ASTEROID APPROACH

Motivation

Credit: NASA

Motivation

Credit: NASA

Credit: NASA

Prior Work

- Government Missions
 - Near Earth Asteroid Rendezvous
 - Rosetta and Philae
 - Asteroid Redirect Mission
- Commercial
 - Planetary Resources
 - Deep Space Industries
- Verification
 - Monte Carlo methods
 - Lunar landing
 - Satellite rendezvous in low earth orbit

Initial Assumptions

- 2 DOF system approach axis translation and rotation
- Constant acceleration due to gravity
- Constant mass spacecraft
- Fixed braking acceleration
- □ Time-triggered controller
- No orbital mechanics

Control & Invariant

Derive safety from equations of motion

$$v_f^2 = v_i^2 + 2a(p_f - p_i)$$

$$p \ge \frac{-v^2}{2(g - B)}$$

Predict forward and check braking condition

$$p - v * T - \frac{1}{2}gT^2 > \frac{-(v + g * T)^2}{2(q - B)}$$

Fuel Use – Key Variables

- dm dry mass of the satellite (no fuel)
- □ M fuel mass
- \square mi initial mass of the satellite, mi = dm + M
- m current mass of satellite, initially mi
- □ f constant force output of the thruster
- □ I_{sp} specific impulse, "engine efficiency"

Fuel Use - Key Equations

Dynamic braking acceleration

$$B \equiv \frac{f}{m}$$

Dynamic mass

$$\dot{m} = \frac{f}{I_{sp} * g_e}$$

Conservative fuel mass bound

$$m - dm \ge \frac{f}{I_{sp} * g_e} * \frac{\sqrt{v^2 + 2gp}}{g}$$

Fuel Use — Application

- NEAR Shoemaker
 - $\square I_{sp} = 325$ Seconds
 - \Box f = 450 Newtons
 - □ dm (dry mass) = 478 Kilograms
 - M (fuel mass) = 300 Kilograms
 - $p_i = 1000 \text{ Meters}$
 - $\mathbf{v}_{i} = 3 \text{ Meters/Second}$
 - \Box g = 0.0059 Meters/Second²
 - Predicts 735 Kilograms of fuel

Fuel Use – Application

Credit: NASA Credit: NASA

11 Questions?