
A CPS Analysis of Pong

Milda Zizyte and Felix Hutchison

December 9, 2014

1 Abstract

To ensure a quality product, it is imperative that video game developers mini-
mize glitches in their games. This paper presents a method to formalize models
of the object interactions and physics that video games rely on in order to math-
ematically prove their correctness. To illustrate this, we prove that the ball in
a game of pong does not leave the screen with a series of controller models that
increase in complexity. In all but the most complicated case, this is done with
an automated proof solver. The last step is proved by hand, and from this we
suggest several proof rules to be added to the automated proof software in order
to assure automatic formal proofs for games in the future.

2 Introduction

Often, the complexities of video games stem from a need to reproduce some
amount of physics in the gaming environment, and have the objects in the game
behave consistent to these physics. The market demands quality in the industry,
but, often, players still manage to find glitches in the physics implementations
of these games because of faulty assumptions made by the developers. As these
glitches can make gameplay counterintutive or downright illogical, developers
may want some way of ensuring that the objects in their games are consistent
with physics. The intent of this project is to provide an illustrative example
of how this can be achieved by formalizing the model of the game and using
automated proofs to formally ensure that a game behaves according to physics
and intuitive play.

The goal of this CPS project is to model and prove the correctness of increas-
ingly more complex paddle controllers in the game of the game of Pong. While
Pong itself is not a physical system, it is meant to mimic the dynamics of a game
of table tennis. “Pong is a two-dimensional sports game that simulates table
tennis. The player controls an in-game paddle by moving it vertically across the
left side of the screen, and can compete against either a computer-controlled
opponent or another player controlling a second paddle on the opposing side.
Players use the paddles to hit a ball back and forth.” [1] This gives way to three
main objects in a system modeling pong: the ball and the two paddles. The

1

paddles have vertical motion controlled by an AI or a player, and the ball has
physics which respond to it hitting the walls of the arena and the ping pong
paddles.

For our formalisms, we use the language of linear differential logic, or DL.
The systems are modeled as hybrid programs, where control is dependent on
discrete assignment, nondeterministic choice, repetition, test, and ordinary dif-
ferential equations. Properties are governed by first order logic and modalities.
The automated proof solving software KeYmaera provides a framework for cre-
ating proofs within this formal system automatically or semi-automatically with
manual interaction. We use this software to prove properties of our model, in
conjunction to showing several properties by hand.

Using this tool, we prove that our model of pong ensures that the ball obeys
physics of the walls, and that following the ball with the paddles keeps the ball
on the playing screen. Using non-automated formal proof, we further show that
the ball can be kept on the screen by the player by removing strict starting
conditions. This last step creates a requirement for proof rules unavailable in
KeYmaera, which we prove semantically and argue for the addition of in order
to automate further game verification.

3 Related Work

Surprisingly, there are not currently any papers analyzing paddle controllers
in Pong, or at least none that we could find. However, there does exist some
work exploring how to formalize games. [3] outlines a framework for specifying
a formal model of a game before game development, and then auto-generating
code based on this model. This method features an Event-B model that defines
invariants in these games, and the example game the authors write is a very
clear cyberphysical system - a model of a car. This paper shows that some
attempts at formalizing games to ensure correct physics have been made, but
makes no discussion on the actual formal proofs of the models they use.

At least one other work formally outlines reachability conditions for gen-
erated Mario levels [4]. The paper is an example of how formal methods can
be used to show playability of a certain game given initial conditions. While
the paper makes no mention of hybrid languages for cyberphysical systems, it
motivates our work to prove that certain starting configurations of playable.

4 Terminology

As illustrated in Figure 1, we model the screen as a rectangle with upper-left
origin and width Width (abbreviated as W) and height Height (abbreviated as
H). The boundaries are at the upper and lower walls (black). The ball (red) is
a point with location (bx, by) and linear velocity vector (bvx, bvy). The player
and opponent paddles (blue) are line segments with y-centers Py and Oy and
velocities Pvy and Ovy, respectively. Both paddles have length 2 ·Wp.

2

Figure 1: The pong playing screen

The main property were interested in is that of the controlled paddle being
always able to return the ball and prevent a point from being scored. Since the
opponent paddle is assumed to be perfect, this property can be rephrased as
“no point is scored”. For an actual measurable property we can instead check
the position of ball and ensure it stays out of the scoring box. Since we want
this to always hold true, it should be expressed as a safety property (an always).
To prove this property in KeYmaera, we express this as the dL formula

[α∗]ourScoringBox < ball < opponentScoringBox.

We also have the opposite case, where the controller is not sufficient. In this
situation, we want to show that a point can be scored. This corresponds to the
liveness property

〈α∗〉(ball < ourScoringBox ∨ ball > opponentScoringBox).

5 Outline of goals

The first stepping stone in this project is to get the ball bouncing correctly
off the walls. This is mostly just getting the dynamics of α, the differential
equations, correct.

Once we’ve shown the correctness of the ball movement in an empty course,
we introduce the player paddles and prove that the ball still remains in the
course. We then move on to proving perfect play under these control schema.

6 Methodology

6.1 Ball physics

The control here has the ball move linearly and change direction upon hitting
a wall. If it hits a vertical wall, its horizontal velocity flips sign, and if it hits

3

a horizontal wall, its vertical velocity flips sign. The ball is allowed to start
anywhere inside the screen and moves with a nonzero velocity.

We show two properties. First, that the ball always stays inside the court(equation
1). Second, that the velocity of the ball remains constant, even with directional
changes (equation 2).

α = if(bx = 0&bvx < 0) then bvx = −bvx;

...; if(by = H&bvy > 0) then bvy = −bvy;

(b′x = bvx, b
′
y = bvy&bx ≥W&0 ≤ by ≤ H)∪

... ∪ (b′x = bvx, b
′
y = bvy&0 ≤ bx ≤W&by ≥ H)

Γ, bv2x + bv2y = v2 → [α∗]bv2x + bv2y = v2 (1)

Γ, 0 ≤ bx ≤W ∧ 0 ≤ by ≤ H → [α∗]0 ≤ bx ≤W ∧ 0 ≤ by ≤ H (2)

In order to prove that the ball doesn’t exit, we need to give it the actual
possibility of exiting. At the very least, we need an “inner physics” evolution
domain to describe the area inside of the screen, and an “outer physics” evo-
lution domain to describe the area outside of the screen. The two evolution
domains share a boundary such that it is possible to cross from one evolution
domain to the next between repetitions of the control.

Figure 2: Evolution domains for Step 1

In fact, we use 9 separate evolution domains to describe the areas the ball
could go, as delineated by the borders of the screen. Figure 2 illustrates these
evolution domains. The gray area corresponds to inner physics and the white
areas correspond to outer physics. While first trying to prove these properties,
we tried to define upper physics as a single evolution domain

bx ≤ 0 ∨ bx ≥W ∨ by ≤ 0 ∨ by ≥ H,

4

where bx and by describe the x and y coordinates of the ball. However, this
did not work, as certain branches of our control loop would, for example, restrict
only bx at the boundary and leave by free. This is problematic if, say, bx = 0
and by is left free, as we did not have the necessary information in our proof
that by would stay within the required safe range.

This, combined with the branching that results from checking if the ball is
at any of the four boundaries, results in a proof that has 2701 branches. This
makes sense, as each of the “if” statements adds exponential complexity on the
outside of the proof, and each of the nine evolution domains creates further
branching within each of the big branches, but is still cumbersome. Thankfully,
for the simple model of a ball bouncing off the walls, most of the proof completes
automatically, but for a proof that would require manual intervention, this would
quickly become cumbersome if not intractable to prove.

In subsequent steps we will be using the back walls as part of our safety
conditions, so we no longer need to consider their interactions with the ball.
However, we will be introducing the player paddles, which interact with the ball
in a similar manner, leaving us with a similar number of differential equations
to consider.

6.2 Introduction of Player Paddles

The player paddles are constrained to movement in the y-direction, and have
a width 2Wp less than the height of the court. If we let the paddles move
discontinuously to block the ball every time the ball gets to the paddle movement
axis, in an event driven manner, we should be able to demonstrate that the ball
always remains between the paddles. After showing this, we can use roughly
the same proof to show that no point is ever scored.

The main difference in the behavior is that we have gotten rid of the back
walls. Instead we substitute in the behavior of the paddles, where the ball only
bounces when it hits the paddle between the paddle’s width (2 ·Wp). If it misses
the paddle then it continues straight, which we show as a violation of the safety
property bx ≥ 0.

α = if(bx = 0&bvx < 0&py +Wp ≥ by ≥ py −Wp) then bvx = −bvx;

...; if(by = H&bvy > 0) then bvy = −bvy;

(b′x = bvx, b
′
y = bvy&bx ≥W&0 ≤ by ≤ H)∪

... ∪ (b′x = bvx, b
′
y = bvy&0 ≤ bx ≤W&by ≥ H)

The other addition we make to our hybrid program is the inclusion of the
paddle controllers Player (Py) and Opponent (Oy). For the purposes of this
step, which allows cheating by making sure the paddles are always at the height
of the ball, we just use nondeterministic assignment to enforce the position of
the paddle.

5

β = Py := by;Oy := by;

Γ, 0 ≤ bx ≤W ∧ 0 ≤ by ≤ H → [(β, α)∗]0 ≤ bx ≤W ∧ 0 ≤ by ≤ H (3)

Equation 3 proves automatically in KeYmaera, requiring 2236 branches.
Note that the number of evolution domains has been reduced to three: the
inner physics evolution domain, and the areas directly to the left and to the
right of the screen.

6.3 Ball-Follower Paddle

Since a paddle that automatically places itself in the right place isn’t very inter-
esting, we will introduce continuous behavior to the paddle that we are writing
the control schemes for. This also means we have to pick what control scheme
we want to examine. The first one will be a y-position follower. This controller
simply tries to keep the paddles y-position to that of the ball. We will show
that these dynamics are correct (eq. 4), and then that this controller is capable
of perfect play (eq. 5).

β = Pvy := bvy;Oy := by;

α = if(bx = 0&bvx < 0&py +Wp ≥ by ≥ py −Wp) then bvx = −bvx;

...; if(by = H&bvy > 0)thenbvy = −bvy;

(b′x = bvx, b
′
y = bvy&bx ≥W&0 ≤ by ≤ Py)∪

... ∪ (b′x = bvx, b
′
y = bvy&0 ≤ bx ≤W&Py ≥ by ≥ H)

Γ, Py = by → [(β;α)∗]Py = by (4)

Γ→ [(β;α)∗]0 ≤ bx ≤W ∧ 0 ≤ by ≤ H (5)

6.3.1 The proof

This is the section where we first notice the importance of event ordering. Now
that the player paddle is trying to respond to the ball, it is important that
physical events that discretely change the state of the ball (e.g. a wall bounce)
occur before the controllers observe the state and react. To fix this, we split α
into two parts:

α1 = if(bx = 0&bvx < 0&py +Wp ≥ by ≥ py −Wp) then bvx = −bvx;

...; if(by = H&bvy > 0) then bvy = −bvy;

6

α2 = (b′x = bvx, b
′
y = bvy&bx ≥W&0 ≤ by ≤ Py)∪

... ∪ (b′x = bvx, b
′
y = bvy&0 ≤ bx ≤W&Py ≥ by ≥ H)

and prove equations 4 and 5 over runs of (α1;β;α2)∗ instead.
These properties then prove automatically, in under 10 minutes of compute

time (see appendix A.3). This give us an indication that these techniques may
be not only theoretically applicable to analysis of game physics interactions, but
practicable too.

6.4 Fixed Speed Paddle

However, a paddle that perfectly matches the ball is relatively uninteresting, so
let’s add another constraint. Here, the paddle velocity is fixed, and greater than
that of the ball. We will show that the controller can still keep the ball above
the paddle (eq. 6), that it can always get the ball there, (eq. 7), and that it can
play perfectly (eq. 8). To make the controller respond appropriately, we need
to add the y-crossing of paddle and ball to the evolution domains.

β = if(by > Py) then Pvy = Pvmax

elseif(by < Py) then Pvy = −Pvmax;Oy := by;

α = if(bx = 0&bvx < 0&py +Wp ≥ by ≥ py −Wp) then bvx = −bvx;

...; if(by = H&bvy > 0) then bvy = −bvy;

(b′x = bvx, b
′
y = bvy&bx ≥W&0 ≤ by ≤ Py)∪

... ∪ (b′x = bvx, b
′
y = bvy&0 ≤ bx ≤W&Py ≤ by ≤ H)

Γ, |Py − by| < Wp → [(α;β)∗]|Py − by| < Wp (6)

Γ→ 〈(β;α)∗〉|Py − by| < Wp (7)

Γ→ [(β;α)∗]0 ≤ bx ≤W ∧ 0 ≤ by ≤ H (8)

6.4.1 Keeping the ball over the paddle

Equation 6 describes the controller ensuring that the ball stays over the paddle.
Since this is the differential invariant we use to show the safety property of 8,
we will prove these at the same time.

The proof file can be found in appendix A.4 and proves automatically. In
some cases, however, manual intervention will greatly speed up the solution.
For example, when the ball is at a boundary and interacting with the wall or
paddle, it may be necessary to chose an intermediate time (t0) of 0, for the ODE
solve, to give us the information we need for the branch.

7

∀t ≥ 0((∀0 ≤ t0 ≤ t.[x := ψ(t0)]H)→ [x := ψ(t)]φ)
ODE solve

[x′ = θ]φ

Since this term may not arise immediately from the quantifier elimination,
it can be beneficial to select this value manually using the forall left rule.

t ≥ 0, [x := ψ(0)]H ` [x := ψ(t)]φ
∀L

t ≥ 0,∀0 ≤ t0 ≤ t.[x := ψ(t0)]H ` [x := ψ(t)]φ
→ r

t ≥ 0 ` (∀0 ≤ t0 ≤ t.[x := ψ(t0)]H)→ [x := ψ(t)]φ
∀r ∀t ≥ 0((∀0 ≤ t0 ≤ t.[x := ψ(t0)]H)→ [x := ψ(t)]φ)

ODE solve ` [x′ = θ]φ

The property proves in 34,285 steps (1227 of which were manual interven-
tions, to assist when Quantifier Elimination encountered difficulty). Part of
the reason for the largeness of this proof is the controller decisions and phys-
ical interactions that occur. in this particular proof, there were 6 if-then-else
statements, resulting in 27 branches, with 9 possible evolution domains in each
branch. This lead to a total of 3846 branches, many of which were similar. This
is an example of a situation where lemmas would greatly assist the ease of proof.

6.4.2 Getting the ball over the paddle

While it is useful to know that the paddle control can keep the ball over top of
the paddle, if it can’t get the ball there then this property is useless. What we’d
like to show is that the paddle controller can always get the ball over the paddle
no matter where it is when the opponent hits it. This property is expressed as

Γ→ 〈(β;α)∗〉φ
Where φ ≡ |Py − by| ≤ Pwidth and Γ, β, and α remain the same as for

equations 6 and 6. In this case, some formulas may be omitted for brevity, as
can be seen in appendix A.5. The justification for these removals is given in the
code, though the proof does not suffer if the formulas are not omitted.

Unfortunately, this property is not provable in KeYmaera. The problem
comes from the loop. For diamond properties over loops the proof rule needed
is convergence.

Γ ` ∃n.ψ(n) ∀n > 0.ψ(n)→ 〈β;α〉ψ(n− 1) ∃n ≤ 0.ψ(n)→ φ

Γ ` 〈(β;α)∗〉φ

The problem is that convergence relies on a strict progress step of 1 every
time. While this can be scaled by multiplying n by some δ, we still need a fixed
step advancement. This presents an issue when dealing with evolution domains.
Since evolution domains restrict how much a system can evolve, it’s not always
possible to pick a trace through one that progresses by at least δ. For example,

8

in this case, we can always end up in a situation where by = ε such that ε is
sufficiently small that the differential equation α can’t evolve for long enough
before hitting the evolution domain boundary by ≥ 0 to guarantee progress by
δ, for any δ for any ψ.

This means that we need to use new proof rules that can provide us with a
way to navigate past the problem. Here we introduce two new rules: Conver-
gence Substitution, and Loop Segmentation.

Convergence Substitution, lets us use a convergence function ψ(n) that
doesn’t necessarily prove φ. To do this, we introduce an easier convergence
goal C, which can be proved with ψ(n), and a loop invariant F , which can be
used in conjunction with C to prove the original property φ. (Soundness of this
rule is in appendix B)

Γ ` [α∗]C Γ ` 〈α∗〉F F,C ` φ
Convergence Substitution

Γ ` 〈α∗〉φ

The other rule we will introduce is Loop Segmentation. This rule allows
us to split a loop into segments of size n. This is useful when you can make
guarantees about behavior over n iterations that can’t be made about a single
one.

Γ ` 〈(αn)∗〉φ
Loop Segmentation

Γ ` 〈α∗〉φ

Using these two new rules, we will outline the skeleton of a proof for the
property that the paddle controller can always get the ball over the paddle.
The full proof would contain far to many branches to be practical on paper,
due to the if conditions of paddle controller. If the above rules were added to
KeYmaera it would be possible to prove this property in a more rigorous manner
than outlined here.

Γ ` [(β;α)∗]C Γ ` 〈(β;α)∗〉F F,C ` φ
Convergence Substitution

Γ ` 〈(β;α)∗〉φ

Where
C ≡ |py−by|H ≤ bx

W
F ≡ bx ≤ 0
Here we use convergence substitution to let us pick a function that is much

easier to prove the convergence of. Since bx is unaffected by bouncing or paddle
control, we can more easily prove convergence of bx ≤ 0. Additionally we
introduce the invariant C that is needed to show that φ is true. The intuition
is that we’re using C as a property that will show φ under convergence and F
as a way of showing progress of convergence.

9

∗QE
F,C ` φ

This part is trivial, which is good. Selection of C and F should in general
be chosen to ensure that this part is trivial.

Next up is proving the invariant C branch. This is all normal proof tech-
niques and will be skipped for brevity (the ifs create a lot of branches). Suffice
to say the invariant conditions of Γ, and the occasional differential cut, are
sufficient to prove C by differential weaken in the end of every branch.

∗QE
Γ ` C

∗DC,DW
some formulas ` [α]C

;,if, ...
C ` [(β;α)]C

LI
Γ ` [(β;α)∗]C

More interesting is the convergence branch. If we start trying to prove this
as a direct convergence property we’d attempt something like bx ≤ δn. The
problem is that we can always have an by = ε such that ε is sufficiently small
that the differential equation α can’t evolve for long enough to guarantee bx can
decrease by at least δ after one iteration. For example, if we have bvy = bvx = 1,
a by = δ

2 makes it impossible for bx to decrease by δ, as we run into the evolution
domain constraint by ≥ 0.

∗QE ∃
n∈N

bx < δn

Here be dragons

∀
n>0

bx < δn→ 〈β;α〉bx < δ(n− 1)
∗QE ∃

n≤0
bx < δn→ x ≤ 0

Γ ` 〈(β;α)∗〉F

In order to prove this property, we need to evolve for two iterations. One to
take us to the wall, and then one to evolve for as long as we want (until we hit
the opposite wall). After two iterations by is guaranteed to be able to evolve by
at least H and thus bx can evolve by at least bvx| Hbvy |. This gives us a guarantee
of progress.

as above
...

∀n > 0.bx < δn→ 〈β;α;β;α〉bx < δ(n− 1) as above

Γ ` 〈(β;α;β;α)∗〉F
Loop Segmentation

Γ ` 〈(β;α)∗〉F

The rest follows from these using existing proof rules (by selecting the path
that evolves first to the wall and then to the opposite wall). While our discussion
of the property ends here, this skeleton of a proof can be fleshed out in KeYmaera
by adding the two proof rules discussed above.

10

7 Conclusions and Future Work

We have shown that it is possible to use dL models to formally prove several
main aspects of pong. In particular, the methods we have employed show what
initial conditions can guarantee that game dynamics behave in a certain way.
In this paper specifically, we have shown how a pong ball can be proven to stay
within bounds of the playing screen, that having paddles follow the ball and
removing vertical walls preserves this property, that a paddle that follows the
ball can prevent the player from losing, given certain initial conditions. Similar
formal models can be applied to any other video game.

We acknowledge, however, that this approach is still developmental. In
particular, the discussion in section 6.4.2 shows the need for more rules in the
KeYmaera tool to assist with automation. However, as progress in this space
continues, the needed rules will be naturally discovered, and once they are
proved semantically, they can be added to KeYmaera.

Once development of KeYmaera has reach a sufficient point, the next step
is to begin trying to prove interactions in actual on market video games. This
will involve finding ways to automate the extraction of a model from interaction
code, and techniques for invariant generation.

In this paper, we have shown an immensely powerful technique for proving
formal properties of game physics, and the applicability of formal proofs to this
problem space. With added features to proof automation tools, the ability to
automatically prove these properties will also increase. We maintain that formal
guarantees are the best way to ensure high quality products, not only by proving
that objects in the game obey physics, but by showing that players cannot win
and lose in unexpected and unintuitive ways.

References

[1] Pong, Wikipedia, http://en.wikipedia.org/wiki/Pong

[2] Pong, Game Mechanics Wiki, http://gamemechanics.wikia.com/wiki/Pong

[3] Perchy, S. and Catano, N, Formal Software Development of Android Games,
http://www.lix.polytechnique.fr/ perchy/home/articles/formal game.pdf

[4] Adelhart, K. and Kargov, N., Mario Game Solver, In-
ternational Technological University, Masters Thesis,
http://130.226.142.164/documents/reports/AdelhartKargov12.pdf

11

A Key files

A.1 Key file for the simple physcis

S t a t i s t i c s can be obtained from Proof −> Show Proof
S t a t i s t i c s .

Name : Milda Z i zyte & Fe l i x Hutchison
KeYmaera v e r s i o n : 3 . 6 . 1 2
Backends used (Mathematica , Z3 , . . .) : Mathematica
Nodes : 20617
Branches : 2701
I n t e r a c t i v e s t ep s : 52
Arithmet ic So lve r : 47 .723
Time : 1077.339 s
Proof completes (Y/N) : Y

∗/

\ f u n c t i o n s {
R Width ;
R Height ;
R ve l ;
}

\programVariables {
R bx ;
R by ;
R vx ;
R vy ;
}

/∗ Prove that the b a l l s t ay s in bounds when bouncing o f f
the wa l l s ∗/

\problem{

/∗ INITIAL CONDITIONS ∗/
/∗ Linear non−zero v e l o c i t y and non−empty p lay ing space

with b a l l i n s i d e ∗/

(Width > 0 & Height > 0 & bx > 0 & by > 0 & bx < Width &
by < Height & vxˆ2 + vyˆ2 = ve l ˆ2 & ve l > 0)

−>
\ [

12

(
/∗ CONTROL ∗/
/∗ Bouncing o f f the wa l l s . We check v e l o c i t y to avoid

o s c i l l a t i n g
in c o n t r o l f o r e v e r ∗/

(
i f (bx = 0 & vx < 0) then (vx := −vx) f i ;
i f (bx = Width & vx > 0) then (vx := −vx) f i ;
i f (by = 0 & vy < 0) then (vy := −vy) f i ;
i f (by = Height & vy > 0) then (vy := −vy) f i

) ;

/∗ CONTINUOUS DYNAMICS ∗/
/∗ The nine evo lu t i on domains correspond to the

middle area o f the
f i e l d and the areas d i r e c t l y above , below , to the

l e f t , to the r ight ,
and the four co rne r s ou t s id e the f i e l d . We need these
s epara te domains in order f o r the proo f to work . ∗/

({bx ’ = vx , by ’ = vy & bx >= 0 & bx <= Width & by >=
0 & by <= Height} ++

{bx ’ = vx , by ’ = vy & bx <= 0 & by >= 0 & by <=
Height} ++

{bx ’ = vx , by ’ = vy & bx <= 0 & by <= 0} ++
{bx ’ = vx , by ’ = vy & bx <= 0 & by >= Height} ++
{bx ’ = vx , by ’ = vy & bx >= Width & by >= 0 & by <=

Height} ++
{bx ’ = vx , by ’ = vy & bx >= Width & by <= 0} ++
{bx ’ = vx , by ’ = vy & bx >= Width & by >= Height} ++
{bx ’ = vx , by ’ = vy & bx >= 0 & bx <= Width & by <=

0} ++
{bx ’ = vx , by ’ = vy & bx >= 0 & bx <= Width & by >=

Height })) ∗@invar iant (vxˆ2 + vyˆ2 = ve l ˆ2 & bx >= 0
& bx <= Width & by >= 0 & by <= Height) /∗ Loop

Inva r i an t ∗/
\]
(bx >= 0 & bx <= Width & by >= 0 & by <= Height) /∗

Sa fe ty Condit ion ∗/
}

A.2 Key file for equations 3

S t a t i s t i c s can be obta ined from Proof −> Show Proof

13

S t a t i s t i c s .

Name : Milda Z i zyte & Fe l i x Hutchison
KeYmaera v e r s i o n : 3 . 6 . 1 6
Backends used (Mathematica , Z3 , . . .) : Mathematica
Nodes : 18832
Branches : 2236
I n t e r a c t i v e s t ep s : 0
Arithmet ic So lve r : 47 .723
Time : 1077.339 s
Proof completes (Y/N) : Y

∗/

\ f u n c t i o n s {
R Width ;
R Height ;
R ve l ;
}

\programVariables {
R bx ;
R by ;
R vx ;
R vy ;

R paddleWidth ;
//R Px ;
R Py ;
//R Ox;
R Oy;
}

/∗ Prove that the paddles f o l l o w i n g the b a l l
keeps the b a l l in the play sc r e en ∗/

\problem{

/∗ INITIAL CONDITIONS ∗/
(Width > 0 & Height > 0 & bx > 0 & by > 0 & bx < Width &

by < Height & vxˆ2 + vyˆ2 = ve l ˆ2 & ve l > 0 &
paddleWidth > 0) /∗ & Px = 0 & Ox = Width) ∗/

−>
\ [

(
/∗ CONTROL ∗/

14

Py := by ;
Oy := by ;

/∗ PHYSICS EVENTS ∗/
(
/∗ Bounce o f f the paddles ∗/

i f (bx = 0 & by > Py − paddleWidth &
by < Py + paddleWidth & vx < 0) then (vx := −

vx) f i ;
i f (bx = Width & by > Oy − paddleWidth &

by < Oy + paddleWidth & vx > 0) then (vx := −
vx) f i ;

/∗ Bounce o f f the top and bottom wa l l s ∗/
i f (by = 0 & vy < 0) then (vy := −vy) f i ;
i f (by = Height & vy > 0) then (vy := −vy) f i

) ;

/∗ CONTINUOUS DYNAMICS ∗/
/∗ Evolut ion domains correspond to play sc r e en area

and the areas
D i r e c t l y to the s i d e s . We d i s r e g a r d the areas

above and below
f o r s i m p l i c i t y , as we proved wal l bouncing in (1)
∗/

({bx ’ = vx , by ’ = vy & bx >= 0 & bx <= Width & by >=
0 & by <= Height} ++

{bx ’ = vx , by ’ = vy & bx <= 0 & by >= 0 & by <=
Height} ++

{bx ’ = vx , by ’ = vy & bx >= Width & by >= 0 & by <=
Height })) ∗@invar iant (vxˆ2 + vyˆ2 = ve l ˆ2 & bx >= 0
& bx <= Width & by >= 0 & by <= Height) /∗ Loop

Inva r i an t ∗/
\]
(bx >= 0 & bx <= Width & by >= 0 & by <= Height) /∗

Sa fe ty Condit ion ∗/
}

A.3 Key file for equations 4 and 5

/∗ REQUIRED INFORMATION:

S t a t i s t i c s can be obtained from Proof −> Show Proof
S t a t i s t i c s .

Name : Milda Z i zyte & Fe l i x Hutchison
KeYmaera v e r s i o n : 3 . 6 . 1 6

15

Backends used (Mathematica , Z3 , . . .) : Mathematica
Nodes : 13692
Branches : 1223
I n t e r a c t i v e s t ep s : 0
Arithmet ic So lve r : 143 .34
Time : 226 .524
Proof completes (Y/N) : Y

∗/

\ f u n c t i o n s {
R Width ;
R Height ;
R ve l ;
}

\programVariables {
R bx ;
R by ;
R vx ;
R vy ;

R paddleWidth ;
//R Px ;
R Py ;
R Pvy ;
//R Ox;
R Oy;
}

\problem{

/∗ INITIAL CONDITIONS ∗/
(Width > 0 & Height > 0 & bx > 0 & by > 0 & bx < Width &

by < Height & vxˆ2 + vyˆ2 = ve l ˆ2 & ve l > 0 &
paddleWidth > 0 & Py = by) /∗ & Px = 0 & Ox = Width)
∗/

−>
\ [

(

/∗ WALL PHYSICS EVENTS ∗/
i f (by = 0 & vy < 0) then (vy := −vy)
e l s e (i f (by = Height & vy > 0) then (vy := −vy)

f i)
f i ;

16

/∗ PADDLE CONTROL ∗/
/∗ Player paddle t r a ck s the b a l l ∗/
Pvy := vy ;
Oy := by ;

/∗ PADDLE PHYSICS EVENTS ∗/
i f (bx = 0 & by > Py − paddleWidth &

by < Py + paddleWidth & vx < 0) then (vx := −
vx)

e l s e (i f (bx = Width & by > Oy − paddleWidth &
by < Oy + paddleWidth & vx > 0) then (vx := −

vx)
f i)

f i ;

/∗ CONTINUOUS DYNAMICS ∗/
({bx ’ = vx , by ’ = vy , Py ’ = Pvy & bx >= 0 & bx <=

Width & by >= 0 & by <= Height} ++
{bx ’ = vx , by ’ = vy , Py ’ = Pvy & bx <= 0 & by >= 0 &

by <= Height} ++
{bx ’ = vx , by ’ = vy , Py ’ = Pvy & bx >= Width & by >=

0 & by <= Height }) @invar iant (Py = by) /∗ D i f f
Inva r i an t ∗/

) ∗@invar iant (bx >= 0 & bx <= Width & Py = by) /∗
Loop Invar i an t ∗/

\]
(bx >= 0 & bx <= Width) /∗ Sa fe ty Condit ion ∗/
}

A.4 Key file for equations 6 and 8

/∗ REQUIRED INFORMATION:

S t a t i s t i c s can be obta ined from Proof −> Show Proof
S t a t i s t i c s .

Name : Milda Z i zyte & Fe l i x Hutchison
KeYmaera v e r s i o n : 3 . 6 . 1 6
Backends used (Mathematica , Z3 , . . .) : Mathematica
Nodes : 34285
Branches : 3846
I n t e r a c t i v e s t ep s : 1227
Arithmet ic So lve r : 2958.415
Time : 2469 .39

17

Proof completes (Y/N) : Y

∗/

\ f u n c t i o n s {
R Width ;
R Height ;
R ve l ;
}

\programVariables {
R bx ;
R by ;
R vx ;
R vy ;

R paddleWidth ;
//R Px ;
R Py ;
R Pvy ;
R Pvmax ;
//R Ox;
R Oy;
}

\problem{

/∗ INITIAL CONDITIONS ∗/
(Width > 0 & Height > 0 & bx > 0 & by > 0 & bx < Width &

by < Height & vxˆ2 + vyˆ2 = ve l ˆ2 & ve l > 0 &
paddleWidth > 0 & Pvmaxˆ2 > vyˆ2 & Pvmax > 0 & by >=
Py − paddleWidth &

by <= Py + paddleWidth) /∗ & Px = 0 & Ox =
Width) ∗/

−>
\ [

(

/∗ WALL PHYSICS EVENTS ∗/
i f (by = 0 & vy < 0) then (vy := −vy)
e l s e (i f (by = Height & vy > 0) then (vy := −vy)

f i)
f i ;

/∗ PADDLE CONTROL ∗/
i f (by > Py) then (Pvy := Pvmax)

18

e l s e (Pvy := −Pvmax)
f i ;
/∗ Opponent Paddle moves non−d e t e r m i n i s t i c a l l y to be

where i t needs to be ∗/
Oy := by ;

/∗ PADDLE PHYSICS EVENTS ∗/
i f (bx = 0 & by >= Py − paddleWidth &

by <= Py + paddleWidth & vx < 0) then (vx :=
−vx)

/∗ rebound o f f o f the p laye r paddle ∗/
e l s e (i f (bx = Width & by >= Oy − paddleWidth &

by <= Oy + paddleWidth & vx > 0) then (vx :=
−vx)

/∗ rebound o f f the opponent paddle ∗/
f i)

f i ;

/∗ CONTINUOUS DYNAMICS ∗/
(

/∗ f i r s t three d i f f eqs are the ones that govern r e a l
behavior ∗/
{bx ’ = vx , by ’ = vy , Py ’ = Pvy & bx >= 0 & bx <=

Width & by >= 0 & by <= Py − paddleWidth} ++
{bx ’ = vx , by ’ = vy , Py ’ = Pvy & bx >= 0 & bx <=

Width & by >= Py − paddleWidth & by <= Py +
paddleWidth} ++

{bx ’ = vx , by ’ = vy , Py ’ = Pvy & bx >= 0 & bx <=
Width & by >= Py + paddleWidth & by <= Height} ++

/∗ These three d i f f eqs govern behavior past the p laye r
paddle . Nothing

happens in them , cause the b a l l provably never ends
up there . ∗/

{bx ’ = vx , by ’ = vy , Py ’ = Pvy & bx <= 0 & by >= 0 &
by <= Py − paddleWidth} ++

{bx ’ = vx , by ’ = vy , Py ’ = Pvy & bx <= 0 & by >= Py
− paddleWidth & by <= Py + paddleWidth} ++

{bx ’ = vx , by ’ = vy , Py ’ = Pvy & bx <= 0 & by >= Py
+ paddleWidth & by <= Height} ++

/∗ These three d i f f eqs govern behavior past the opponent
paddle . Nothing
happens in them , cause the b a l l provably never ends

up there . ∗/
{bx ’ = vx , by ’ = vy , Py ’ = Pvy & bx >= Width & by >=

0 & by <= Py − paddleWidth} ++

19

{bx ’ = vx , by ’ = vy , Py ’ = Pvy & bx >= Width & by >=
Py − paddleWidth & by <= Py + paddleWidth} ++

{bx ’ = vx , by ’ = vy , Py ’ = Pvy & bx >= Width & by >=
Py + paddleWidth & by <= Height}

) @invar iant (by >= Py − paddleWidth & by <= Py +
paddleWidth & Pvmaxˆ2 > vy ˆ2) /∗ D i f f Inva r i an t ∗/

) ∗@invar iant (bx >= 0 & bx <= Width & by >= Py −
paddleWidth & by <= Py + paddleWidth & Pvmaxˆ2 >
vy ˆ2) /∗ Loop Invar i an t ∗/

\]
(bx >= 0 & bx <= Width) /∗ Sa fe ty Condit ion ∗/
}

A.5 Key file for equations 7

/∗ REQUIRED INFORMATION:

S t a t i s t i c s can be obtained from Proof −> Show Proof
S t a t i s t i c s .

Name : Milda Z i zyte & Fe l i x Hutchison
KeYmaera v e r s i o n : 3 . 6 . 1 2
Backends used (Mathematica , Z3 , . . .) : Mathematica
Nodes :
Branches :
I n t e r a c t i v e s t ep s :
Ar ithmet ic So lve r :
Time :
Proof completes (Y/N) : N

∗/

\ f u n c t i o n s {
R Width ;
R Height ;
R ve l ;
}

\programVariables {
R bx ;
R by ;
R vx ;
R vy ;

R paddleWidth ;

20

//R Px ;
R Py ;
R Pvy ;
R Pvmax ;
//R Ox;
R Oy;
}

\problem{

/∗ INITIAL CONDITIONS ∗/
(Width > 0 & Height > 0 & bx = Width & by > 0 & vx < 0 &

by < Height & vxˆ2 + vyˆ2 = ve l ˆ2 & ve l > 0 &
paddleWidth > 0 & Pvmaxˆ2 > vyˆ2 & Pvmax > 0 & (−
Height ∗ (Width/ ve l)) <= Pvmax & Py < Height & Py > 0)

/∗ & Px = 0 & Ox = Width) ∗/
−>
\<

(

/∗ WALL PHYSICS EVENTS ∗/
i f (by = 0 & vy < 0) then (vy := −vy)
e l s e (i f (by = Height & vy > 0) then (vy := −vy)

f i)
f i ;

/∗ PADDLE CONTROL ∗/
i f (by > Py) then (Pvy := Pvmax)
e l s e (Pvy := −Pvmax)
f i ;
/∗ Opponent Paddle moves non−d e t e r m i n i s t i c a l l y to be

where i t needs to be ∗/
Oy := by ;

/∗ We don ’ t need paddle i n t e r a c t i o n s s i n c e i t ’ s only
t r a v e l i n g on the court . ∗/

/∗ CONTINUOUS DYNAMICS ∗/
(

/∗ f i r s t three d i f f eqs are the ones that govern r e a l
behavior . s i n c e we ’ re
only l ook ing at the court , the se are the only ∗/
{bx ’ = vx , by ’ = vy , Py ’ = Pvy & bx >= 0 & bx <=

Width & by >= 0 & by <= Py − paddleWidth} ++
{bx ’ = vx , by ’ = vy , Py ’ = Pvy & bx >= 0 & bx <=

Width & by >= Py − paddleWidth & by <= Py +

21

paddleWidth} ++
{bx ’ = vx , by ’ = vy , Py ’ = Pvy & bx >= 0 & bx <=

Width & by >= Py + paddleWidth & by <= Height })
) ∗

\>
(by >= Py − paddleWidth & by <= Py + paddleWidth) /∗

Termination Condit ion ∗/
}

B Soundness proofs

Γ ` [x′ = θ &H]C Γ ` 〈x′ = θ & (H ∧ C)〉φ
DC〈〉

Γ ` 〈x′ = θ &H〉φ

Assume Γ ` [x′ = θ &H]C and Γ ` 〈x′ = θ & (H ∧ C)〉φ are valid.
Then, for all ν, ν |= Γ→ 〈x′ = θ &H ∧ C〉φ.
Thus, for all ν such that ν |= Γ, there exists an ω ∈ ρ(x′ = θ & H ∧ C)(ν)

such that ω |= φ.
Since ω ∈ ρ(x′ = θ & H ∧ C)(ν) must also belong to ρ(x′ = θ & H)(ν) by

definition of evolution domains.
Thus for all ν such that ν |= Γ, there exists an ω ∈ ρ(x′ = θ & H)(ν) such

that ω |= φ.
So, Γ ` 〈x′ = θ &H〉φ is valid. (soundness)

Also, for all ν, ν |= Γ→ [x′ = θ &H]C.
Thus, for all ν such that ν |= Γ, for all ω ∈ ρ(x′ = θ &H)(ν), ω |= C.
So, for all ω ∈ ρ(x′ = θ &H)(ν) where ν |= Γ, ω ∈ ρ(x′ = θ &H ∧ C)(ν).
This means that if Γ ` 〈x′ = θ&H〉φ is valid , then Γ ` 〈x′ = θ& (H ∧C)〉φ

is valid. (completeness)

Γ ` [α∗]C Γ ` 〈α∗〉F F,C ` φ
Convergence Substitution

Γ ` 〈α∗〉φ

Assume Γ ` [α∗]C and Γ ` 〈α∗〉F and F,C ` φ are valid
Thus, for all ω ∈ ρ(α∗)(ν) such that ν |= Γ, ω |= C
It is also the case that there exists ω0 ∈ ρ(α∗)(ν), such that ν |= Γ and

ω0 |= F .
This ω0 satifies both F and C by the above.
Lastly, it is the case that for any state ν that satisfies F and C, ν |= φ
Thus ω0 |= φ
So there exists a state ω ∈ ρ(α∗)(ν) where ν |= Γ such that ω |= φ
Thus Γ ` 〈α∗〉φ is valid.

22

Γ ` 〈(αn)∗〉φ
Loop Segmentation

Γ ` 〈α∗〉φ

Assume Γ ` 〈(αn)∗〉φ
For all states ν, there exists ω ∈ ρ((αn)∗)(ν) such that ω |= φ.
Since all ω ∈ ρ(αn)∗)(ν) also belong to ρ(α∗)(ν) by definition of α∗, we can

state that for all states ν, there exists ω ∈ ρ(α∗)(ν) such that ω |= φ.
Thus Γ ` 〈α∗〉φ is valid.

23

