Lab 1: Charging Station
15-424/15-624 Foundations of Cyber-Physical Systems
Course TAs: Joao Martins (jmartins@cs), Annika Peterson (apeterso@andrew)

Betabot Due Date: 9/10/14, worth 20 points
Veribot Due Date: 9/17/14, worth 70 points

1. Interacting with KeYmaera

Recall formula Vz(z > 0 Az < 1) from lab 0. You will manually interact with this formula now, by
trying to prove it. Since the formula is false you won’t be able to, but you will see how doing so affects
the proof tree.

Highlight the Vz, and use the “V r all right” rule. This gets rid of the V symbol, leaving you only with
something like 1 > 0 A 1 < 1. Notice how a new node appeared under the Proof Tree panel in the
lower left, and it has the name of the rule you just applied. The proof tree keeps track of everything
you are doing to the original formula!

The formula under the Current Goal panel is now a conjunction, A. To prove a conjunction, both
conjuncts need to be true. In this case, for 1 > 0Az; < 1 to be true, you’d need to prove both z; > 0
as well as 1 < 1. Hover your mouse over the A symbol, and select “A r and right”. This rule applies
the reasoning we just made, where to prove z; > 0 A z; < 1, you must prove each conjunct separately.

Current Goal
=> X, > DAax < 1

commute_and
evaluate literals

Figure 1: Applying the A r and right rule.

Look at the Proof Tree panel! Two cases were added, one for each conjunct. The tree is now actually
a tree, not just a sequence of nodes! Yay!

Proof
= Proof Tree
& Lwwr all right
& 8:ar and right
B 3 Case 1

= C-ase 2
1 10:0OPEN COAL

Figure 2: The proof tree is actually a tree now!

Since you haven’t proven either of the cases, they are called open goals. Select each open goal, and
notice how KeYmaera updates the Current Goal panel. Each goal should represent one of the conjuncts!
In a bigger proof, you’d now continue to try to prove each conjunct separately, growing that part of
the tree.

If you go back to your proof for lab0.key, in the previous lab, you’ll be able to see just how quickly
these trees can grow!

Figure 3: Charging station & wall.

2. Autobots, Roll Out

As the n00b in your robotics group, the senior members gave you the broken robot. Its steering is
jammed, so it can only move in a straight line and control acceleration.

1. Fill in the missing continuous dynamics in the hybrid program below that will model your robot
accelerating in a straight line, with position pos, velocity vel, and acceleration acc.

2. Fill in the safety condition that will ensure the velocity of the robot is never negative. Save this file
as L1Q1_name.key (where name is replaced with your first and last name).

3. Use KeYmaera to prove the velocity of the robot is always positive. Save the resulting proof file
as L1Q1_name.proof. All of the tasks in this lab should prove automatically - but keep in mind that
proving manually will significantly help be necessary in the later labs and it helps if you start early!

(vel = 0 & acc >= 0) /* Requires */

-

N[oo] /* Continuous dynamics */

(o __) /* Ensures (safety condition) x/

3. Charging Station, Single Control

Oh no! Your robot’s battery is almost dead! Luckily the robot is already on a straight trajectory to
a wall charging station and has positive velocity. With its remaining power, your robot has just one
chance to engage the brakes properly to bring the robot to a stop at the right place.

e If the robot brakes too hard, it will not make it to the charging station and will have to wait for
a human to plug it in. Running out of power is inefficient.

e If the robot doesn’t brake hard enough to stop at the charging station, it will dent the wall behind
the station. When building manager Jim Skees finds out, he’ll have your robot banned from the
building! Running into walls is unsafe.

Hints: think carefully about all the variables that the acceleration/braking should depend on. If you
find you can’t prove the property, it could be that you missed something and your property is falsifiable.
Don’t forget you learned how to find counter-examples in lab0!

1. Specify the missing safety and efficiency requirements that the hybrid program below should ensure.
Then fill in the missing control and continuous dynamics. Save the resulting file as L1Q2_name.key.
2. Use KeYmaera to prove that the hybrid program is safe and efficient. Save the resulting proof as
L1Q2_name.proof.

3. Question: What is the evolution domain for the continuous dynamics in this hybrid program?
Why is it necessary? (Your response to this question does not need to be submitted.)

(pos < station & vel > 0) /+ Requires x/
—>

\

acc = _________ ; /* Assign a safe acceleration. x/

{2 & vel >= 0} /% Use continuous dynamics from part 1. x/
\]
(oo s /* Ensures (safety condition) x/
&_ .) /* Ensures (efficiency condition) x/

4. Charging Station, Double Control

In part 2, you are always able to coast the robot all the way to the charging station, since it is already
moving. But what if the robot is stopped? In this question, the goals are the same as in part 2;
however, the robot starts with zero velocity. You have two chances to control the robot, first to get it
moving by accelerating, and then to bring it to a stop at the right point by braking.

The robot also has a time limit T on how long it can accelerate before exhausting the remaining battery
life. Once the brakes are engaged, they will stay engaged until the robot comes to a complete stop.

1. Save the filled in formula below as L1Q3_name.key.
2. Prove the formula and save your proof file as (L1Q3_name.proof).

3. Question: What is your efficiency condition? Is it different from part 2, why or why not? (Your
response to this question does not need to be submitted.)

(pos < station & vel =0 & 0 < T) /* Requires x/
—>
\
t = 0;
ace = _________ ; /* Assign a safe acceleration. x/
{cco, 7 =1 & vel >=0 & t <= T};
2t > 0);
acc = _________ ; /* Assign a safe deceleration. x/
{-o._, t7 =1 & vel >= 0}
\]
(oo /* Ensures (safety condition) x/
&) /* Ensures (efficiency condition)x*/

5. Submission Checklist

(a) BetaBots: submit a zip file on autolab containing your preliminary .key files for each of the
tasks. This will enable us to give you feedback halfway through the assignment, so that you don’t
get stuck! If you want, you can include some small comments about your approach and questions
you might have. Due Wed 09/10.

(b) Final submission: the final submission works the same way, but you must include your final
model in a .key file as well as completed proof in a .proof file. You can save a proof while it is
in progress or when it is completed by clicking on File — Save in KeYmaera. To receive credit,

proofs must be complete (i.e. the “Property Proved” window has appeared, so all branches are

closed and there are no remaining goals).

Due Wed 09/17

Use the provided templates, and do not forget to fill in the section at the top. It gives us important

information when grading your submission!

The zip file should contain:

L1Q1_name.
L1Q1_name
L1Q2_name
L1Q2_name
L1Q3_name
L1Q3_name

key

.proof
.key
.proof
.key

.proof

