
CPS analysis of Pong

Felix Hutchison Milda Zizyte

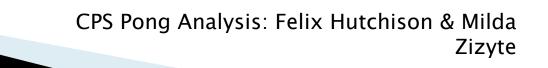
Motivation

Game physics is hard

• Even when your physics engine is good.

Motivation

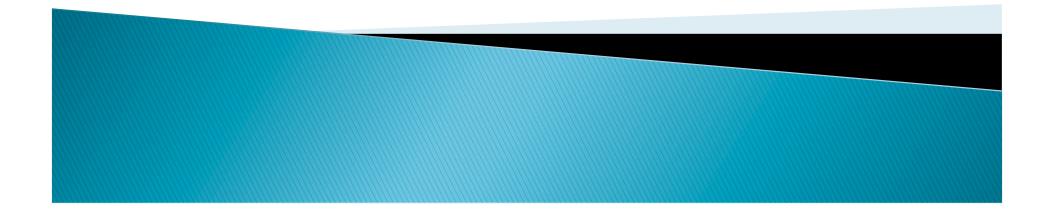
Interactions combine in interesting ways


Motivation

- You may want to make guarantees of certain conditions (e.g. player altitude above ground) for things to function (e.g. Al algorithm)
- Can we use CPS techniques, like dL, to make these guarantees?

Why Use Differential Dynamic Logic?

- Formal guarantees
 - High assurance for high exposure products like videogames
- Great for event based interactions and continuous dynamics
 - Like physics simulation



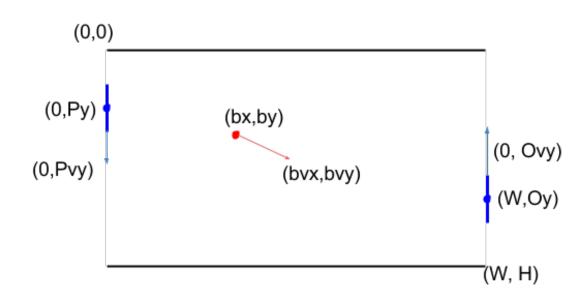
KeYmaera Hybrid Verification Tool

- Automated and interactive theorem prover for dL
- All the following proofs will prove automatically
 - No team of formal methods experts required!
 - Though in some cases manual interventions were used to speed the process.

Let's prove some game physics!

But...

- We're broke grad students, we can't afford real video games
 - Train simulator and DLC totals to over \$4000



So we'll look at Pong

 Plenty of free versions with source available

Pong program model

Ball has constant speed in each directionPaddles move at the far ends of the court

Based on <u>http://gamemechanics.wikia.com/wiki/Pong</u> and <u>http://en.wikipedia.org/wiki/Pong</u> CPS Pong Analysis: Felix Hutchison & Milda Zizyte

9

Preliminaries

- Make sure our physics is doing what we think
 Ball bouncing and paddle interactions
- Even this is non-trivial!
- Some bugs in ordering of events:
 - Paddle interactions vs. paddle control algorithm.

Basic Al

- Ball follower
 - Controller A) Matches ball velocity
 - Controller B) Moves at a fixed speed faster than the ball, keeps ball above the paddle
- Can we prove perfect play with these controllers?
 - I.e. Against an infallible opponent, can we assure no point is scored

$\Gamma \rightarrow [(\beta, \alpha)^*] 0 \le bx \le Width$

Does this work?
 Γ, Py = b

$$f, Py = by → [(β, α)*]Py = by β≡{Pvy := bvy};$$

- Does this ensure perfect play? Γ , Py = by $\rightarrow [(\beta, \alpha)^*] 0 \le bx \le Width$
- Unsurprisingly, yes.
 - Proof takes 226.524 seconds (+ 143.34 seconds in Mathematica)
 - 13692 proof steps
 - 1223 branches
 - Mostly symmetric/similar braches
 - Lemmas will greatly speed up proof

- If the Ball is over the paddle, can we keep it there?
- Can we get the ball over the paddle every time?
- Does this ensure perfect play?

If the Ball is over the paddle, can we keep it there?

$$\begin{array}{l} \mathsf{F}, \ \mathsf{F} \! \rightarrow \! [(\beta, \, \alpha)^*] \mathsf{F} \\ \beta \! \equiv \! \{ \text{if} \ (\mathsf{P} y > b y) \\ \text{then} \ (\mathsf{P} v y := \mathsf{Vel}) \\ \text{else} \ (\mathsf{P} v y := -\mathsf{Vel}) \}; \\ \mathsf{F} \equiv \mathsf{P} \mathsf{y} - \mathsf{P} \mathsf{w} \leq \mathsf{b} \mathsf{y} \leq \mathsf{P} \mathsf{y} + \mathsf{P} \mathsf{w} \end{array}$$

 Since this again trivially shows perfect play, we can do that too.

 $\Gamma, F \rightarrow [(\beta, \alpha)^*]F, 0 \le bx \le Width$

- Proves automatically again
 - Proof takes: 2469.39 (+ 2958.415) seconds
 - 34285 proof steps
 - 3846 branches
 - Again, mostly symmetrical

CPS Pong Analysis: Felix Hutchison & Milda

Zizyte 15

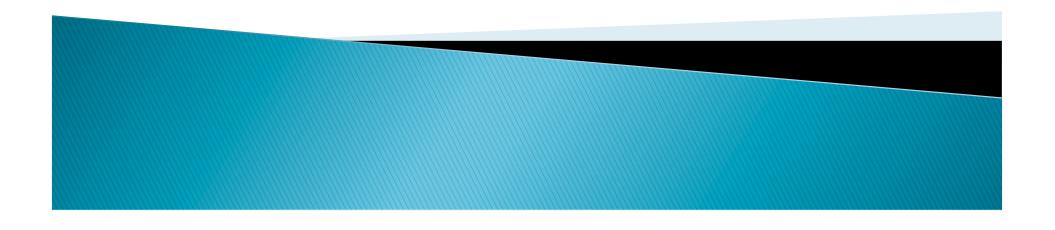
Can we get the ball over the paddle every time?

$$\rightarrow < (\beta, \alpha)^* > F$$

- Unfortunately this may not be provable in KeYmaera as it is.
 - Loop convergence (induction) won't work because there's no guaranteed possibility of progress
 - E.g. The ball stops within epsilon of hitting the wall, then it can only progress at most epsilon in this iteration.

- So KeYmaera doesn't help, but is it dL provable?
- Yes!
 - Using Convergence Substitution, and Loop Segmentation for <> modality
 - Full proof, and soundness for the above rules, in the paper
- And these rules can be added to KeYmaera

Conclusion: Are CPS tools useful for this type of analysis?


Some drawbacks:

- Still developmental
- Additional features needed
 - But all are implementable or in progress

But more importantly:

- Immensely powerful
- Formal guarantees are the best way to ensure high quality products
- Planned improvements give great benefits to the speed of automation

Questions?

Next Steps

- ModelPlex
 - Runtime verification of model assumptions
 - Automatically generated formal monitors from proof
- In this case assumptions are
 - Physics engine
 - Interaction assumptions
 - Bounds/initial conditions

Added Rules

Convergence Substitution
$$\frac{\Gamma \vdash [\alpha^*]C}{\Gamma \vdash \langle \alpha^* \rangle \phi} \qquad F, C \vdash \phi \\ \Gamma \vdash \langle \alpha^* \rangle \phi$$

Loop Segmentation
$$\frac{\Gamma \vdash \langle (\alpha^n)^* \rangle \phi}{\Gamma \vdash \langle \alpha^* \rangle \phi}$$

