

Robots Playing Catch

Brandon Tolsch

- Two robots throwing a ball through the air
- Free to move around on the ground
- Pass back and forth forever
- Never drop the ball

- Robots: modeled as circles
 - Both collision and catching boundary
 - Constant acceleration
 - In plane z = 0
- Ball: modeled as point
 - Travels without air resistance
 - Should not go below z = 0

Robots Playing Catch

Safety

- Ball never goes below z = 0
- No collisions

Efficiency

- Minimal power use
- Target location optimality
- Application dependent

Liveness

- One doesn't hold ball forever
- Robots don't stand still
- Also application dependent

$$b_z(t) = 0 \rightarrow (IR_A(t) \vee IR_B(t))$$

$$(A_x - B_x)^2 + (A_y - B_y)^2 \ge (2r)^2$$

- Simplifications and Stepping Stones
 - Cannon adjustments
 - Vertical angle, rotation, power
 - Robot motion
 - Stationary, 1D, 2D linear, 2D free
 - Motion timing
 - Motion before pass, after pass

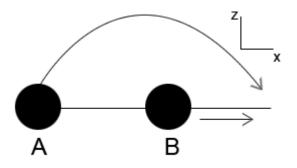
Robots Playing Catch

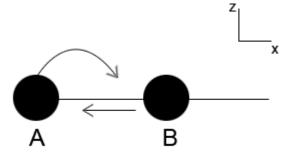
- Stationary case already poses problem
 - Evolution domain constraint

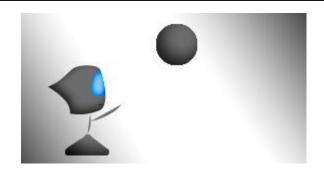
$$(IR_A(t) \rightarrow b_z(t) \ge 0) \land (IR_B(t) \rightarrow b_z(t) \ge 0)$$

Solution

$$b_z(t) = v_0 \sin(\theta)t - \frac{1}{2}gt^2$$


Condition to restrict solution


$$\forall t(t > t_c \to \exists s(s \le t \land \neg((IR_A(s) \to b_z(s) \ge 0) \land (IR_B(s) \to b_z(s) \ge 0))))$$


Solution: change model

Robots Playing Catch

One-dimensional motion

- Domain constraints can cause trouble
- One-dimensional passing is safe
- Efficiency is application dependent