust, so that these differential equations have symbolic access to the
changing variables rather than constant access. Next, all other references to the old constant
braking acceleration of B are changed to -n% This is a good lower bound on the braking
acceleration as mass can only decrease, causing this acceleration value to increase. An
increase in braking acceleration is strictly safer for the satellite probe system as it will more
quickly be able slow its velocity. Once important note is that this model no longer includes the
rotation matching controls. This was done primarily to simplify the proof process, as the only
coupling between the two are the distance needed to match rates. This is also valid from the
standpoint of fuel use for rotation and pointing as it typically consists of less than five percent
of the overall fuel budget. These are all of the changes needed for the model specifically, next
we will look at the changes in proof invariants.

As discussed, we can no longer take advantage of the ODE Solve proof rule and must
rather use differential invariants to close this safety proof. The first invariant that we must
track is that mass does not increase from its initial value. In reality, mass must either
decrease or stay the same over a given time period, but this condition is sufficient to prove
safety. Since the initial mass is constant, the application of differential invariant says that the
derivative of m must be zero or negative, which it is by definition. Next, the position-velocity
constraint that was previously derived for safety is added as a differential invariant as well,
which if true trivially proves the invariant and therefore the safety condition. The differential
invariant proof of this condition is not as obvious as the mass property, but it does also close.

There is one remaining key issue with this proof: the addition of m > dm to the
differential equation evolution domain constraints. This essentially ceases operation of the
system when the satellite runs out of fuel, no matter what. Any any state that satisfies the
velocity-position constraint when it runs out of fuel will be considered “safe”. In a sense, this is
reasonable since a satellite typically ends operation once it runs out of fuel. However, this is
decidedly unhelpful if you want to prove that you can safely land on an asteroid rather than



safely be around it until you run out of fuel. For a realistic case, you need to know something
about efficiency.

Efficiency

If you want to design a system to safely approach an asteroid, you must not only show
that you are always safe but that you also have enough fuel to successfully reach the surface
in a controlled manner. This can be formulated as an efficiency constraint that will be violated
if the spacecraft runs out of fuel before reaching within a certain distance of the target.
Although | was not able to prove such a property, | made some effort to derive a reasonable
bound on position, velocity, mass, and engine performance such that the spacecraft would
always have enough fuel to land. To do so, | started by calculating the maximum velocity that
the spacecraft could reach if it does not brake. This can be derived from the same equation as
our safety condition: v)% = vl2 +2a(p,~p;) by setting the initial position and velocity to the current

position and velocity of the spacecraft, the final position to zero, and the acceleration to the
gravitational pull of the asteroid. This yields: V= V2 +2ap . Next, we can calculate the amount

of fuel needed to slow from that velocity to zero, through the intermediate variable of time:

v =v,—gxt,m=75 ,m=L T2 If we could simply plug in the maximum velocity value

into this equation, we could get a conservative bound and safety condition for fuel mass.
Unfortunately, we cannot write a square root in our proof system. | made some attempts to
encode this constraint in a provable way but was unable to do so. My belief was that creative
squaring of certain parts of this constraint could yield a workable invariant but | was stymied
by the inequality

Future Work

The application of formal verification methods to space systems has a wide variety of
future applications to which | have given much thought through the duration of this project.
The key issue with this project as-is is the lack of efficiency statements, which make that an
obvious next step in the continuation of this project. Once that property has been validated, an
easy next step would be to apply this to past missions asteroid missions to see if the bounds
have any link to the fuel margin of safety used in reality. For example, NASA makes the
assumption of an I, of 325 seconds for an asteroid sample return mission[8] and the NEAR
probe carried about 300kg of fuel with a dry mass of 478kg and a primary engine force of
450N[9]. With our very conservative safety property, this would require about 735kg of fuel,
over twice the amount that the mission carried. While this demonstrates that optimal efficiency
conditions are very difficult to derive, it also shows that this condition provides an
order-of-magnitude correct fuel value using relatively simple and very safe assumptions.
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Figure 4: Actual descent trajectory of NEAR to the surface of 433 Eros. Credit: JHU APL

Many other improvements to this model could also be made in order to converge on a
more correct hybrid system. The nonuniform gravitational field of many asteroids could better
be approximated by bounds around a constant average, which would increase proof difficulty
in that safety would have to apply for any change within that bound. Another important
consideration is increasing the dimensionality of the system and integrating orbital mechanics.
For a truly useful model, you would need to account for orbital gravity effects around both the
sun and the target asteroid. Furthermore, a distribution of noise exists around almost every
variable in this system, and all of this noise should be handled in a controller running a real
mission.

Conclusion

Formal safety verification of hybrid systems is an important technique in designing and
implementing cyber-physical systems that we can trust with either millions of dollars or human
lives. In space, these challenges are compounded by communications delays, limited
processing power, expensive launch costs, and little to no chance of a rescue mission. For
these reasons, the logical verification of a spacecraft’s asteroid approach could save
significant time and money for a variety of space missions. And as missions to asteroids
become more and more common, a valid safe approach will become more and more
necessary. This project does so by verifying a fuel limited spacecraft can safely approach an
asteroid, and makes movement towards a safe and efficient asteroid approach controller.

A verified safe approach and landing controller will have a broad impact in the field of
space robotics. Asteroid mining has the potential to be a billion dollar industry that will help
fuel the next generation of deep space missions. These methods naturally apply to larger



airless bodies such as the moon and other dwarf planets and could be extended to apply to
objects with an atmosphere as well. Precise approach and landing is necessary in many other
areas on earth, in orbit, and beyond and may be the key to making human life multi-planetary.
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