Lab 4 Robots in a Plane (Obstacle Avoidance)
15-424/15-624 Foundations of Cyber-Physical Systems
Course TAs: Joao Martins (jmartins@cs), Annika Peterson (apeterso@andrew)

Betabot Due Date: 10/29/14, worth 20 points
Veribot Due Date: 11/05/14, worth 80 points

1. In this lab you will design a controller which may move freely (non-deterministically) on a plane, rather
than just around fixed to a circular track. The robot should be able to move anywhere, but it must
always avoid a single, static (not moving) obstacle.

Modeling the free motion of a robot in 2D can be thought of as an extension of lab3, but now with
discrete control of steering as well as acceleration. When steering is changed, you might think of
it as the robot switching from one circular track to another, but the new track must be tangent to
the old one at the position of the robot so that the robot can maintain its position, direction and
velocity. The new track’s radius and whether the track is on the left or the right of the car (in other
words, whether the car is traveling clockwise or counter-clockwise around the track) may change at
each discrete transition. To help you visualize what is happening, we have created this youtube video:
http://youtu.be/C_pyRQTEbBu.

To help you get started with this assignment, you may download a template for the key file here:
http://symbolaris.com/course/fcps14/lab4.zip. This file contains the annotations which are
required for simulation. We’ve included some variables which are not strictly necessary for modeling
or proving, but which you may uncomment. If you want to add more variables about the state of the
system, please post your request on Piazza so that we can create a standard naming scheme.

e You may not have discrete changes in the position, direction, or linear velocity of the robot (or
any other variable which would implicitly cause such a discrete change).

e You may (and should) discretely control the track radius (which can be negative to change the
direction of travel from clockwise to counter-clockwise) and acceleration of the robot.

e The robot should have a non-deterministic controller (i.e. it should be able to drive anywhere that
does not cause it to come too close to the obstacle).

e The robot should be time-triggered.

e Since you are now freely moving in 2D, your robot now has a shape, which can be over-approximated
by a circle of radius r > 0.

e The obstacle also can be over-approximated as a circle of radius obsr > 0 (hint: you may still
model your system using points, so long as a sufficient buffer is kept between the robot’s point
and the obstacle’s point).

e The robot should always have a non-zero turning radius (i.e. it can’t spin in place).

Suggestions and hints:



e Werecommend that you use braking to enforce safety, and leave steering entirely non-deterministic.

e You may also simplify your model to represent an infinitesimal point (z,y) for the position of the
robot and point (obsz, obsy) as the point of the obstacle provided you ensure that the two never
get within a symbolic buffer distance of each other.

e Using guarded non-deterministic assignment will be very useful in this problem. You may use it
to choose the radius trackr of the conceptual “track” that the robot is moving on.

e If you found using the Max or Abs functions to be difficult during proving, you may find it easier
to reformulate those statements using disjunction/conjunction instead.

e Use the provided template from the zip file ]:\

1.1 (Betabots) Fill in the missing parts of the provided template to model the hybrid program above
and verify that it is safe. Submit this file as L4Q1_andrewidl_andrewid2.key.

1.2 (Veribots) Use KeYmaera to prove that your hybrid program is safe. Submit the resulting proof
and corresponding .key file as L4Q1_andrewidl_andrewid2.proof.

. This exercise is identical to the above, except that the obstacle is now a rogue-bot which drives around
with constant velocity rather than a stationary obstacle. Here are some extra rules for this problem:

e The robot should never turn with a turning radius less than minr > 0 (i.e. it can’t spin in place
or turn too sharply).

e The rogue-bot’s shape can be over-approximated as a circle of radius rogr > 0 (hint: you may still
model your system using points, so long as a sufficient buffer is kept between the robot’s point
and the rogue-bot’s point).

e The acceleration and braking of the robot are bounded by A > 0 and B > 0 respectively.

e The rogue-bot maintains constant velocity rogv > 0.

2.1 (Veribots) Find a controller that you can convince yourselves in safe. You only have to submit
the L4Q2_andrewidl_andrewid2.key file. You do not need to prove this!

2.2 Extra-credit: prove it and submit the L4Q2_andrewidl_andrewid2.proof file.

2.3 (Veribots) question: What if your robot has a top speed that’s less than obsv? What if instead of
moving on an unbounded 2D plane your robot is constrained to a bounded space? In these cases, even
if your robot is stopped, the obstacle could still hit you! Propose and discuss a few possible safety prop-
erties for these new scenarios which, if proved, would guarantee that your robot still exhibits reasonable
behavior even in the presence of an unreasonable obstacles. What are the pros and cons of each of your
proposed safety properties? Submit your answer to this question in L4_andrewidl_andrewid?2.txt.

. Submission checklist.
Test submission (Due 10/29): Final submission (Due 11/05):
L4Q1_andrewidl_andrewid2.key L4Q1_andrewidl_andrewid2.key
L4Q1_andrewidl_andrewid2.proof
L4Q2_andrewidl_andrewid2.key
L4Q2_andrewidl_andrewid2.proof (extra-credit)
L4_andrewidl_andrewid2.txt



