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1 Abstract

This paper is motivated by the age-old question:
why did the chicken cross the road? In this paper we
discuss the challenges of developing and modelling a
cyber-physical system to help a chicken (a robot or
rover) safely pass through a field (road) of moving
obstacles (cars) to reach a predetermined goal (the
other side of the road). In this project, we construct
hybrid dL programs that capture simplified versions
of this problem. We then prove the corresponding
safety condition that the chicken will not collide with
any cars regardless of whatever choices it may make,
and we also prove that in certain, realistic situa-
tions, the chicken will always have a way of crossing
the road without getting hit by any cars. Parts of
the proofs are automated by a theorem prover called
Keymaera, while the rest is proved with traditional
manual sequent proofs.

2 Introduction

The inspiration behind this project came from the
classic joke: Why did the chicken cross the road?
We took it a step further and began imagining what
it would look like if the chicken actually decided to
cross the road. Thinking about the question in terms
of a cyber-physical problem, the chicken could be
represented as a robot or rover that could control
it’s speed and direction. The road could be repre-
sented using as a set of lanes with cars moving in
one direction within each lane. As we explored this
idea, we realized that the system we were develop-
ing belonged to category of cyber-physical systems
classified by a single object moving through a field
of predictable (moving) obstacles. Real-world prob-
lems such as flying a drone in airspace crowded with
commercial planes and steering a spaceship through

an asteroid belt fall under this category of cyber-
physical problems. If we could solve the chicken
crossing the road problem, we could gain much in-
sight into solving the multitude of problems in this
genre. After considering this viewpoint, the ques-
tion of whether or not the chicken could cross the
road quickly developed into a very interesting and
challenging problem.

A hybrid program consists of a set of preconditions,
control decisions made by a controller (in this case,
the chicken), a physics model, and some property to
prove (usually, a safety property of the controller).
The program assumes the preconditions are met and
starts of with the controller. The controller, once it
has the chance, makes control decisions to assign val-
ues to key variables and passes control to the phys-
ical model. The physics model part utilizes differ-
ential equations to simulate the effect of real-world
physics on the controller and obstacles. The inter-
action between physics and logic usually can take
one of two forms: event-triggered or time triggered.
Event-triggered programs give control to the con-
troller based on some condition defined in terms of
existing program variables. This condition usually
marks some significant event happening in the phys-
ical world. Time-triggered programs involve a timer
ticking at a constant rate, and they give control to
the controller once the timer hits a certain thresh-
old. Both of these types of programs have evolution
domain constraints which enforce basic properties of
the model. Finally, the safety property at the end
must after any possible run of the program; this, in
a sense, shows that during all times of the program,
the controller will be in a safe position. We use se-
quent proof rules and a theorem prover called Key-
maera to prove that the safety property does indeed
after any possible run of the program.
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2.1 Related Work

As mentioned above, there are quite a few differ-
ent problems that can be classified in the same cat-
egory as ours. For example, one general question
for which we can gain insight on is: can an object
pass through a field of moving obstacles if it knows
the paths they will take? There are, of course, key
differences between such general questions and our
simplified question, which mostly involve the motion
of the object and obstacles.

One application in which we can see differences from
our problem is the problem of safely moving a drone
through a crowded airspace.

The most apparent difference lies in the fact that
the drone exists in a 3-dimensional space while our
chicken problem generally lies in 2 dimensions. This
difference will obviously affect the differential equa-
tions governing the motion of the drone and obsta-
cles as well as the complexity of collision calculation.

Another difference is the assumption one makes in
the drone problem. The drone will most likely be
moving at a very high speed, so it’s acceleration
will be a relatively small percentage of it’s current
speed, and thus would be less maneuverable with re-
gard to speed and raw acceleration. However, in our
simplification, we allow the chicken to make sharp,
instantaneous changes in velocity (including direc-
tion). This assumption is not unrealistic, since chick-
ens do travel at relatively low speeds, where sharp
turns and speed changes are feasible. This means
that the drone need more foresight and will consider
events that are much further in the future, while
the chicken would be able to get away with making
only short-term decisions (assuming, of course, the
chicken can react fast enough).

Yet another major difference to the complexity of
the obstacle paths and the existence of “safe zones”,
where a safe zone is any area of space that is not
occupied by an obstacle. Safe zones can be used
to “reset” the problem in a sense. Safe zones are
important for solving the global problem by essen-
tially inductively reasoning about the problem: we
can focus on traveling from one safe zone to the next,
turning a very large problem into many smaller ones.
Although the paths of the obstacles may be prede-
termined and the object can observe the spaces oc-
cupied by these paths and determine the location of
any safe zones in either problem, the complexity of

the paths allowed by the object (drone or chicken)
or obstacles (planes or cars) vary quite greatly. Fur-
ther, the drone problem will have a significant por-
tion of the airspace covered in safe zones, while on
the other hand, the chicken problem can have very
little. The shape, periodicity and the spacing of the
safe zones can also affect the complexity of calcula-
tion required to determine safety of the object.

Another simpler problem that is helpful to consider
is Lab 4b from the 15-424 curriculum. This involves
a robot traveling along a path while avoiding a mov-
ing obstacle. The robot knew the obstacle’s path and
could determine the obstacle’s location at all times.
The strategy the robot should adopt is to accelerate
if it is safe to do so or to brake if it detects that a
collision will occur if it keeps moving; however, the
moving obstacle had great freedom in its choices of
movement, which made it very difficult to develop a
strategy such that the robot will always have a safe
choice of movement. Our problem will involve a sim-
ilar type of control decision; but, by simplifying the
assumptions of the obstacles and the chicken (the
chicken is allowed to instantaneously change veloc-
ity and is only allowed to move at a constant velocity
or hover instantaneously in the air in place, and the
cars move only at a constant velocity), our problem
becomes more tractable.

3 The Model

In this section, we take a more in-depth look into
the specifics of solving our problem.

3.1 Cars

We modelled each car to be a 3-dimensional box hav-
ing with w, length l and height h. See the figure for
a graphical illustration. The position of the car is
taken to be the front, bottom, center of the car, and
is denoted by (cx, cy, cz), where generally cz = 0
since cars stay on the ground. We believe this to be
a reasonable simplication of a car, since in the real
world, the base of a car closely resembles a rectangle.

The model of our car initially started off as simple
as possible. We assumed the car to have zero length
or height, i.e., l = 0 and h = 0. This allowed us
to get the foundations of our program proven before
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we moved onto more complicated arithmetic. After-
wards, we considered cases where cars were allowed
to have non-zero length and height. During the pro-
cess of this generalization, we faced some challenges,
which is discussed in the section on the Distributed
Model.

Each car has initial positive velocity u. The velocity
is strictly in the positive x direction, which models
cars travelling on a one-direction road, so that the
differential equation modelling the position of a car
is simply c′x = u. In the general case, we do not
specify any restriction on the car’s velocity; how-
ever, later, we will discuss restriction on car velocity
to model speed limits, and other similar practical
restrictions to allow the chicken to cross the road.
This velocity needs to be bounded so that the cars
do not travel fast enough to eliminate any possibility
for the chicken to cross. This computation for these
restrictions will be discussed in the corresponding
sections.

We assumed the cars travel at a constant velocity.
We also believe that this assumption is not unreason-
able, since on long stretches of road, besides excep-
tional cases, cars tend to travel at a similar, constant
speed.

Each car is allowed to begin at any position as long
as it begins strictly inside the road. Specifically, we
enforced that 0 < cy < H. In practical cases, which
will be discussed in later sections, further restric-
tions may be placed on the cars that allow for gaps
between cars. Such additions model the real world,
since cars will travel at a safe distance apart from
other cars. Further, such gaps give the chicken op-
portunities to make progress towards the other side
of the road, which adds to the feasibility of the prob-
lem.

Further restrictions on the chicken are placed de-
pending on which overall model of the problem we
were considering, which will be discussed below.

3.2 The Chicken

The chicken will be represented as a point
(kx, ky, kz). This is justified by the fact that a
chicken is quite small compared to a car; also, more
accurate interpretations of the problem can easily be
accommodated by simply make the cars bigger to ac-
count for the size of the chicken. Furthermore, it al-

lows us to focus on the fundamental proof structure
without having to worry about messy calculations.

The chicken’s initial position will be (0, 0, 0), which
is simply an arbitrary point along the length of the
road. This starting point makes some of the proofs
of the hybrid programs easier, and does not detract
from the generality of the problem.

The chicken’s movement will vary based on the con-
straints we set. The complexity of our models and
proofs is largely based on the mobility of the chicken.
The most basic chicken movement is the ability to
accelerate forwards. This is the only option we al-
low in the event-based hybrid program where the
chicken waits for the right moment to sprint across.
We eventually made a simplification by ignoring the
chicken’s top speed, but the main idea was captured
nonetheless.

In the remaining time-triggered models, the chicken
is allowed to move in any direction in the Carte-
sian plane. Instead of accelerating to change veloc-
ities, we allow the chicken to make instantaneous
changes in velocity v. This assumption is not unreal-
istic, since chickens do travel at relatively low speeds,
where sharp turns and speed changes are feasible,
i.e., a chicken can accelerate from a relatively small
velocity to another relatively small velocity rather
quickly. In practical considerations later, we bound
the velocities that the chicken can move at to be low
enough that these instantaneous changes are more
in line with real-world scenarios.

Additionally, we give the chicken the option to in-
stantly jump into the air above the cars and hover
in place, setting all directional velocities to 0. This
is probably the least realistic assumption we make;
however it somewhat justified by the fact that other
birds (not necessarily chickens) can place themselves
in the air quite quickly. Finally, this option does not
make the problem of crossing the road any hard, be-
cause while the chicken can hover in safety, it cannot
make any progress towards the other side of the road,
i.e., safety does not imply efficiency, which is just as
important in this problem.

Finally, the time limit we use in our time-based con-
troller can be viewed as the reaction time of the
chicken.

Further restrictions on the cars are placed depend-
ing on which overall model of the problem we were
considering, which will be discussed below.
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3.3 The Problem Model

One of the first steps of the project was to deter-
mine how to transition the real world problem into
a logical one that we can prove. We required a way
to somehow represent an infinite stream of cars on a
road.

One simple way of representing this is to have a sin-
gle car repeatedly pass through the same stretch of
space. To accomplish this, we first considered hav-
ing circular tracks for each car. The rings would
stack around each other, so that the rings are con-
centric, and the chicken would begin in the center
and move outward. However, this approach leads to
uneven lengths for the tracks, which made it difficult
to capture a sense of a regular flow of traffic through
which the chicken must maneuver.

One way we attempted to fix this was to add an-
other dimension to the problem.Instead of stacking
the tracks around each other, we stacked them on
top of each other. The chicken would then move
upwards through the stack, as an elevator would as-
cend through floors. The tracks are now identical,
and each car is representing a uniform stream of cars.
This model is what we started out with; however we
quickly realized that the non-physical third dimen-
sion as well the complexity of circular motion made it
difficult to model our problem with successful proofs.

3.3.1 Teleportation Model

Eventually, we decided to keep and maintain a lin-
ear and overall 2-dimensional approach. One idea
we considered was to model the road as a finite rect-
angle in the xy-plane of length L and width H on
which cars travel in the positive x direction. We then
had cars “teleport back to the beginning (the left) of
the road once it reached the end. This would model
a consistent and fluid flow of traffic on a road with
only using one car per lane. With this, we were able
to use the Cartesian coordinate system to model the
problem. See Figure 2 for a graphical illustration of
this model.

Cars in this model were modelled to have zero
length. We did not specifically consider the scenario
where in real life the cars would travel in disjoint
lanes in the road because this was only a specific
instance of the more general situation which we con-
sidered instead. The cars can start anywhere within

the boundaries of the road. Furthermore, in this
version, it is okay for cars to overlap; we took this
general approach because restricting the position of
the cars only makes it safer for the chicken to cross
the road. In other words, proving the safety prop-
erty under a more general model will end up proving
safety for any specific instances of the model; hence,
in future models, we decided to adopt this mentality,
and then consider efficiency conditions for specific
instances of the models.

We modelled the chicken as described before. The
chicken will move the the positive y-direction to cross
the road. The chicken is also allowed a non-zero x-
component in its velocity. Of course, if the chicken
travels past the left end of the road, then it will
instantly teleport to the right end of the road; simi-
larly, if the chicken travels past the right end of the
road, then it will instantly teleport to the left end of
the road.

In this version, we left out the scenario where in real
life the cars would travel in disjoint lanes in the road
because this was only a specific instance of the more
general situation we considered. The cars can start
anywhere they want within this boundary, meaning
that our original lane separated case is still possible.
However, if we allow cars to overlap each other, we
have made a variety of different scenarios possible.
Proving the safety property under this model will
end up proving safety for all the configurations that
this model allows. We decided to adopt this model
initially and considered about how the original prob-
lem fit this model.

3.3.2 Distributed Model

After analyzing the Teleportation Model, we at-
tempted to generalize the definition of the car, by
giving it non-zero length. However, we quickly re-
alized that the arithmetic required to determine
whether the path of the chicken would cross the path
of a continually teleporting car of nonzero length was
extraordinary difficult with many edge cases. We
also desired to relax the assumption that cars travel
on a road according to a constant flow of traffic.
Finally, generalizing the Teleportation Model to ac-
commodate more than one car was quite forbidding
and impractical.

However, we noted that the logic required in path in-
tersection between the chicken and each car and the
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physics evolution of each car was essentially the same
for each car. Using this insight, in the end, we de-
cided to take a distributed approach, where we could
apply quantified differential logic QdL to model ev-
ery (potentially infinitely many) cars by creating a
sort (or type) C for cars and applying logic generally
to all objects of sort C. This sort of distributed ap-
proach works because the physics evolution and any
logic involving one car could applied in exactly the
same way for any other car.

Cars in this model are allowed to have non-zero
length and height, which is a big improvement over
the previous model. As before, we did not specifi-
cally consider the scenario where in real life the cars
would travel in disjoint lanes in the road and we al-
lowed cars to overlap because we considered the gen-
eral scenario instead. The cars can start anywhere
within the boundaries of the road.

We modelled the chicken as described before. How-
ever, when making a jump and hover move, we en-
sure that the chicken jumps to a height greater than
the height h of the cars.

In this version, we left out the scenario where in real
life the cars would travel in disjoint lanes in the road
because this was only a specific instance of the more
general situation we considered. The cars can start
anywhere they want within this boundary, meaning
that our original lane separated case is still possible.
However, if we allow cars to overlap each other, we
have made a variety of different scenarios possible.
Proving the safety property under this model will
end up proving safety for all the configurations that
this model allows.

4 Hybrid Programs and Safety
Proof Details

We present the major hybrid programs used to prove
the safety of the different models of our problem.

4.1 Teleportation Model

We introduce some abbreviations:

Q1 ≡ k = 0 ∧ v = 0

Q2 ≡ 0 < cy −
w

2
∧ cy +

w

2
< H ∧ cz = 0 ∧ ux > 0

A ≡ Q1 ∧Q2

B ≡ H > 0 ∧ w > 0 ∧ h ≥ 0 ∧ l = 0 ∧ T > 0

α ≡ kz := h+ 1; vx := 0; vy := 0; vz := 0

β1 ≡ kz := 0; vx := ∗; vy := ∗; vz := 0; ?(vy > 0)

Q3 ≡ kx < cx − l ∨ cx < kx ∨ t1 > T

β2 ≡ γ1; γ2; if vx = ux then ?Q3 else γ3; γ4; δ1; δ2 fi

β ≡ β1;β2

γ1 ≡ t1 :=
cy − w

2 − ky
vy

γ2 ≡ t2 :=
cy + w

2 − ky
vy

γ3 ≡ s1 :=
cx − kx
vx − ux

γ4 ≡ s2 :=
cx − l − kx
vx − ux

δ1 ≡ if s1 > s2 then q := s1; s1 := s2; s2 := q fi

δ2 ≡? (t2 < s1 ∨ s2 < t1 ∨ t1 > T ∨ s1 > T )

ε ≡ {c′x = ux,k
′ = v, t′ = 1, t ≤ T}

χ ≡ t := 0; (α ∪ β); ε

Then the hybrid program for the Teleportation
Model is µT ≡ χ∗. The safety condition for this
program is

S = ¬(0 ≤ cx − kx ≤ l ∧ |cy − ky| ≤
w

2
∧ 0 ≤ kz − cz ≤ h),

and the initial conditions are A ∧B.

Firstly, let us analyze this program. The chicken first
gets a choice. The chicken can choose α, in which
case, the chicken instantaneously jumps to a height
of h + 1 to avoid all cars, but does not get to make
progress by setting its velocity to 0.

On the other hand, the chicken can choose β. Choice
β works as follows. The chicken first settles back
onto the ground. Then it chooses velocities vx and
vy (its up component vz will be 0) such that in the
worst case scenario, if the chicken travels for time T ,
it will not collide with the car.
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Figure 2: Teleportation Model

Figure 3: Distributed Model
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Suppose vx = ux. Then that condition is given by
formula Q3, or

kx < cx − l ∨ cx < kx ∨ t1 > T,

where

t1 =
cy − w

2 − ky
vy

from the assignment in γ1 in β2. Note that t1 is equal
to the time it would take for the chicken to reach the
path in which the car is travelling if the chicken were
to continue travelling at velocity (vx, vy, vz) forever,
i.e., the time it takes for the chicken to reach the
interval

[
cy − w

2 , cy + w
2

]
. Note that t1 is uniquely

and well defined (t1 could be negative) because the
chicken is travelling at a constant velocity. If t1 > T ,
then there is no chance that the chicken will collide
with the car, since it will not even cross the path the
car is taking. Further, if kx < cx− l or cx < kx, then
the chicken can never collide with the car since its
x-velocity is the same as that of the car.

On the other hand, suppose vx 6= ux. Then we first
compute

t1 =
cy − w

2 − ky
vy

t2 =
cy + w

2 − ky
vy

s1 =
cx − kx
vx − ux

s2 =
cx − l − kx
vx − ux

.

Note as before t1 is equal to the time it takes for the
chicken to reach the path in which the car is trav-
elling if the chicken were to continue travelling at
velocity (vx, vy, vz) forever; similarly, t2 is the time
it takes for the chicken to enter and then exit the
path in which the car is travelling if the chicken were
to continue travelling at velocity (vx, vy, vz) forever,
i.e., then time it takes for the chicken to enter and
then exit the interval

[
cy − w

2 , cy + w
2

]
. Note that t1

and t2 are uniquely and well defined (they can be
negative) because the chicken is travelling at a con-
stant velocity. Since β1 is restricting the y-velocity
of the chicken to be strictly positive, it follows that
t1 < t2.

Also note that s1 is equal to the time it takes for
the front of the car to attain an x-value equal to
that of the chicken if the chicken were to continue

travelling at the given velocity forever; similarly, s2

is equal to the time it takes for the back of the car
to attain an x-value equal to that of the chicken if
the chicken were to continue travelling at the given
velocity. Note that s1 and s2 are unique and well de-
fined because the x-velocities of the chicken and car
are different and because the car and chicken travel
at constant velocities. Note that since we assumed
that l = 0, it follows that s1 = s2.

Then it is easy to see that that path of the chicken in-
tersects with the path of the car if and only if the in-
terval [t1, t2] intersects with the interval [s1, s2] (this
is still true without assuming that l = 0). Further-
more, it is just as easy to see that the chicken collides
with the car at all times in [t1, t2] ∩ [s1, s2]. Hence,
finally, the chicken only intersects with the car if any
times of intersection occur after T , or min s1, t1 > T .

The tricky part is that this is still true even when
cars are being teleported back to the beginning, be-
cause it is assumed that l = 0, which effectively
makes it so that no more than one car can exist in
the same path within a stretch of L units of road;
otherwise, we would also have to account for the in-
tersection of the parts of the cars that just teleported
(which model the incoming new car), which makes
the arithmetic significantly more complicated.

Thus, if vx 6= ux, the condition that ensures that the
chicken will not collide with the car in the next T
units of time is given by

t2 < s1 ∨ s2 < t1 ∨ t1 > T ∨ s1 > T

if s1 < s2 and

t2 < s2 ∨ s1 < t1 ∨ t1 > T ∨ s2 > T

otherwise.

Finally, in ε, we let physics evolve, allowing the
chicken and car to travel according to their differ-
ential equations c′x = ux (the car only travels hori-
zontally in the x-direction) and k′ = v′, respectively,
for a period time at most T .

With this intuition, we can prove the safety of the
program. Given initial conditions A ∧ B and safety
condition S, this amounts to proving the formula

A ∧B → [χ∗]S (1)

which logically states that given initial conditions A
and B (the chicken starts at the origin with zero ve-
locity and the car starts within the road with some
positive x-velocity ux), any run of the program χ∗
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will result in S being true (meaning the chicken does
not intersect with the car in 3-dimensional space).

The proof of formula 1 was automatically done
by Keymaera and is given in the Keymaera file
chick 1car.key.proof. Because of this, and since
the intuitive explanation of χ∗ basically gives a proof
sketch, instead of giving the full-fledged proof here,
I instead illustrate the direction of the proof and the
techniques used in the proof.

The program begins with the repetition rule ∗, for
which I use an invariant to apply the induction rule.
The invariant I use is I ≡ S ∧ B ∧ cz = 0, which
state the conditions on any constants used plus the
fact that the car stays on the ground and that the
chicken should never have collided with the car to
start off with. Going through the first parts of the
proof:

→l, ind

R
∗

A,B ` I = 0
ax

∗
I ` S X1

A ∧B → [χ∗]S

Continuing on with branch X1:

· · ·
...

I ` {t := 0}[α ∪ β][ε]I

From here on, straightforward applications of the ba-
sic sequent rules and ODE solves finishes the proof.

4.2 Distributed Model

The proof for the safety of the Distributed Model
utilized much rules in QdL such as quantified differ-
ential cuts and quantified differential invariants.

We use the same notation as before, but extend that
for the cars as follows. For each car i ∈ C (i.e., for
each object i of sort C), let c(i) denote the posi-
tion of i, and ux denote the x-velocity of i. For this
simplified version, we will also have that the width
w, length l and height h of every car is the same.
Further, to express that fact that the cars are all in
one lane, we will have cy(i) = cy(j) ∧ ux = ux(j)
for every i 6= j ∈ C. For simplicity, we will just
write ux for the velocity of any one car. Finally,
there is some gap between the cars, which we ex-
press by cx(i) − cx(j) < −l ∨ cx(i) − cx(j) > l for
cars i 6= j ∈ C.

Now the quantified hybrid program for the dis-
tributed model is given by χ∗:

A ≡ k = 0 ∧ v = 0

B1 ≡ ∀i : C. 0 < cy(i)− w

2
∧ cy(i) +

w

2
< H

B2 ≡ ∀i : C. cz(i) = 0

B ≡ B1 ∧B2 ∧ ux > 0

C ≡ H > 0 ∧ w > 0 ∧ h ≥ 0 ∧ l ≥ 0 ∧ T > 0

α ≡ kz := h+ 1; vx := 0; vy := 0; vz := 0

β1 ≡ kz := 0; vx := ∗; vy := ∗; vz := 0; ?(vy > 0)

Q1 ≡ ∀i : C. kx < cx(i)− l ∨ cx(i) < kx ∨ t1(i) > T

β2 ≡ γ1; γ2; if vx = ux then ?Q1 else γ3; γ4; δ1; δ2 fi

β ≡ β1;β2

γ1 ≡ ∀i : C. t1(i) :=
cy(i)− w

2 − ky
vy

γ2 ≡ ∀i : C. t2(i) :=
cy(i) + w

2 − ky
vy

γ3 ≡ ∀i : C. s1(i) :=
cx(i)− kx
vx − ux

γ4 ≡ ∀i : C. s2(i) :=
cx(i)− l − kx
vx − ux

δ1 ≡? (∀i : C. s1(i) ≤ s2(i)→ (Q2(i)))

Q2(i) ≡ t2(i) < s1(i) ∨ s2(i) < t1(i) ∨ t1(i) > T ∨ s1(i) > T

Q3(i) ≡ t2(i) < s2(i) ∨ s1(i) < t1(i) ∨ t1(i) > T ∨ s2(i) > T

δ2 ≡? (∀i : C. s1(i) > s2(i)→ (Q3(i)))

ε ≡ ∀i : C. {cx(i)′ = ux,k
′ = v, t′ = 1, t ≤ T}

χ ≡ t := 0; (α ∪ β); ε

Then the hybrid program for the Distributed Model
is µD ≡ χ∗. The safety condition for this program is

S = ∀i : C(¬(0 ≤ cx(i)− kx ≤ l

∧ |cy(i)− ky| ≤
w

2
∧ 0 ≤ kz − cz(i) ≤ h)),

and the initial conditions are A ∧B ∧ C.

The analysis is just the same as the Teleportation
Model, except that we no longer have to account for
teleportation of cars in calculating path intersections
between the chicken and the cars, which makes the
overall general arithmetic much simpler. However,
the distributed nature still gives the power of the
ability to model many cars at once, because the cars
all behave very similarly. Since the overall analysis
is the same, we omit the intuitive analysis.

With the same intuition as before, we can prove
the safety of the program. Given initial conditions
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A ∧ B ∧ C and safety condition S, this amounts to
proving the formula

A ∧B ∧ C → [χ∗]S (2)

which logically states that given initial conditions
A and B and C (the chicken starts at the origin
with zero velocity and the car starts within the road
with some positive x-velocity ux), any run of the
program χ∗ will result in S being true (meaning
the chicken does not intersect with the car in 3-
dimensional space).

The proof of formula 1 was automatically done
by Keymaera and is given in the Keymaera file
chick 1lane.key.proof. As before, since the intu-
itive explanation of χ∗ basically gives a proof sketch,
instead of giving the full-fledged proof here, I in-
stead illustrate the direction of the proof and the
techniques used in the proof.

One of the biggest new techniques that was uti-
lized in this proof was the quantified differential
cut (QDC) and the quantified differential invariant
(QDI). These rules are really no different from the
normal differential cut and the normal differential in-
variant, except for the fact that properties that are
being inducted on or cut in can apply to all objects
of the same sort, which makes it a powerful tool for
our proof.

As before, rhe program begins with the repetition
rule ∗, for which I use an invariant to apply the in-
duction rule. The invariant I use is I ≡ S ∧ B ∧ C,
which state the conditions on any constants used
plus the fact that all cars stay on the ground and
that the chicken should not be colliding with any
car to start off with. Going through the first parts
of the proof:

→l, ind

R
∗

A,B ` I = 0
ax

∗
I ` S Y1

A ∧B → [χ∗]S

This time, I will partially complete the sequent proof
in order to demonstrate applications of some of the
QdL sequent rules.

Let is continue with branch Y1. Let X ′ = Θ denote
the differential equations cx(i)′ = ux,k

′ = v, t′ = 1.
Then we apply a quantified differential cut, cutting

in C.

[∪], [:=]

QDC
Y2 Y3

I ` {t := 0;α}[∀i : C. {X ′ = Θ, t ≤ T ]I
...

I ` {t := 0}[α ∪ β][∀i : C. {X ′ = Θ, t ≤ T ]I

From here on, straightforward applications of the ba-
sic sequent rules and ODE solves finishes the proof.
Continuing on with branch Y2: Applying quantified
differential invariant here gives

QDI

ax
∗

I ` C
(′), sub

R
∗

` 0 = 0 ≥ 0

` (C ′)Θ
X′

I ` {t := 0}[α ∪ β][∀i : C. {X ′ = Θ, t ≤ T ]C

Continuing on with branch Y3: Doing a similar se-
quence of steps will close this branch as well. By
first applying a quantified differential cut with cut
formula K and then applying quantified differential
invariant, where

K ≡ ∀i : C(cx(i) = cx0(i) + u ∗ t)
∧ ∀i : C(cy(i) = cy0(i))

∧ ∀i : C(cz(i) = 0)

∧ kx = kx0
+ vx ∗ t

∧ ky = ky0
+ vy ∗ t

∧ kz = h+ 1 ∧ t >= 0

and where cx0
, cy0

, kx0
and ky0

are auxiliary variables
that store the values of the positions of the chicken
and the car before the differential equations evolve,
this branch can close after basic sequent proof rules
and quantifier elimination.

For details, the reader may inspect the proof file
chick 1lane.key.proof for the corresponding Key-
maera file chick 1lane.key.

5 Hybrid Programs and Exis-
tence Proofs

In the previous sections, we were able to successfully
prove that in both the simpler Teleportation Model
and the more general Distributed Model, the chicken
would always be safe. However, it remains to show
that in either model, there does exist a run of the hy-
brid program such that the chicken can indeed make

9



it to the other side of the road. This is crucial since
it will show that not only the choices the chicken has
are safe, but that it is possible for it to safely cross
the road as well.

Because the Distributed Model is more general, we
only prove existence for the Distributed Model and
leave it to the reader to convice himself that solu-
tions do exist for the Teleportation Model as well.

Due to the length of the proofs, the proofs and dis-
cussions following the proofs have been relegated to
the Appendices.

6 Conclusion

The original intention of this project was to model
the system of a chicken crossing a road as realistically
as possible in order to prove that the chicken could
cross the road. The ideal program would have been
a time-triggered controller that allowed the chicken
to choose a bounded acceleration in any direction.
There would be preconditions set up on the initial
velocity and position of the cars to always guarantee
a path given the reaction time and acceleration capa-
bilities of the chicken. Fortunately, we were able to
prove a simplified version for any number cars with
the help of quantified differential logic.

What we ended up with was a time-triggered con-
troller that allowed the chicken to choose a velocity
in any direction, assuming instantaneous accelera-
tion. We had an event-based controller that used
proper preconditions to guarantee safety, but we
were forced to include a shortcut in the form of a
slightly unrealistic action to guarantee safety in a
time-based controller. Initially, we could only prove
our programs for cases where there were at most 2
cars. The main reason for our shortcomings was due
to the complexity of our initial goals. We had trou-
ble imaging what type of preconditions were neces-
sary to guarantee a safe option at each time-trigger.
The few ideas we had soon failed as we tried convert
them into mathematical formulas. We did not use
acceleration in the chicken’s motion because of the

drastic increase in complexity it introduced. Adding
acceleration into the mix would introduce another
layer to our differential equations and increase the
mathematical complexity of all existing formulas by
a great deal. Furthermore, we strongly believe that
in the case of a chicken moving with relatively slow
speed, instantaneous changes in velocity is not an
overly inaccurate estimate of the real world.

Coming up with the distributed model using QdL
was a goal we had not planned on achieving. We
imagined that we could use our teleportation tactic
to simulate an infinite stream of cars of any shape.
However, as we began trying to prove programs with
longer cars, we realized that prior methods would no
longer work, and simply adding another car to the
picture to simulate multiple lanes took exponential
amount of effort to prove. We had to turn to other
methods, and the idea of QdL fit perfectly. Hav-
ing the ability to represent a car as a class allowed
us to simulate the infinite stream of cars by proving
general properties of that class.

The most important thing we learned while working
on this project was how to convert a real world cyber
physical system into a dL hybrid program by mak-
ing the right simplifications. We were able to make
progress only if we took the time to brainstorm and
design the most complete models. This experience
will prepare us for the next time we want to model
real world problems.

Each party member did comparable amounts of
work.
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ṽ x
;v

y
:=
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ṽ x
;v

y
:=
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ṽ x
−
u
x

) ∧{
ζ 6
}〈
q

:=
s 1

;s
1

:=
s 2

;s
2

:=
q〉
〈δ

2
〉〈
ε〉
p
(k
,c

)

Z
4
≡
∃ṽ
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,ṽ

y
.
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ṽ y
>

0
∧
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ṽ x
6=
u
x
∧
{ζ

6
}〈
δ 1
〉〈
δ 2
〉〈
ε〉
p
(k
,{
i
∈
C

:
c
(i

)}
)

∃ṽ
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,ṽ

y
,0
≤
r
≤
T
.
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