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Abstract

Our project focuses on keeping a follower robot safe
in the presence of obstacles by having it stay close
to a leader robot that stays away from the obstacles.
We precisely define the problem and possible appli-
cations. We also discuss related work that has been
done previously. We create a number of models
with various assumptions, some of which we were
able to verify and some of which are quite difficult
to work with. We outline the proofs for the models
we verified, and we discuss the inherent difficulties
with the models that we did not provide control de-
cisions or verification for. Finally, we discuss fur-
ther applications of our work.

1 Introduction

The study of multi-robot systems often becomes
difficult and complicated when many robots and
environmental factors come into play. Yet there
is much to be gained from having multiple robots
be able to interact and work together rather than
having them be limited to independent control and
decision-making. The specific application of one
robot traveling behind another is commonly known
as follow the leader. There are several presenta-
tions and papers that mention this application within
the context of multi-robot cyber-physical systems,
such as those given below. Some commonly de-
sired properties of such systems involve following
another robot closely and avoiding collisions.

1.1 Related work

The sophistication and performance of autonomous
multi-robot systems continues to develop [4]. Cur-
rent state-of-the-art robots employ various means
of working together, such as tracking one another,
communicating state data, or executing a global
plan that involves multiple agents performing re-
spective tasks or acting collectively. Flocking, the
coordinated movements of multiple agents while
avoiding collisions, is a relevant topic to our project
and will be discussed more at the end of this paper.

1.2 Problem space

We plan to contribute to this space by proposing
models and verifying safety for two-robot systems
with enforced minimum and maximum follow dis-
tances. This contributes to the study of flocking by
isolating the challenges associated with a single fol-
lower in a two-robot systems to avoid collisions. We
also explore the variety of assumptions that can be
made to simplify the problem space and their affect
on the ease with which the safety properties can be
verified. We chose this topic and area because of
the wide variety of useful applications and exten-
sions this model supports, as well as its relevane to
current research.

2 System description

At a high level, our project addresses trying to keep
a follower robot safe in the presence of obstacles
by staying close to a leader robot. As long as the
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leader can stay sufficiently far away from the ob-
stacles, they can be stationary, moving, or even ad-
versarially moving. Our work focused on keeping
the follower safe assuming there was already a safe
controller for the leader that stayed far from obsta-
cles. The We looked specifically at the case of a sin-
gle leader and follower, but extensions of our work
could deal with more complex cases.

2.1 Scenarios

The scenario that we are considering involves two
robots, a leader robot and a follower robot. We as-
sume the robots are traveling in the 2D plane, and
that there may be obstacles they need to avoid. We
restrict the velocity and acceleration of the leader
in our models to make its motion reasonably pre-
dictable by the follower, so that it will not stray too
far away from the leader between control decisions.

2.2 Applications

We consider several possible applications and sce-
narios in which our models and safety properties
would be useful.

Robots traveling in a group. If robots need to
travel together, or one robot wants to escort an-
other, the following distance properties would
ensure smooth travel for both robots.

Path following. By maintaining the following dis-
tance properties, a second robot can roughly
follow the leader along a path without sensing
the path directly.

Robots with differing capabilities. Our model is
ideal when the robots have different sensors or
characteristics. For example, the leader robot
can sense obstacles on behalf of the follower.
The leader need not receive updates of the fol-
lower’s status. The follower can execute its
specialized purpose without regard for plan-
ning paths or avoiding obstacles.

Search and rescue. In light of the previous point,
the model works well for robot pairs perform-
ing search and rescue applications, such as a
scout robot and a rescuer robot.

Wireless inter-robot communication. When two
robots are communicating wirelessly over a
limited-range connection, it would be desirable
to ensure a maximum following distance to
avoid losing the connection and thus stranding
one of the robots. This model is ideal for en-
suring this property, while avoiding collisions.
The wireless communication is also helpful for
transmitting state data in real-time from the
leader to the follower so the follower can make
intelligent control decisions.

Robots tethered together. If one robot is tied or
tethered to another robot via a flexible ca-
ble, the following distance properties from our
model would be helpful and necessary to en-
sure safety. In this case, the minimum follow-
ing distance safety property would guarantee
that the two robots do not collide and could
help prevent tangling of the cord. The maxi-
mum following distance safety property would
help guarantee that the cord will not stretch or
break, and that the cable’s attachment points
to each robot will not be damaged. This con-
cept is not farfetched, as NASA has already de-
veloped a robot with two independently mobile
components connected by a tether [1].

3 Modeling

Our models include a leader robot and a follower
robot moving in the plane. We assume that we
can draw a circle around each robot that contains
its perimeter, so that if no obstacle or other robot
interesects this circle then the robot is not collid-
ing with another object. We represent the robots as
points, and require that the distance between them
is at least the sum of the radii of their bounding
circles. We could easily inflate these radii as well
to account for and avoid circular obstacles in the
plane. Our various models have different restric-
tions on the movement of the two robots, which will
be described more detail as each model is discussed.

3.1 Desired safety properties

The two important safety proporties for our models
are that the follower does not collide with the leader,
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but yet it stays close enough to it. We model this
by setting constants min f d and max f d (minimum
follow distance and maximum follow distance) rep-
resenting the minimum and maximum distances re-
spectively that we allow the follower to be from the
leader. If the radii of the bounding circles of the
follower and the leader are radF and radL respec-
tively, we would want min f d > radF +radL to pre-
vent collisions. If there is a controller for the leader
that ensures that its center is at least bu f f erL away
from any point on an obstacle, then the closest any
point on the follower can get to any point on an ob-
stacle is bu f f erL−max f d− radF . As long as

bu f f erL > max f d + radF,

then the follower cannot intersect an obstacle if it
succesfully stays within max f d of the leader. See
Figure 1.

What makes this elegant is that the follower stays
safe regardless of how the leader is able to stay away
from the obstacles and what they are: there could
be a lot of obstacles, and they could be moving.
They could represent hazardous areas, other robots
to avoid, or even missiles. As long as the leader can
stay sufficiently far away, our work provides a way
for the follower to stay safe.

3.2 Model restrictions

There are some restrictions that apply generally to
all of our models. We assume that the follower has
a time-trigger; i.e. it will make a control decision
and then stick with that decision until its timer goes
off again and tells it to make new observations and
choose a new decision. The maximum amount of
time between these updates is T . We also require the
follower to be able to observe the leader’s position
(and, depending on the model, perhaps velocity) at
each update time.

Additionally, we impose a maximum speed on
the leader robot: this restriction allows us to bound
how far away the robot will move in a certain
amount of time from where we last observe it. In
our most complete model, we also require that the
leader cannot turn very sharply in the space of one
time-triggered interval, to ensure that its behavior is
reasonably predictable to the follower.

If we were to add obstacles to any of our models,
we would of course require that the leader’s center
stays at least bu f f erL away from any points on ob-
stacles, where bu f f erL > max f d + radF , as men-
tioned in the previous section. This ensures that nei-
ther the leader nor the follower will collide with an
obstacle.

3.3 Model motivations

There are many useful properties of our model when
the two safety properties are verified. These moti-
vated our design of the model and our selection of
the properties. The properties are simple to under-
stand and express, but relatively versatile in prac-
tice.

Collision avoidance. We can apply the minimum
following distance safety property to ensure
the two robots do not collide with each other.
Specifically, we can choose values of rl and r f

such that the leader robot fits within a planar
bounding circle of radius rl and the follower
within a circle of radius r f . Then we can en-
force a minimum following distance value at
least the sum of the radii, rl + r f , which guar-
antees that the leader and the follower never
collide with each other.

Obstacle avoidance. The maximum following dis-
tance property ensures that the follower stays
close to the leader while the pair travels. If the
leader uses a controller that maintains an ap-
propriate minimum clearance away from ob-
stacles, this would guarantee the safety of the
follower from colliding with the obstacle as
well. In a sense, the leader could protect the
follower from obstacles without knowing any-
thing about the follower’s state over time.

Few planning and sensing requirements. Only
the leader robot needs to sense obstacles
or plan the route to travel, and the follower
can benefit from this sensing and planning
indirectly via our model.

No shepherding. In the model we present, the
leader robot does not need to make many ad-
justments in order to be followed, nor does it
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Figure 1: If the center of the follower stays between the two circles, it will stay safe.

need to worry about the state of the follower
over time. Its behavior can be identical and
reasonable whether or not it is being followed
by a follower robot. This is a significant advan-
tage for simplicity and elegance of the model,
and also is helpful for further extensions of the
model.

Robot teamwork. A number of robot “teamwork”
scenarios motivate the maximum following
distance, since robots that are close together
can often collaborate more effectively than
when they are far apart1.

3.4 Background work

Some of the lab assignements we worked on in this
class provided basic stepping stones for the work
presented here. Lab 2 was about two cars moving in
the positive x-direction of the x-axis, which is like
our complete 1D model. However, even though the
cars were not allowed to crash (which is like our
minimum follow distance), there was no strict effi-
cieny requirement corresponding to our maximum
follow distance, which made control significantly
easier.

Additionally, the Lab 4 controller would be a

great starting point for the controller of a leader
robot to be used by our system. This controller had
the same type of motion as the leader in our inter-
medate and complete models, and could provably
stay an arbitrary distance away from a single circu-
lar obstacle.

4 Simple models

To start off with something concrete that was easy
to understand and verify, we created a couple of
very simple models. The two models are essentially
the same, although their assumptions are marginally
different, and they have different controller imple-
mentations and associated proofs.

In the first model, we assume that the leader has
a constant velocity, and that the follower can instan-
teously change its velocity. Whenever the follower
makes a control decision, it sets is velocity to the
leaders velocity. (Of course, this will not make a
difference except for the initial control decision if
it is not initially moving in the same direction as
the leader). This way, the relative velocity between
the follower and the leader is always 0. As long as
the distance between the follower and the leader is
initially between min f d and max f d, this will ob-
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viously continue to hold, and so the model is safe.
See Figure 2. This model was in fact so simple that
it proved automatically in Keymaera with no inter-
active steps.

In our second model, we removed the assump-
tion that the follower can instantaneously change its
velocity, and replaced it with the assumption that
it starts with the same initial velocity as the leader.
This version would not automatically prove in Key-
maera, but by creating a loop invariant using several
of the initial conditions, it was easily verifiable.

5 Intermediate model

Our intermediate model is a stepping stone be-
tween our very simple, easy-to-verify models and
our complete and unrestrictive but very-difficult-to-
verify model. We make some assumptions that are
not necessarily realistic, but which are designed to
make the model reasonable to prove. By making
these assumptions, we are able to prove safety, and
the idea is that the techniques used in this proof
might aid us in a more complicated proof that makes
more realistic assumptions. Even with these as-
sumptions, the proof of this model is fairly involved:
it is more complicated than the proofs for any of the
labs previously in this course.

5.1 Description

The intermediate model assumes that there is one
leader robot and one follower robot in a 2D plane.
For simplicity we assume no obstacles: however, if
the leader’s controller were replaced with one which
could guarantee that it stayed a certain buffer dis-
tance away from all obstacles, then the follower
would be safe because it stays close to the leader.
(We would need the buffer distance to be at least the
maximum allowed distance from the leader to the
follower, plus corrections for the radii of the obsta-
cle and the robots.)

We use a time-triggered model. Note that we are
using the same time-trigger for the leader and fol-
lower, which while not realistic is not concerning,
for reasons described in the next section.

The leader robot moves in circular arcs, so that
its velocity is continuous. It has a maximum speed

of (max f d−min f d)/T , which we enforce as a do-
main constraint in the differential equation for sim-
plicity but which could be easily enforced by not
allowing any acceleration that could allow the robot
to exceed this speed. The leader may choose any
acceleration from −B to A. However, we also as-
sume that the leader may only move in a direction
such that its y-velocity is nonnegative. The follower
robot’s motion is more restricted: at the start of ev-
ery time-triggered interval, it is allowed to instanta-
neously adjust its speed and direction.

5.2 Limitations and possible solutions

The most unrealistic assumption in this model is
that the follower can instantaneously adjust its ve-
locity. As mentioned before, we made this assump-
tion to make the problem more tractable so that we
could better understand the type of arguments that
might be necessary for a more complicated model.
However, if the follower could adjust its velocity
very quickly this might not be too unrealistic (e.g. if
the robots are moving very slowly it could make the
required velocity change very quickly). Addition-
ally, even if it were not appropriate to assume that
the follower could change velocity instantaneously,
it might not be difficult to adjust this model to one
where the leader and follower move in synchronized
bursts, where they are stopped at the beginning and
end of each burst. During the time between the
bursts, the follower could adjust its direction to the
desired direction for the next burst, and it would not
have to instanteously change speed either.

An additional limitation is that the leader is only
allowed to move in a direction such that its y-
velocity is nonnegative. The problem that this is de-
signed to address is that if the leader can turn around
during the time-triggered interval, it could conceiv-
ably chase the follower. Then the follower would
need a strategy that would guarantee that it is not
too close to the leader, while at the same time not
also being too far from the leader if it runs away
from the follower, since the follower has no knowl-
edge of the leader’s current location during the in-
terval. Ideally, as André suggested, we would rather
assume that the leader may only make wide turns,
which is a more realistic way of ensuring that the
follower does not need to be afraid of moving to-
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Figure 2: Motion in our simple models, where the follower and leader have the same velocity

wards the leader. In fact, if T and the minimum
turn radius minr were related in such a way that the
leader could turn by say at most 90◦ during an in-
terval of length T , then we could probably modify
the follower’s current control decision without too
much trouble so that it would still be safe in this
model. If the leader can turn at most 90◦, then the
follower does not need to be afraid of moving to-
wards a location just behind where it was at the start
of the interval. However, in the interests of time
and simplicity, we chose to keep the nonnegative
y-velocity assumption for this model, because the
proof was already fairly involved and we wanted to
be sure our assumptions were simple enough for us
to make reasonable progress.

Another simplication is that we allow both the
leader and the follower to make a decision at the
start of every time-triggered interval. This is not
a realistic assumption unless the robots tried to
synchronized their decision-making: if the leader’s
timer goes off and tells it to adjust its steering and
acceleration, the follower would not also know to
adjust its velocity at the same time. However, this
is not a major concern because our proof does not
rely on the fact that the leader does not change di-
rection or acceleration during the time-triggered in-
terval: we only need its maximum velocity to be
restricted. If desired we could have separate time-
triggers for the leader and the follower, which would
greatly complicate the .key file and the proof, but
without significantly altering its overall flow.

5.3 Description of follower’s behavior

The follower must make a decision at the begin-
ning of each time-triggered interval. Let (Fx,Fy)
and (Lx,Ly) be the locations of the follower and
leader respectively at the time it makes the control

decision. The follower will adjust its velocity so
that it moves at a constant velocity from (Fx,Fy) to
(Lx,Ly−min f d), at a speed such that it will reach
(Lx,Ly−min f d) exactly at time T is it is allowed
to continue for the maximum allowed time T before
its next control decision. See Figure 3

Essentially, the follower is chasing the point that
is min f d below the point where it last observed
the leader. By chasing the point min f d below the
leader’s last observed location instead of the last ob-
served location itself, the follower avoids colliding
with the leader. Since the leader cannot have a neg-
ative y-velocity, if we move towards this point then
we cannot be closer than min f d to the leader’s loca-
tion at any time.

Intuitively, this decision also ensures we stay
close enough to the leader. To analayze this, con-
sider the point p = (lx, ly−min f d) which is always
min f d below the leader’s current location. We want
to stay within max f d −min f d of this point. We
know inductively that this holds at the start of the
loop iteration. It’s reasonable that this will continue
to hold during the continuous evolution because we
move directly towards p so that we reach it after
time T , and p cannot move faster than the leader’s
maximum velocity (max f d−min f d)/T . For a rig-
orous proof, see the next section.

5.4 Proof sketch

In this section we present a sketch of the proof of
safety for this model. Note that we successfully ver-
ified most of this proof in Keymaera, except for one
last case which is not too hard to reason through but
would be tedious to verify. The first condition we
wish to show is

(lx− f x)2 +(ly− f y)2 ≥ min f d2.
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Figure 3: The follower’s control decision in the intermediate model

We will instead prove the stronger statement f y ≤
ly−min f d. We can show this with the loop invari-
ant

A > 0 & B > 0 & T > 0 & minr > 0 &

min f d > 0 & max f d > min f d & ldy≥ 0 & lv

≥ 0 & ldx2 + ldy2 = 1 & ly− f y≥ min f d.

All but the last two of these conditions are triv-
ial, since they involve only constants or they are
guaranteed by the domain constraint of the differ-
ential equation. We can show ldx2 + ldy2 = 1 eas-
ily by the Differential Invariant proof rule. We
would like to use a differential invariant to show
ly− f y ≥ min f d, but unfortunately the left-hand
side might be decreasing and the left-hand side is
constant. However, we know that the relationship
is true because in the worst case, ly is constant
(otherwise it is increasing), and f y is increasing at
a constant rate until it reaches ly−min f d at time
T . Therefore, f y + (T − t) · f vy is is nonincreas-
ing, so f y + (T − t) · f vy ≤ ly−min f d is a valid
differential invariant that implies ly− f y ≥ min f d.
This means we use f y+(T − t) · f vy ≤ ly−min f d
as a differential cut to prove ly− f y ≥ min f d, and
f y+(T − t) · f vy ≤ ly−min f d is a differential in-
variant.

The other condition we wish to show is

(lx− f x)2 +(ly− f y)2 ≤ max f d2.

As for the previous condition, we will instead show
something stronger:

(lx− f x)2+(ly−min f d− f y)2≤ (max f d−min f d)2.

(This can be seen to be stronger by algebra, or by
noting that the distance from ( f x, f y) to (lx, ly−
min f d) is at most the distance from ( f x, f y) to
(lx, ly−min f d) plus min f d.) Also as with the pre-
vious condition, we will use a loop invariant:

A > 0 & B > 0 & T > 0 & minr > 0 &

min f d > 0 & max f d > min f d & ldy≥ 0 &

lv≥ 0 & ldx2 + ldy2 = 1 &

(lx− f x)2 +(ly−min f d− f y)2 ≤ (max f d−min f d)2.

Again, all but the last two of these are trivial, and
ldx2 + ldy2 = 1 is just a differential invariant.

We have shown these steps in the proof file for
our lab. The remaining part of the box split left to
show,

(lx− f x)2+(ly−min f d− f y)2≤ (max f d−min f d)2,

can be argued to hold without too much effort, but
a formal proof would be very tedious. We want to
bound the distance from ( f x, f y) to (lx, ly−min f d).
Let (Lx,Ly) be the position of the leader at the start
of this iteration of the loop. We will bound the
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desired distance by the sum of the distance from
( f x, f y) to (Lx,Ly−min f d) and the distance from
(Lx,Ly−min f d) to (lx, ly−min f d).

First, let us examine the distance from ( f x, f y)
to (Lx,Ly−min f d). The second point is constant,
and the first one is changing at a constant rate
of ((Lx− f x)/T,(Ly− f y−min f d)/T ). However,
this means that the first point is moving straight to-
wards the second point at a constant rate, and will
reach it at time T . Therefore, if dt is the distance
from ( f x, f y) to (Lx,Ly−min f d) at time t, then

dt ≤ d0

(
1− t

T

)
≤ (max f d−min f d)

(
1− t

T

)
,

since at the start of the loop the distance is at most
max f d−min f d.

The second distance to analyze is the distance
form (Lx,Ly−min f d) to (lx, ly−min f d). The first
point is constant, and this distance is initially 0. The
second point moves with rate lv, but by the domain
constraint, lv≤ (max f d−min f d)/T . Therefore, at
time t this distance is at most (max f d−min f d) · t

T .
Combining, the sum of the distance from ( f x, f y)

to (Lx,Ly−min f d) and the distance from (Lx,Ly−
min f d) to (lx, ly−min f d) is at most

(max f d−min f d)
(

1− t
T

)
+(max f d−min f d) · t

T
= max f d−min f d,

so the distance from ( f x, f y) to (lx, ly−min f d) is
at most max f d−min f d for all t ∈ [0,T ], as desired.

If we wanted to prove this in Keymaera, one ap-
proach would be to introduce new variables Lx, Ly,
d0, d1, and d2. Before running the differential
equation, (Lx,Ly) would be assigned the value of
(lx, ly), d1 would be assigned d (the distance from
( f x, f y) to (lx, ly−min f d)), and d2 would be as-
signed 0. We would continously update d1 and d2
in the differential equation so that they represent the
two respective distances we analyzed in the proof
sketch above. We would assign d0 to be the dis-
tance between ( f x, f y) and (Lx,Ly−min f d) at the
start of the iteration but would not update it during
the differential equation.

To use these variables, we would apply the gen-
eralization

d ≤ d1+d2 & d1+d2≤ max f d−min f d,

which is strong enough to show (lx− f x)2 +(ly−
min f d− f y)2 ≤ (max f d−min f d)2 because at all
times we have d ≥ 0 and d2 = (lx− f x)2 + (ly−
f y−min f d)2. To show d ≤ d1+ d2, we just need
the triangle inequality, so this part could probably
just be done using Quantifer Elimination, cutting
in helpful intermediate steps if necessary. To show
d1+d2≤ max f d−min f d, we would generalize to

d1≤ (max f d−min f d)
(

1− t
T

)
&

d2≤ (max f d−min f d) · t
T
.

The second inequality is very easy to prove: at the
start of the differential equation, d2 is 0, and its rate
of change is at most (max f d−min f d)/T . To show
the first inequality, we can prove

d1 = d0
(

1− t
T

)
.

We could show this using a differential invariant:
both sides have the same constant derivative. This
equality would then generalize to

d1≤ (max f d−min f d)(1− t/T ),

as desired.

6 Complete 1D model

Our complete 1D model is designed to be a very un-
restrictive model of follower-leader behavior when
movement is restricted to a line. It seems that find-
ing a safe control decision for the follower is quite
challenging, but we were able to make some key ob-
servations.

6.1 Description

In this model, the follower and leader move in the
positive x-direction on the x-axis. They each have a
constant acceleration, which they can change every
time they make a control decision. Accelerations
must be in the interval [−B,A], where B is the max-
imum amount of braking and A is the maximum ac-
celeration. As before, we use a single time trigger.
The distance from the follower to the leader must
be between min f d and max f d. See Figure 4 for an
illustration of this model.
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Figure 4: Movement in the complete 1D model

6.2 Limitations

This model assumes that neither robot can move
backwards. This is a reasonable assumption, but it
is conceivable that there might be scenarios where
we would not want to assume this. Additionally,
as before we are only using a single time-trigger for
simplicity but it does not seem that this would affect
that validity of a reasonable control decision for the
follower.

6.3 Update interval requirements

It is difficult to find conditions on the positions, ve-
locities, and accelerations of the robots that guaran-
tee that the safety conditions can be preseved, which
is perhaps the main difficulty of this model. How-
ever, we were able to find a necessary relationship
between the range of possible accelerations, the fol-
lowing distances, and the length of the maximum
time-triggered interval T .

Suppose that when the follower makes its control
decision, the position, velocity and acceleration of
the leader are L, vL, and aL respectively. Then after
time t the position of the leader is

L+ vL +
1
2

aLt2.

However, the follower cannot observe the new ac-
celeration that the leader chooses at the start of this
time-triggered interval. Therefore, from its perspec-
tive, the minimum possible position of the leader af-
ter time t is

L+ vL−
1
2

B · t2

and its maximum possible position after time t is

L+ vL +
1
2

A · t2.

Let F1 be the final position of the follower after time
t. To stay safe, the follower’s position after time t
must be at least min f d behind the minimum pos-
sible position of the leader after that time, and at
most max f d behind the maximum possible position
of the leader after that time. Therefore,

F1 ≥ L+ vL +
1
2

A · t2−max f d

F1 ≤ L+ vLT − 1
2

B · t2−min f d.

Subtracting yields

0≥ 1
2
(A+B)t2− (max f d−min f d).

Since this must hold for all t ∈ [0,T ], we get

max f d−min f d ≥ 1
2
(A+B)T 2.

This is an interesting necessary condition, and it
shows the flavor of the type of analysis we would
have to do to make more progress with this model.

7 Complete model

Our complete model is our most realistic model.
While designed to allow a verifable solution with-
out an unreasonable amount of effort, it is still quite
a difficult model to work with. Note that there still
parts of this model that are unspecified, such as the
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follower’s control choice: this model is sufficiently
complicated that even finding a safe choice is diffi-
cult, much less proving it. Filling in the unspecified
parts of this model would be a good first step for
future work.

7.1 Description

As in the previous model, we use a single time-
trigger, and the leader moves in circular arcs dur-
ing each interval so that its velocity is continuous.
This time, the follower is also restricted to this type
of movement: it cannot instantaneously change its
velocity. Both robots may choose accelerations in
[−B,A], where B represents the magnitude of the
maximum braking allowed and A that of the maxi-
mum acceleration allowed. The follower has a mini-
mum turn radius of minrF , to ensure it doesn’t make
unreasonably tight turns.

To ensure that the leader’s motion is somewhat
predictable to the follower, the leader’s speed may
not exceed maxLV , and it has its own minimum
turning radius of minrL. To make the model prov-
able, an assumption should be added to the initial
conditions specifying how large minrL must be. For
example, if we could ensure that the leader could
never change direction by more than 90◦ during a
time-triggered interval, then the follower could ad-
vance in the leader’s general direction without wor-
rying about hitting it if it moves towards a loca-
tion just behind the position in which it observed
the leader. We can ensure that the leader’s direction
changes by at most 90◦ in the interval by ensuring
that ldx changes by at most 1 during the interval,
since ldx is the x-component of the normalized ve-
locity of the leader. Therefore, we would like |ldx′|
to be bounded by 1/T , or

|− ldy · lv/ltrackr| ≤ 1/T.

Since |ldy| ≤ 1, we can ensure this if

|ltrackr| ≥ T · lv,

so a reasonable condition on minrL would be

minrL≥ T ·maxLV.

We would probably also want to add a restriction
on the leader’s maximum speed maxLV . The pre-
vious bound shows that maxLV ≤ minrL/T , but we

want something that guarantees that if we move to
a location just behind where we last saw the leader,
he will not move so far in the time-triggered interval
that we will violate the maximum follow distance.
In the previous model we required the leader to have
speed at most (max f d−min f d)/T . The condition
for this model would probably be similar in spirit
but perhaps significantly more complicated.

7.2 Limitations and possible solutions

This model has the fewest limitations of all of our
models. One aspect of this model that would need to
be modified to prove safety in a more complicated
scenario would be its lack of obstacles. However,
as long as there is a behavior for the leader which
provably maintains a large enough distance from all
obstacles, the follower will stay safe by being close
enough to the leader, as mentioned previously.

Another aspect of this model that may need to
be modified is its time-trigger. As before, for sim-
plicity we only included one time-trigger, but this is
not realistic because unless the robots communicate
they would not synchronize the times at which they
make their control decisions. It would be desirable
to add another time-trigger so that each robot has
its own, although this would make the model more
difficult to work with without changing the overall
idea’s of its safety proof. (As before, we should be
able to construct an algorithm for the follower that
does not care if the leader changes its control deci-
sion during the follower’s time-triggered interval.)
Additionally, it might be simplest to think of the
follower’s control decisions as happening in phases:
maybe when it wants to move closer to the leader
without running into it, it will accelerate quickly for
a certain period and then decelerate quickly when
it gets close. If we wanted to use such an algorithm
for the follower we would want to change the model
to keep track of this state. In such a case we would
also want to let the follower set the value of its time
trigger T f . For example, if it only wants to acceler-
ate for a short period of time, it would assign T f a
small value so that it will be guaranteed to be “wo-
ken up” from its acceleration after a period of time
of length at most T f .
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7.3 Discussion of follower behavior

Writing a control decision for the follower in this
model is a difficult task. In the previous model,
even with the assumption that the follower’s veloc-
ity could have isolated points of discontinuity, it was
still somewhat challenging to find a control decision
that guaranteed safety, and the proof was fairly com-
plicated. As mentioned in the previous section, it
may be most natural to think of the follower moving
in phases. However, each phase could be thought of
as its own control decision, so it is probably sim-
pler for the analysis of the follower’s behavior to
eliminate phases once we can come up with a valid
algorithm. (That is, instead of having our algorithm
decide to accelerate and decelerate, it will decide to
accelerate, and then the next time it makes a deci-
sion it will decide to decelerate.)

The advantage of our intermediate model is that,
even while is assumptions are not completely realis-
tic, it gives us a concrete, safe control decision that
can inspire us when creating a control decision for
this more realistic but much more difficult model. In
the intermediate model, the follower always chases
the point that is min f d below that last location we
observed the leader. The follower avoids a colli-
sion with the leader because we chase a point below
where was observed the leader, rather than chasing
the point we observed the leader, and the follower
ensures that it stays close to the leader by moving
towards this ponit because in that model, that was
the closest point to the leader which was guaranteed
to be safe (because for all we know, the leader might
be stationary, and then we couldn not get closer than
the point min f d below it).

We can think about similar behavior for the fol-
lower that might apply to this more complex model.
We might want to chase the point (Lx,Ly)−min f d∗
(ldx, ldy), which is the point min f d away from the
leader, directly in back of its current direction of
movement at the time we observed it. (Note that
in this case, we would require the follower to be
able to observe or be told what the leader’s velocity
is, which was unnecessary in the previous model.)
See Figure 5. However, there are more factors to
consider now that were not issues in the previous
model. What if the follower is moving too slowly,
so that even if it is currently close enough to the

leader, the leader will outrun it no matter what it
does? What if the follower is currently heading in a
different direction than it would prefer to? Since the
follower’s velocity must be continuous, we might
need to think about what we want its velocity to be
at the end of the time-triggered interval (assuming it
lasts for exactly time T ) so that it is not stuck with
a velocity that will make things difficult or impossi-
ble for it to follow in the future. To verify that the
follower’s behavior is safe, it would be important to
think about an invariant in terms of the positions and
velocities of the robots that would ensure safety and
that we could inductively satisfy after one more it-
eration of the loop. Determining a safe control deci-
sion for the follower in this model is one of the most
interesting areas of future work for this project.

8 Results and discussion

Our work resulted in creation of a number of mod-
els of follower and leader robot movement with a
variety of assumptions. We were successful in our
efforts to use Keymaera to verify safety of our sim-
ple models and complete most of the proof of safety
of our intermediate model2. Our simple and inter-
mediate models are more restrictive and have as-
sumptions that are probably not realistic, but they
were still very helpful in guiding us towards rele-
vant techniques that could be used to prove safety
on more realistic but complex models. While we did
not construct and verify safety of a follower control
decision for the complete models (both the 1D and
2D versions), we described the models precisely in
a .key file and discussed some of the difficulties in-
herent in making progress with them.

9 Further Applications

As mentioned before, our model is easily extended
for other useful and relevant applications in cyber-
physical systems research. One logical next step
would be to generalize the models from two into
three dimensions. It is not difficult to see how, with
additional variables and slightly modified prop-
erties, the one-dimensional and two-dimensional
models could be adapted into a model for the third
dimension. This would be crucial in writing con-
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Figure 5: A possible path for the follower in the complete model

trollers and verifying safety for flying vehicles,
such as quadrocopters and unmanned aerial vehi-
cles (UAVs). Indeed, work has already been done
for such an application of one quadrocopter track-
ing and following another [6].

Another useful application involves multiple fol-
lowers following a single leader. This is often
known as flocking, and is an area of active research.
Useful and safe controllers avoid collisions [2], typ-
ically between both the followers and the leader as
well as among the followers3. This flocking concept
can also be combined with the three-dimensional
models to study flocking of birds [3] or unmanned
aerial vehicles [5].
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Notes
1Some examples of such a teamwork scenario include the

search and rescue application and wireless connectivity sce-
nario, both briefly discussed previously.

2The remaining case of the proof is tedious and not feasible
with software limitations of KeYmaera, but details of how the
remaining branch of the proof can be verified can be found in
the proof sketch.

3Sometimes in flocking systems there may be no designated
leader, but rather many peer robots or agents cooperating to
form a dynamical system.
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