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Abstract

Modern space exploration has recently entered a golden age due to the in-
creased accessibility of space travel. This increased accessibility is largely
due to the lower costs of launching satellites and other spacecraft into orbit.
One of the newest competitors in the spacecraft launching industry, Space
Exploration Technologies, plans on developing reusable rockets to lower this
cost even further. These reusable rockets rely heavily on automation for
their guidance, navigation, and controller systems. Formal verification of
these systems would allow for assurance of the safety of these multi-million
dollar rockets during their return. We present our modeled systems repre-
sentative of the physics behind this situation, and our developed controllers
that correctly uphold the appropriate safety conditions for them. With our
controllers formally validated and verified using differential dynamic logic
powered KeYmaera proving tool, the space industry continues its path to-
wards easily accessible spaceflight.

1 Introduction

The field of cyber-physical systems is a recently developed field exploring
the collaboration between computational and physical elements. Cyber-
physical systems have been increasingly prominent, and can easily be found
in a diverse range of industries including aerospace, energy, manufacturing,
transportation, and entertainment. Out of the many areas of this new field,
the most exciting aspect is automation. Automation involves a computa-
tional controller completely deciding the fate of its physical entities, with
little to no outside or human involvement. Automation is a particularly
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interesting topic because the increased emphasis on safety, as ideally there
is little or no manual oversight of these systems.

One of the newest form of automation in this industry is currently be-
ing researched and developed by Space Exploration Technologies (SpaceX).
SpaceX’s current and most pressing goal is to drastically reduce the cost
of commercial space travel. Elon Musk, the CEO of SpaceX, believes that
space travel can see the same success that air travel has seen over the past
few decades due to the lower prices. SpaceX plans on reducing the price of
space travel by tens of millions of dollars by manufacturing rockets that are
reusable. By reusing rockets, the cost of a launch is dominated by the price
of fuel and payload expenses instead of the price of a new rocket.

The Falcon 9 rocket currently being manufactured and tested at SpaceX
are able to achieve partial re-usability [4]. After primary stage separation,
the first stage rocket returns to the Earth while the second stage rocket (with
the payload still attached) performs a second burn to move into the correct
orbit. After this separation, the first stage rocket performs a vertical flip to
realign the main engines underneath itself. It then reignites these engines,
slowing its descent. During the descent, the first stage lowers its deployable
landing legs to both help increase the surface area to increase air resistance
to help slow it down, and to aid in stabilizing the first stage. Finally, the
first stage lands on an autonomous spaceport drone ship in the middle of
the ocean, where it is then ferried back to shore [2].

The process of the returning first stage rockets is critical to the ad-
vancement of reusability in rockets, and verifying the process would be an
incredible step forward. Formal verification has proved its success in many
industries, with companies such as Intel and Motorola investing in validation
of their hardware [3]. However, cyber-physical systems such as a returning
first stage rocket provide challenges outside of the verification of the control-
ling software. When the system includes controlling physical entities, the
physics of the real world provide a challenge to ensuring safety.

Our submission for the Cyber-Physical Systems Verification and Valida-
tion Grand Prix is our analysis of the returning of the first stage rocket. This
includes our model of the physics behind the descending first stage rocket.
We constructed our system using differential dynamic logic, an extension
of modal logic used to better reason about computer programs (which are
used for control logic) as well as including the continuous motion of the dif-
ferential equations that govern the system (which are used for movement of
the physical entities). In our analysis, we used the tool KeYmaera [5], an
implemented differential dynamic logic prover, to validate our models.

In this paper, we will first walk through the physics of this system,
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including our analysis of the descent and the inverted pendulum problem
that represents balancing the rocket. From this analysis, we will derive the
necessarily preconditions of the system as well as the safety conditions which
must hold throughout. After said conditions are listed, we will describe the
development process for our controller. We took a different approach than
the usual for the development of the controller. We recognized that this
descent is split between two different physical phenomena, and we developed
a separate controller for each one. As will be discussed, we believe that
developing a controller for each phenomena, and allowing them to work with
any variant of the other controller, is a more general and better solution than
developing a controller that accounts for both.

2 Related Work

During liftoff and throughout its flight, a rocket must maintain very strict
safety conditions and trajectories. Even the smallest deviation is consid-
ered an extreme risk, as a crashing rocket is essentially a missile. Therefore
upon the first sign of danger a range safety officer will detonate the rocket
through its flight termination system. With multiple millions of dollars at
stake [6], much research has been invested into validating the safety of rock-
ets. Companies like Boeing have invested heavily into formal and statistical
verification [1].

However, the thought of a rocket being reusable, even partially, is an
incredibly recent concept. The recent endeavors of SpaceX to build and test
prototypes of their Falcon 9 Reusable rocket are pushing the limits of this
technology. Sadly, due to governmental restrictions and the young age of the
field of research, very little information on the testing mechanics is publicly
available. However, due to the rapid speed of development of these rockets,
it is reasonable to infer that the majority of testing is done statistically and
not formally.

3 The Physics of a Returning First Stage Rocket

During the development of our model for the returning first stage rocket,
we spent significant time researching the physics of the situation, so that we
could derive the necessary safety conditions. The portion of the Falcon 9
flight that we chose to analyze is immediately after the deployment of the
landing legs, which occurs after the initial vertical flip and primary stage
separation. We chose this portion of the flight to analyze because it is the
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Figure 1: A free body diagram of the entire physical system.

most important section for re-usability, which is where the largest impact
of this innovation will be felt. In order to successfully validate the return of
the first stage rocket for this section of the flight, we need to properly model
a system, and then a controller for this system, that accounts for the two
physical phenomena that occur during the section. Our ultimate goal is to
develop controllers that successfully account for both phenomena.

Figure 1 is an free body diagram of both physical phenomena in our
system. It shows all of the forces acting on the first stage rocket during the
descent, and how the tilt angle θ relates to the forces applied on the rocket.

The first physical phenomena that we need to account for in our system
is gravity. It is fairly obvious that during the return of the first stage rocket,
gravity will continue to accelerate the rocket towards the ground until it
eventually crashes. The first stage rocket is able to counteract gravity by
using its main engines to create a thrust in the opposite direction, thus
decelerating it. The physics behind the descent can be described by the
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following equation:
dp

dt
= Fg + Fd + Fr (1)

In the equation above, the left hand side represents the change in momen-
tum, while the right represent the summation of three acting forces, namely
of gravity, the rocket’s thrust, and any possible retarding forces such as air
resistance.

However, we developed our model to drastically simply this equation
through reasonable assumptions for the physical system. The first assump-
tion is that there are no retarding forces acting on the rocket, or any force
that resists motion (which are typically proportional to the velocity). This
includes forces such as air resistance.

We then make the assumption that the first stage rocket travels through
a constant gravitational field throughout its descent, simplifying the gravi-
tational force,

Fg = G
m1m2

r2
≈ mg. (2)

Finally, we make the assumption that the mass of the first stage rocket
does not change and all motion is non-relativistic. Making this approxima-
tion results in a change to the left side of Equation (1),

dp

dt
= m

dv

dt
+ v

dm

dt
= m

dv

dt
= ma. (3)

During the descent of the first stage rocket, it burns fuel to provide
thrust to decelerate itself. Without any retarding forces (that may have mass
dependence), a constant larger mass implies more thrust needs to be applied
in order to slow the rocket. This means that by making the assumption of
constant mass, the system is forced to decelerate a heavier object, which
is harder to prove the safety of. Therefore, proving the system with the
assumption is safe also proves safety for the system without the assumption.
These assumptions reduces the equation of motion for the descent of the
first stage rocket to

a = −g + Fd. (4)

Note that we assume unit mass for our first stage rocket. This assumption
does not change our model, it merely removes a variable from the system to
ease calculations.

The second physical phenomena that needs to be accounted for is the
possibility of the first stage rocket tipping over during the descent. When
looking at just the first stage rocket after stage separation, it can be mod-
eled as a rod with a point mass at either end. The bottom point represents
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the weight from the engines, and the top point represents the weight from
the connections to the second stage. The intermediate weight can be disre-
garded, as most of the fuel is gone and the fuselage is incredibly lightweight.
When on the ground, and without the landing legs deployed, if the first
stage rocket is at any degree of tilt θ, gravity will cause a torque to be ex-
erted on the rocket. This torque will cause the rocket to pivot about its
base and cause θ to grow. By setting up and solving the appropriate La-
grangian equations, it can be shown that the equation of motion that define
the change in θ due to gravity’s torque is

θ̈ =
g

l
sin θ. (5)

One interesting fact about this equation is that there is a steady state
solution of θ = 0. When there is no angle of tilt, gravity does not cause a
torque and therefore θ will never change. However, in reality, this cannot
happen. There will always be some slight deviation from the center of mass
over the center of the base of the first stage rocket, so θ̈ 6= 0. This nonzero
θ̈ will eventually cause the rocket to tip over. Therefore, our system must
be able to provide a force in the opposite direction to balance the first stage
rocket. This changes the equation of motion to

θ̈ =
g

l
sin θ + Ft (6)

where Ft is the force the first stage rocket can provide using its side thrusters.
However, this equation is still making the assumption that our rocket is

grounded. When descending from the peak of the rocket’s trajectory, it is
hopeful that the rocket is significantly above the ground. A classic result of
physics is that in absence of retarding forces (which our simulation is as due
to assumptions made previously), a rigid object in free fall will maintain its
rotation forever. This can be seen from the previous equation, as in free fall
the first stage rocket no longer feels the gravitational field as it would on
the ground, and Equation (4) becomes

g = 0 =⇒ θ̈ =
0

l
sin θ = 0 (7)

Another interesting case, which is the case we use in our analysis, is when
the rocket provides an acceleration when trying to slow its descent. It is this
case that ties together the descent and the balance of the first stage rocket.
When the rocket uses its main engines to slow its descent, it leaves free fall,
and locally feels a force equivalent to gravity if the gravitational constant
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was that of its acceleration. Therefore, if we assume for sake of simplicity
that the rocket is of unit length, the equation of motion that defines the
angle of tilt for the first stage rocket during the return is

θ̈ = a sin θ + Ft (8)

where a is the vertical acceleration currently being provided by the main
engines. It is this equation that unifies the two phenomena in our model.
In the next section, we discuss the initial and safety conditions that any
controller must abide by in order to successfully validate this system.

4 Controller Initial and Safety Conditions

In order to successfully verify and validate a controller for the return of a
first stage rocket, we first need to define the initial and safety conditions that
it will maintain. Using the equations of motion for our system, as defined in
Equation (4) and Equation (8), we can condition the variables in our system
to assure safety.

Below is the list of initial conditions that our system meets to meet the
requirements of our model.

• Gravity has some constant gravitational coefficient G > 0. This coef-
ficient is constant due to assumptions previously stated and justified
in Equation (2). This coefficient must be positive to correctly model
the physical phenomena of gravity.

• The first stage rocket can land with some maximum safe velocity
Vsafe < 0. This velocity is negative as the first stage rocket is al-
lowed to have some downwards velocity on impact, but cannot have a
larger downwards velocity without crashing.

• The first stage rocket can provide a maximum thrust force Fd > G. It
is very important that the rocket’s main engines can provide enough
force to overcome gravity, as without this assumption the first stage
rocket could not possibly decelerate to a safe landing speed.

• The first stage rocket can provide a maximum tilt force Ft.

• The first stage rocket will start at some non-negative height h0 = H ≥
0. This is necessary, as it is a physical limitation that the rocket’s
position is above the ground.
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• The first stage rocket initially has some downwards vertical velocity,
ḣ0 < 0. This is equivalent to starting the simulation immediately after
the initial rotation and deployment of the landing legs, because those
two events occur after the peak of the rocket’s trajectory which occurs
with v = 0.

• The first stage rocket initially has some angle of tilt −θmax ≤ θ0 ≤
θmax.

• The first stage rocket initially has no rotational velocity θ̇0 = 0.

• As our controller is a time-based controller, there is some refresh rate
of T > 0 in which after at most T time it can make another controller
decision.

These initially conditions completely describe the state of the system
before the beginning of the simulation. We now also define the safety con-
ditions that our system must maintain in order to meet the requirements of
our model. We do not consider efficiency conditions here, as they are not
necessary to verify the safety of our system. They are, however, a bonus
optimization that makes our controller more likely to be used in a practical
application. Below are our safety conditions.

• The height of the rocket must always be non-negative as a negative
height would correspond to a state that is not physically possible.

• When landing, the first stage rocket must have a vertical velocity of
a magnitude of at most Vsafe, |v| ≤ Vsafe. This is to ensure that the
rocket does that land so fast that it either breaks its landing legs or
the spaceport below it.

• When landing, the first stage rocket must have an angle of tilt between
the maximum allowed, or −θmax ≤ θ ≤ θmax.

With these safety conditions defined, we can revisit our initial conditions
and update them. In order to properly validate our model, our system must
initially hold the safety conditions. Furthermore, we must impose additional,
stricter conditions in order to ensure that our safety conditions can continue
to be satisfied as time passes. The particular restrictions necessary are:

• To address the safety conditions that we will specify below, the first
stage rocket needs to either have its initial downwards velocity be
greater than the safe velocity, v ≥ Vsafe, or it needs to be able to slow
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down to a safe velocity. We know that the first stage rocket will be
able to slow itself down to a safe velocity if the acceleration needed
to change its velocity over its initial height is less than the maximum
thrust force it can apply minus gravity, (v2−V 2

safe)/2h ≤ Fc−G (Note:
Its almost important that h 6= 0).

We now have described the initial conditions and safety requirements
for both of the physical phenomena present in our system, meaning that we
have defined the total requirements for the complete system. In the next
couple sections, we describe how we developed our controllers to correctly
accommodate these requirements, starting with the two separate controlled
descent controller and balance controller.

5 Controlled Descent Controller

Our first controller is one that is responsible for controlling the first stage
rocket’s descent. Starting after the initial vertical rotation and deployment
of the landing legs, it is responsible for decelerating the rocket until its
touchdown on the ground or on the autonomous spaceport drone ship. We
developed this controller to be safe, efficient, and to work with any given
balance controller.

In order to provide safety, the controller needs to be able to slow the
first stage rocket down to a safe velocity Vsafe by the time it has reached
the landing height h = 0. From our initial and safety conditions, we know
that there must exist and acceleration that the first stage rocket can provide
that will meet this conditions, so the first strategy is to have the first stage
rocket provide that force until it reaches the ground. As this meets the
desired safety conditions, this controller is acceptable.

However, it can be improved. By looking closer into the different sit-
uations that the first stage rocket can be in, we expanded upon the base
controller by allows for some more efficient solutions. The first situation is
when the first stage rocket is close enough to the ground and moving slowly
enough that it can simply free fall to the target. When this is the case, we
allow the first stage rocket to do so, as it is the most efficient solution avail-
able (as it uses no fuel and also arrives in the shortest amount of time). The
other situation is when the first stage rocket is already at a safe downwards
speed. If this is the case, then the first stage rocket has no need to use it’s
main engines to completely cancel out the force of gravity, as it is safe to
speed up. Our controller sets the engines to allow the rocket to accelerate

9



up to the safe speed by the time it lands. This allows it to use less fuel and
arrive faster.

It’s important to mention that this controller can work is any balance
controller. Granted, this is trivially true because the balance controller has
no effect on the descent, it’s still important to mention because if we develop
a balance controller that works with any descent controller, then we have
shown a completely general solution to safely returning the first stage rocket
(with some efficiency included!).

The *.key file for this controller can be found in the Appendix.

6 Balance Controller

The second controller we made, the balance controller, is responsible for
assuring that the rocket does not tip over during the descent. Starting at
some original θ, the balance controller is developed to ensure that after
landing the first stage rocket maintains an angle 0 ≤ θ ≤ θmax. Note that
this is different than the bounds described in the safety conditions. However,
by the design of our controller, basic symmetry arguments can be applied
to account for the other half of the initial and safety conditions.

To provide this safety, our controller uses the assumption that initially,
θ̇ = 0. Our controller then assigns an acceleration to cancel out the acceler-
ation caused by gravity, the exact amount needed to set θ̈ in Equation (8)
to 0. This means that the rotational velocity never changes, and because it
was initially 0 the rotation never changes. Therefore if the first stage rocket
was initially safe (which is must be by the initial conditions), then it will
remain safe. However, one variable that can change is the acceleration force
felt by the rocket to due an increase or decrease in vertical deceleration.
Our controller allows for this to change at every time step, and then adjusts
for the change in force. This means that our balance controller is general
enough to handle any possible descent controller!

One difficulty that arrived when designing this controller is that differ-
ential dynamic logic cannot directly represent sine and cosine, as they do
not always map to rational numbers. However, we were able to account for
this by using the approximation that sinx = x, turning Equation (8) into

θ̈ = aθ + Ft. (9)

. We used this approximation in both our controller as well as in the differ-
ential equations that control the physical evolution of our system. While the
use of approximations in differential equations can result in models which

10



do not properly represent the physics of the system, we believe their use is
justifiable here. Because our tilt thrust is always chosen such that the net
rotational acceleration is zero, we simply needed to be consistent with our
calculations between the one used in the controller and the one used by the
differential equations. The actual value we calculate is essentially irrelevant
because it gets cancelled out in the summation.

The *.key file for this controller can be found in the Appendix.

(Aside) Advanced Balance Controller

After completing the first revision of our balance controller, we explored
expanding it to remove one of the initial conditions of our system. One
of the major assumptions our previous controller relied on was that θ̇ = 0.
This condition allowed us to maintain a constant angle of tilt throughout the
descent, as we were able to have the tilt thrusters cancel out the rotational
acceleration caused due to the vertical deceleration. However, if we remove
this assumption, then simply canceling out the rotational acceleration would
not maintain our invariant, because some initial rotation velocity would
cause the rocket to tip over at a constant speed. The goal of this controller
would instead to be align the first stage rocket, or to end with θ = 0.
Another benefit of being able to create a controller that would aggressively
straighten the first stage rocket is that it would be prepared to handle future
additions to the system, such as noise and retarding forces.

However, when working to develop this controller, we ran into signifi-
cant difficulties. The largest difficulty comes from the equations of motion
that describe the balance controller. As seen in Equation (5), the equation
of motion that governs the physics has the rotational acceleration propor-
tional to the sine of its rotation. Despite its simple appearance, the solution
to this second-order nonlinear ordinary differential equation is incredibly
complicated. Solving this equation results in

θ = ±am(
1

2

√
(c1 − 2)(t+ c2)

2 | − 4

c1 − 2
). (10)

where c1 and c2 are constants of integration and am(x | m) is the Jacobi
Amplitude function. Even if this equation was solvable analytically, we
have no hope of being able to use it in our verification. KeYmaera, and
differential dynamic logic as a whole, is severely limited in its operation over
irrational numbers such as e and π as it cannot reason about them directly.
The solution to this differential equation is founded in exponentials, so we
cannot represent it or reason about it in our directly logic language of choice.
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We also note that even if we make the common approximation that
sinx ≈ x in the physics (which is usually improper and may even invalidate
the proof), the equation is still a second-order nonlinear ordinary differential
equation with solution:

θ = c1e
t + c2e

−t (11)

which is relatively simple but still has the problem that we cannot represent
it directly due to the exponentials.

However, despite being unable to reason about the solution directly,
doesn’t mean we cannot reason about the solution at all. For example, our
a previously developed circular motion controller was able to reason about
these sine and cosine indirectly through the use of differential equations. A
method we explored was to bound the possible acceleration and distance
traversed in one time period of our controller. As done in the previous con-
trollers developed, we can use an upper bound on the possible displacement
each iteration by placing an upper bound on the rotational acceleration the
first stage rocket could experience. This leads to

θf = θ0 + v0t+
1

2
Fdt

2 (12)

where sinx is upper bounded by 1 and the descent acceleration is maximized
to Fd. Sadly, there is a serious flaw with bounding the change in rotation
by with equation. If we use said equation and bound displacement this way,
we assume that there is a constant acceleration. The largest challenge from
designing a controller about the equation of motion is that when θ 6= 0, the
force applied on the first stage rocket changes with its rotation. Because a
controller must assign some tilt thrust and then wait some set period of time
(as it is a time based controller) before it can adjust to a new tilt thrust,
we were unable to develop a controller that could successfully cope with
the changing force from the sinx factor. A controller that uses a constant
acceleration for its bounds will not take the current rotation into account,
and can easily under or overestimate the force being applied on the first
stage rocket, which can lead to unsafe conditions.

7 Conclusions and Future Work

Reusable rockets would be a revolutionary step towards humanity’s destiny
with spaceflight, and SpaceX has made major steps towards this goal. A
formal verification of these systems furthers this progress, by showing that
a reduced form of the system can be logically proven. We developed a

12



model and accompanying controller in differential dynamic logic and suc-
cessfully used KeYmaera to verify and validate them. Our results, created
by sequentially developing controllers to account for different physical phe-
nomena, formally guarantee that our system of a returning first stage rocket
will successfully land, meeting the necessary safety conditions.

We developed two individual controllers, each responsible for an indi-
vidual physical phenomena that occurs during the return of a first stage
rocket. The first is the controlled descent controller, which provides safety
and efficiency for the descent and is also general enough to account for any
balance controller. The second is the balance controller, which provides
safety and prevents the rocket from ever tipping over. This controller is also
general enough to account for any controlled descent controller. These two
controllers combined cover a completely general solution to the return of the
first stage rocket, and also allow for expansion due to their generality.

When constructing our controllers and system, we made sure to pay
careful attention to the surrounding physics to assert that we were creating
a valid model of the reality of the returning first stage rocket. However, in
this analysis, we made many assumptions that were necessary to reduce the
complexity of our model to be solvable with our knowledge and tools for
cyber-physical systems in the time given. This leaves open the possibility
for further research to extend our analysis. Such areas for future work could
be exploring fuel considerations and how limited resources could favor differ
controllers, such as those that do not always have their engines burning.
Another would be the inclusion of retarding forces and noise. Finally, a
major contribution to this project would be the analysis of a larger portion
of first stage rocket’s trajectory, or even more components of the launch of
a Falcon 9 rocket.

Throughout the research, design, development, composition and eventual
completion of this project, equal work was done by both team members.
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Appendix

Attached to this paper is the source *.key files for our two controllers. De-
scent:

/∗ REQUIRED INFORMATION:

S t a t i s t i c s can be obta ined from Proof −> Show Proof
S t a t i s t i c s .

Name( s ) : David Frankl in , Phi l Massey
AndrewID( s ) : d f r a n k l i , pmassey
KeYmaera v e r s i o n : 3 . 6 . 1 5
Backends used ( Mathematica , Z3 , . . . ) : Mathematica

1 0 . 0 . 1 . 0
Nodes : 622
Branches : 57
I n t e r a c t i v e s t ep s : 33
Arithmet ic So lve r : 0 .693
Time : 0 .023
Proof completes (Y/N) : Y

∗/

\ f u n c t i o n s {
R AV; /∗ Spacecra f t ’ s v e r t i c a l a c c e l e r a t i o n ∗/
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R G; /∗ Acce l e r a t i on due to g rav i ty ∗/
R T; /∗ Time−t r i g g e r l i m i t on evo lu t i on ∗/
R V safe ; /∗ Upper bound on s a f e land ing

v e l o c i t i e s ∗/
}

\programVariables {
R h ; /∗ Spacecra f t ’ s cur rent he ight ∗/
R v h ; /∗ Spacecra f t ’ s cur rent v e l o c i t y ∗/
R a h ; /∗ Spacecra f t ’ s cur rent a c c e l e r a t i o n ∗/
R t ; /∗ Time ∗/

}

\problem{
(

/∗ I n i t i a l Condit ions ∗/
G > 0 &
T > 0 &

/∗ Safe v e l o c i t y i s some downwards speed ∗/
V safe < 0 &

/∗ The i n i t i a l v e l o c i t y i s some downwards speed ∗/
v h < 0 &

/∗ The rocke t must be ab le to apply some thrus t to
overcome grav i ty in

∗ order to d e c e l e r a t e at a l l ∗/
AV > G &

/∗ The i n i t i a l h i eght i s some p o s i t i v e he ight ∗/
h > 0 &

/∗ The rocke t must i n i t i a l l y be s a f e . This means
that i t e i t h e r i s

∗ a l ready at a s a f e speed , or i f i t ’ s o f f the
ground i t i s ab le to

∗ s low down to a s a f e speed in the g iven d i s t anc e
with the known

∗ maximum thrus t ∗/
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( ( v h >= V safe ) | ( ! ( h=0) & ( V safe ˆ2 − v h ˆ2) /
(−2∗h) <= (AV − G) ) )

)
−>
\ [

(
/∗ Control a c c e l e r a t i o n ∗/

/∗ I f the rocke t i s not at a s a f e speed ,
choose an a c c e l e r a t i o n

∗ such that i t lands at a s a f e speed ∗/
i f ( v h < V safe ) then

a h := ( V safe ˆ2 − v h ˆ2) / (−2∗h)
e l s e

/∗ I f the rocke t can f r e e f a l l and s t i l l
have a s a f e v e l o c i t y ,

∗ do so as i t ’ s e f f i c i e n t ∗/
i f (−1∗( v h − V safe ) / T < −G) then

a h := −G

/∗ I f the rocke t cannot f r e e f a l l but i s
at a s a f e v e l o c i t y ,

∗ choose an a c c e l e r a t i o n such that i t ’ s
s t i l l s a f e . ∗/

e l s e
a h := −1∗(v h − V safe ) /T

f i
f i ;

/∗ Evolve ∗/
t := 0 ;
{

v h ’ = a h &
h ’ = v h &
t ’ = 1 &
t <= T &
h >= 0

}@invar iant (
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/∗ The v e r t i c a l v e l o c i t y can never be
p o s i t i v e −− i n e f f i c i e n t ∗/

v h <= 0 &

/∗ The v e r t i c a l a c c e l e r a t i o n can never be
more than when the

∗ eng ine s are at t h e i r maximum thrus t nor
can be l e s s than when

∗ they are o f f ∗/
a h <= AV − G &
a h >= −G &

/∗ At every g iven timestep , the rocke t
needs to be ab le to have

∗ a reachab l e a c c e l e r a t i o n such that i t ’
l l land with a s a f e

∗ speed ∗/
( ( v h >= V safe ) | ( ! ( h=0) & ( V safe ˆ2 −

v h ˆ2) / (−2∗h) <= (AV − G) ) )
)

) ∗
@invar iant (

/∗ Loop i n v a r i a n t s ∗/
/∗ The v e r t i c a l v e l o c i t y can never be p o s i t i v e

−− i n e f f i c i e n t ∗/
v h <= 0 &

/∗ The rocke t can never go below the ground ∗/
h >= 0 &

/∗ Again , the rocke t must e i t h e r be s a f e or
ab le to become s a f e ∗/

( ( v h >= V safe ) | ( ! ( h=0) & ( V safe ˆ2 − v h
ˆ2) / (−2∗h) <= (AV − G) ) )

)
\ ]
(

/∗ Sa fe ty cond i t i on ∗/
/∗ The rocke t cannot be below the ground , and i f

i t ’ s not c u r r e n t l y at
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∗ a s a f e speed then i t must be above the ground
∗/

h >= 0 & ( v h < V safe −> h > 0)
) }

Balance:

/∗ REQUIRED INFORMATION:

S t a t i s t i c s can be obta ined from Proof −> Show Proof
S t a t i s t i c s .

Name( s ) : David Frankl in , Phi l Massey
AndrewID( s ) : d f r a n k l i , pmassey
KeYmaera v e r s i o n : 3 . 6 . 1 5
Backends used ( Mathematica , Z3 , . . . ) : Mathematica

1 0 . 0 . 1 . 0
Nodes : 149
Branches : 10
I n t e r a c t i v e s t ep s : 0 <− This i sn ’ t t rue though . Used

re−use from a prev . ve r s .
Ar ithmet ic So lve r : 0 .771
Time : 0 .043 s
Proof completes (Y/N) : Y

∗/

\ f u n c t i o n s {
R AV; /∗ Spacecra f t ’ s max v e r t i c a l

a c c e l e r a t i o n ∗/
R T; /∗ Time−t r i g g e r l i m i t on evo lu t i on ∗/
R MaxARot ; /∗ Spacecra f t ’ s max r o t a t i o n a l

a c c e l e r a t i o n ∗/
R MaxRot ; /∗ Maximum r o t a t i o n we ’ re a l l ow ing the

s p a c e c r a f t to be in ∗/
}

\programVariables {
R a h ; /∗ Spacecra f t ’ s cur rent v e r t i c a l

a c c e l e r a t i o n ∗/
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R a r o t ; /∗ Spacecra f t ’ s cur rent r o t a t i o n a l
a c c e l e r a t i o n ∗/

R v r o t ; /∗ Spacecra f t ’ s cur rent r o t a t i o n a l
v e l o c i t y ∗/

R t ; /∗ Time ∗/
R rot ; /∗ Angle between the s p a c e c r a f t and the

y a x i s ; ∗/
}
\problem{
(

/∗ I n i t i a l c o n d i t i o n s ∗/
AV > 0 &
T > 0 &
MaxRot > 0 &

/∗ The maximum r o t a t i o n a l a c c e l e r a t i o n must be
enough to overcome the

∗ f o r c e that would be app l i ed in the most extreme
s i t u a t i o n , which

∗ occurs when the rocke t i s at i t ’ s maximum t i l t
and i s d e c e l e r a t i n g

∗ with the maximum thrus t ∗/
MaxARot >= AV ∗ MaxRot &

/∗ No i n i t i a l r o t a t i o n v e l o c i t y or a c c e l e r a t i o n −−
assumption ∗/

v r o t = 0 & a r o t = 0 &

/∗ I n i t i a l r o t a t i o n must be sa f e , cannot be
out s id e the bounds ∗/

0 <= rot & rot <= MaxRot
)
−>
\ [

(
/∗ Non d e t e r m i n i s t i c a l l y a s s i g n a value to the

a c c e l e r a t i o n so we
∗ can l a t e r combine t h i s with a s t r a t e g y f o r

descent ∗/
a h := ∗ ; ?(0 <= a h & a h <= AV) ;
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/∗ Choose appropr ia te r o t a t i o n a l a c c e l e r a t i o n
∗/

/∗ The a c c e l e r a t i o n chosen i s one to stop any
r o t a t i o n a l v e l o c i t y ∗/

a r o t := −a h ∗ ro t ;

/∗ Evolve the system ∗/
t :=0;
{

v rot ’ = a r o t + a h ∗ ro t &
rot ’ = v r o t &
t ’ = 1 &
t <= T

}
@invar iant (

/∗ D i f f e r e n t i a l i n v a r i a n t ∗/
t >=0

)
) ∗
@invar iant (

/∗ Loop i n v a r i a n t ∗/
/∗ The a c c e l e r a t i o n our c o n t r o l l e r a p p l i e s

cannot be g r e a t e r than
∗ the maximum amount i t i s a l lowed ∗/
−MaxARot <= a r o t & a r o t <= MaxARot &

/∗ Our c o n t r o l l e r i s des igned to not a l low any
r o t a t i o n l v e l o c i t y ∗/

v r o t = 0 &

/∗ The r o t a t i o n cannot l eave e i t h e r bound ∗/
0 <= rot & rot<= MaxRot

)
\ ]
(

/∗ Valid c o n t r o l s −− cannot be a c c e l e r a t i n g the
rocke t more than the

∗ maximum amount al lowed ∗/
−MaxARot <= a r o t & a r o t <= MaxARot &
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/∗ Sa fe ty cond i t i on ∗/
0 <= rot & rot<= MaxRot

) }

21


	Introduction
	Related Work
	The Physics of a Returning First Stage Rocket
	Controller Initial and Safety Conditions
	Controlled Descent Controller
	Balance Controller
	Conclusions and Future Work

