
15-424: Foundations of Cyber-Physical Systems

Lecture Notes on
Logical Theory & Completeness
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1. Introduction

This course has studied a number of logics, first-order logic FOL in Lecture 2, differ-
ential dynamic logic dL [Pla08, Pla10b, Pla12c, Pla12b] in Lecture 3 and Lecture 4 and
following, differential temporal dynamic logic dTL [Pla07, Pla10b, Chapter 4] in Lec-
ture 16 and 17, as well as differential game logic dGL [Pla13] since Lecture 22. There are
other logics for cyber-physical systems that have not been included in this course, but
share similar principles for further dynamical aspects. Such logics include quantified
differential dynamic logic QdL for distributed hybrid systems [Pla10c, Pla12a], which
are systems that are simultaneously distributed systems and hybrid systems, as well as
stochastic differential dynamic logic SdL for stochastic hybrid systems [Pla11], which
simultaneously involve stochastic dynamics and hybrid dynamics. Logics play a stellar
role not just in cyber-physical systems, but also many other contexts. Other important
logics include propositional logic, restrictions of first-order logic to certain theories,
such as first-order logic of real arithmetic [Tar51], and higher-order logic [And02]. But
there are numerous other important and successful logics for many purposes, both gen-
eral and specific.

In this lecture, we take a step back and study some common important concepts in
understandings logics as the objects of study themselves. This study will necessarily
be hopelessly incomplete for lack of time. But it should give you a flavor of important
principles and concepts in logic that we have not already run across explicitly in earlier
lectures of this course, even if many have been foreshadowed. We will also have the
opportunity to apply these more general concepts to cyber-physical systems.

These lecture notes are based on [Sch12, Pla10b, Pla08, Pla12c, Pla12b, Pla10d, Pla14].
The most important learning goals of this lecture are:
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L24.2 Logical Theory & Completeness

Modeling and Control: This lecture culminates in a deep and surprising intimate re-
lationship between discrete and continuous dynamics. This relationship provides
a deeper understanding than ever before of the core principles behind cyber-
physical systems, because it makes it possible to completely align and proof-
theoretically equate discrete dynamics, continuous dynamics, and joint hybrid
dynamics. This understanding has an effect on the significance of identifying the
relevant dynamical aspects of cyber-physical systems by emphasizing the source
of their simplicity: the individual parts of CPS models are easier than understand-
ing the whole at once.

Computational Thinking: This lecture showcases exemplary computational thinking
in action by exploiting proof-theoretical relationships to draw conclusions about
cyber-physical systems and their analysis. It also practices the logical trinity con-
sisting of the relationship of syntax, semantics, and axiomatics in more detail for
the case of first-order logic. Finally, the lecture identifies logical parallels and dif-
ferences of general first-order logic, interpreted first-order logic of real arithmetic,
and differential dynamic logic.

CPS Skills: This lecture has only a minor impact on CPS skills in the form of shining a
light of surprising intimacy on the relationship between discrete and continuous
dynamics of CPS, a phenomenon that reemphasizes the possible liberties with
the characterization of their dynamical aspects. By the complete alignment, one
person’s discrete dynamics may be another person’s continuous dynamics and
vice versa. This confirms the significant role that the design of proper models that
are adequate and suitable for analysis plays in CPS verification and validation.

2. Soundness

The most important parts of a logic L are the following. The logic L defines what
the syntactically well-formed formulas are. Every well-formed formula carries meaning,
which the semantics of formulas in L defines. The semantics defines a relation � between
sets of formulas and formulas, in which Φ � φ holds iff φ is a semantic consequence
of the set of formulas Φ, i.e. φ is true (usually written ν |= φ) in every interpretation ν
for which all formulas ψ ∈ Φ are true. The most important case for our purposes is
the case Φ = ∅ of validity, in which case � φ holds iff φ is valid, i.e. true (ν |= φ) in all
interpretations ν of L. An interpretation ν in which φ is true (i.e. ν |= φ) is also called a
model of φ.

For the case of first-order logic FOL, Lecture 2 defined both their syntax and seman-
tics. The syntax and semantics of differential dynamic logic dL has been defined in
Lecture 3 and Lecture 4.

The syntax of a logic L defines what we can write down that carries meaning. The
semantics of a logic L then defines what the meaning of the syntactic formulas is. The
semantics, in particular, defines which formulas express true facts about the world,
either in a particular interpretation ν or about the world in general (for valid formulas,
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Logical Theory & Completeness L24.3

which are true regardless of the interpretation). Yet, the semantics is usually highly
ineffective, so that it cannot be used directly to find out whether a formula is valid. Just
think of formulas in differential dynamic logic that express safety properties of hybrid
systems. It would not get us very far if we were to try to establish the truth of such
a formula by literally computing the semantics (which includes executing the hybrid
system) in every initial state, of which there are uncountably infinitely many.

Instead, logics come with proof calculi that can be used to establish validity of logical
formulas in the logic L. Those proof calculi comprised axioms (Lecture 5) and proof rules
(Lecture 6 and others), which can be combined to prove or derive logical formulas of the
logic L. The proof calculus of the logic L defines a relation ` between sets of formulas
and formulas, in which Φ ` φ holds iff φ is provable from the set of formulas Φ. That is,
there is a proof of φ in the proof calculus of L that uses only assumptions from Φ. The
most important case for our purposes is again Φ = ∅, in which case ` φ holds iff φ is
provable in the proof calculus of L, i.e. there is a proof of φ.

Of course, only some formulas of L are provable, not all of them. The formula p∧¬p
should not be provable in any proper logic, because it is inconsistently false and, thus,
cannot possibly be valid.

We could have written down any arbitrary axiom, or we could have accidentally had
a typo in the axioms. So a crucial question we have to ask (and have asked every time
we introduced an axiom in other lectures of this course) is whether the axioms and
proof rules are sound. In a nutshell, a proof calculus is sound if all provable formulas
are valid.

Theorem 1 (Soundness [Pla08, Pla10b, Pla12b]). The proof calculus of differential dy-
namic logic is sound, i.e. ` ⊆�, which means that ` φ implies � φ for all dL formulas φ.
That is, all provable dL formulas are valid.

The significance of soundness is that, whatever formula we derive by using the dL
proof rules and axioms, we can rest assured that it is valid, i.e. true in all states. In
particular, it does not matter how big and complicated the formula might be, we know
that it is valid as long as we have a proof for it. About the axioms, we can easily
convince ourselves using a soundness proof why they are valid, and then conclude
that all provable formulas are also valid, because they follow from sound axioms by
sound proof rules.

Note 2 (Necessity of soundness). Soundness is a must for otherwise we could not trust
our own proofs.

3. Soundness Challenge for CPS

What good would it do to analyze safety of a CPS using a technique that is as faulty as
the original CPS? If an unsound analysis technique says that a CPS is correct, we are,
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L24.4 Logical Theory & Completeness

fundamentally, not much better off than without any analysis, because all we can con-
clude is that we did not find problems, not that there are none.1 After all, an unsound
analysis technique could say “correct”, which might turn out to be a lie because the
correctness statement itself was not valid.

Note 3 (Challenge of soundness). In a domain that is as challenging as cyber-physical
systems and hybrid systems, it is surprisingly easy for analysis techniques to become un-
sound due to subtle flaws. Necessary conditions for soundness and the numerical decid-
ability frontier have been identified in the literature [PC07, Col07]. The crux of the matter
is that hybrid systems are subject to a numerical analogue of the halting problem of Turing
machines [PC07].

There is a shockingly large number of approaches that, for subtle reasons, are sub-
ject to the unsoundness resulting from non-observance of the conditions identified in
[PC07, Col07]. Consequently, such approaches need some of the additional assump-
tions identified in [PC07, Col07] to have a chance to become sound.

4. First-Order Logic

Even though this course primarily studied extensions of first-order logic by dynamic
modalities for hybrid systems instead of pure first-order logic, the sequent proof rules
of propositional logic and quantifiers (instantiation and Skolemization) give a suitable
proof calculus for first-order logic. And this suitability of the proof calculus for first-
order logic is a much stronger statement than soundness.

Soundness is the question whether all provable formulas are valid and is a minimal
requirement for proper logics. Completeness studies the converse question whether all
valid formulas are provable.

The first-order logic proof calculus can be shown to be both sound and complete,
which is a result that originates from Gödel’s PhD thesis [Göd30], albeit in a different
form.

1Notwithstanding of the fact that unsound analysis techniques can still be very useful in practice, es-
pecially if they identify problems in system designs. Yet, we should exercise great care in concluding
anything from unsound techniques that have not found a problem. As has been aptly phrased by
Dijkstra [Dij70]: “Program testing can be used to show the presence of bugs, but never to show their
absence!”
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Theorem 2 (Soundness & completeness of first-order logic). First-order logic is sound,
i.e. ` ⊆ �, which means that ` φ implies � φ for all first-order formulas φ (all provable
formulas are valid). First-order logic is complete, i.e. � ⊆ `, which means that � φ
implies ` φ for all first-order formulas φ (all valid formulas are provable). In particular,
the provability relation ` and the validity relation � coincide for first-order logic: ` = �.
The same holds in the presence of a set of assumptions Γ, i.e. Γ ` φ iff Γ � φ, that is, a
first-order formula φ is provable from a set of first-order assumptions Γ in first-order logic
if and only if φ is a consequence of Γ, i.e. entailed by Γ, i.e. true in all models of Γ.

This lecture will not set out for a direct proof of this result, because the techniques
used for those proofs are interesting but would lead us too far astray. An indirect jus-
tification for what makes first-order logic so special that Theorem 2 can hold will be
discussed later.

The following central result about compactness of first-order logic is of similar im-
portance. Compactness is involved in most proofs of Theorem 2, but, once Theorem 2
has been proved, also easily follows from Theorem 2. Compactness means that if a
formula A is a consequence of a set of formulas Γ, then it already is a consequence of
finitely many formulas.

Theorem 3 (Compactness of first-order logic). First-order logic is compact, i.e.

Γ � A ⇐⇒ E � A for some finite E ⊆ Γ (1)

Proof. By Theorem 2, ` = �. By completeness, the semantic compactness theorem (1) is
equivalent to the syntactic compactness theorem:

Γ ` A ⇐⇒ E ` A for some finite E ⊆ Γ (2)

Condition (2) is obvious, because provability implies that there is a proof, which can,
by definition, only use finitely many assumptions E ⊆ Γ.

Compactness is equivalent to the finiteness property, which, for that reason, is usu-
ally simply referred to as compactness. The finiteness property says that a set of formu-
las Γ has a model if and only if all its finite subsets of formulas have a model.

Corollary 4 (Finiteness). First-order logic satisfies the finiteness property, i.e.

Γ has a model ⇐⇒ all finite E ⊆ Γ have a model (3)

Proof. Compactness (Theorem 3) implies the finiteness property. The key observation
is that Γ has no model iff Γ � false , because if Γ has no model, then false holds in all
models of Γ of which there are none. Conversely, the only chance for false to hold in all
models of Γ is if there are no such models, since false never holds. By Theorem 3,

Γ � false ⇐⇒ ∃∃finiteE ⊆ Γ E � false
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Hence,

Γ has a model ⇐⇒ Γ 2 false ⇐⇒ ∀∀finite E ⊆ Γ E 2 false ⇐⇒ all finite E ⊆ Γ have a model

It is worth noting that, conversely, the finiteness property implies compactness.

Γ � A ⇐⇒ Γ ∪ {¬A} has no model
⇐⇒ some finite E ⊆ Γ ∪ {¬A} has no model by finiteness
⇐⇒ E � A for some finite E ⊆ Γ

The last equivalence uses that we might as well include ¬A in E, because if E has no
model then neither does E ∪ {¬A}.

5. Löwenheim-Skolem-Herbrand Theory in a Nutshell

A beautiful and, in the long term, quite impactful theory due to Leopold Löwenheim
[Löw15], Thoralf Skolem [Sko20], and Jacques Herbrand [Her30], gave rise to the first
automated theorem prover. Granted, it was quite a theoretical procedure at first, but it
was the first one and ultimately had practical offspring in the form of instance-based
methods. Herbrand’s procedure reduces first-order logic validity to a sequence of va-
lidity questions in propositional logic, each of which are perfectly decidable by truth-
tables (or more practically by SAT solvers). We focus on the parts of the Löwenheim-
Skolem-Herbrand theory that are most important for the subsequent development,
which, incidentally, are its syntactic aspects. The Löwenheim-Skolem-Herbrand theory
is developed in more depth in Appendix A, including the nontrivial semantic justifica-
tions for the syntactic transformations.

The first ingredient is Herbrand’s theorem on what are now called Herbrand-disjunctions,
i.e. validity-preserving instantiations of existential quantifiers as a disjunction of finitely
many terms. Observe the relationship to quantifier elimination in real arithmetic, which
will be discussed in more detail later.

Theorem 5 (Herbrand’s theorem: Herbrand disjunctions [Her30]). For a quantifier-
free formula φ(x) of a free variable x without equality

∃xφ(x) valid ⇐⇒ φ(t1)∨ · · ·∨φ(tn) valid for some n ∈ N and ground terms t1, . . . , tn

Observe that the formula φ(t1)∨ · · · ∨φ(tn) is quantifier-free if φ(x) was quantifier-free.
This reduces the validity of existential formulas of first-order logic to the validity of
formulas in propositional logic. Not every first-order formula is of the form required
in Theorem 5 but can be converted into that form without altering validity by Herbran-
dization, a dual of Skolemization:
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Lemma 6 (Herbrandization). With each first-order logic formula ψ, a formula

∃x1 . . . ∃xn φ(x1, . . . , xn)

with quantifier-free φ(x1, . . . , xn) can be associated effectively that is valid if and only if
ψ is. The formula ∃x1 . . . ∃xn φ(x1, . . . , xn) uses additional function symbols that do not
occur in ψ.

Example 7. The formula ∀x ∃y p(x, y) is valid iff the formula ∃y p(a, y) is valid, where a
is a new function symbol of arity zero. Obviously, if ∃y p(a, y) is valid, it needs to be
true no matter what the interpretation of a is, which implies that ∀x ∃y p(x, y) is valid.

Likewise, ∀x ∃y ∀z p(x, y, z) is valid iff ∃y p(a, y, b(y)) is, where a is a new function
symbol of arity 0 and b a new function symbol of arity 1, i.e. expecting one argument.
This time, the term b(y) ensures that the original formula is valid for any value of z,
no matter what the particular value of y was, because b is a function hat could have an
arbitrary interpretation.

Even if semidecidability was proved differently by Gödel first [Göd29], Herbrand’s
subsequent result Theorem 5 enables a straightforward and constructive proof of the
semidecidability of the validity problem of first-order logic:

Theorem 8 (Semidecidability of first-order logic [Göd29]). Validity in first-order
logic is semidecidable, i.e. there is an algorithm that, given any formula φ of first-order
logic, correctly reports whether φ is valid or not and that also terminates for all φ that
indeed valid. The algorithm will not generally terminate when φ is not valid.

Proof. The semidecision procedure for validity of first-order logic formulas ψ proceeds
as follows:

1. Herbrandize ψ to obtain a formula ∃x1 . . . ∃xn φ(x1, . . . , xn) by Lemma 6, which
preserves validity.

2. Enumerate all m ∈ N and all ground terms tji (1 ≤ j ≤ n, 1 ≤ i ≤ m), over the
new signature.

a) If the propositional formula

φ(t11, . . . , t
n
1 ) ∨ · · · ∨ φ(t1m, . . . , t

n
m)

is valid, then so is ∃x1 . . . ∃xn φ(x1, . . . , xn) and, hence, ψ is valid.

By Theorem 5 and Lemma 6, the procedure terminates for all valid first-order formulas
(yet fails to terminate for other formulas).

The procedure in this proof will always succeed but is rather silly, because it enu-
merates all terms for instantiation rather blindly. Nevertheless, refinements of this
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idea lead to very successful automated theorem proving techniques for first-order logic
known as instance-based methods [BT10], which restrict the instantiation to instantiation-
on-demand in various ways to make the procedure more goal-directed. There are also
many successful automatic theorem proving procedures for first-order logic that are
based on different principles, including tableaux and resolution [Fit96].

6. Back to CPS

First-order logic is beautiful, elegant, expressive, and simple. Unfortunately, however,
it is not expressive enough for hybrid systems [Pla10b, Pla12b, Pla13]. As soon as we
come back to studying hybrid systems, the situation gets more difficult. And that is
not by accident, but, instead, a fundamental property of first-order logic and of hybrid
systems. Per Lindström characterized first-order logic in indirect ways to show which
properties stronger logics could still possess and which ones they cannot [Lin69]. Hy-
brid systems themselves are also known not to be semidecidable, which shows that the
semidecidable first-order logic cannot understand the full picture of hybrid systems.

Given that differential dynamic logic talks about properties of hybrid systems, and
Turing machines are a special case of hybrid systems that just neglects the mention of
differential equations, undecidability is not surprising. We show a very simple stan-
dalone proof of incompleteness by adapting a proof for programs, e.g., [Pla10d].

Theorem 9 (Incompactness). Differential dynamic logic is not compact.

Proof. It is easy to see that there is a set of formulas that has no model even though all
finite subsets have a model, consider:

{〈x′ = 1〉x > y} ∪ {¬(x+ n > y) : n ∈ N}

The same happens with

{〈(x := x+ 1)∗〉x > y} ∪ {¬(x+ n > y) : n ∈ N}

Hence, differential dynamic logic does not have the finiteness property, which is equiv-
alent to compactness (Corollary 4).

Since soundness and completeness imply compactness (see proof of Theorem 3), in-
compactness implies incompleteness2, because dL is sound. An explicit proof is as
follows:

Theorem 10 (Incompleteness [Pla08]). Differential dynamic logic has no effective sound
and complete calculus.

2Strictly speaking, incompleteness only follows for effective calculi. Relative soundness and completeness
can still be proved for dL [Pla08, Pla10b, Pla12b], which gives very insightful characterizations of the
challenges and complexities of hybrid systems.
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Proof. Suppose there was an effective sound and complete calculus for dL. Consider
a set Γ of formulas that has no model in which all finite subsets have a model, which
exists by Theorem 9. Then Γ � (0 > 1) is valid, thus provable by completeness. But
since the proof is effective, it can only use finitely many assumptions E ⊂ Γ. Thus
E � (0 > 1) by soundness. But then the finite set E has no model, which is a contradic-
tion.

Having said these negative (but necessary) results about differential dynamic logic
(and, by classical arguments, any other approach for hybrid systems), let’s return to the
surprisingly amazing positive properties that differential dynamic logic possesses.

For one thing, the basis of differential dynamic logic is the first-order logic of real
arithmetic, not arbitrary first-order logic. This enables a particularly pleasant form of
Herbrand disjunctions (Theorem 5) resulting from quantifier elimination in real arith-
metic (recall Lecture 18 and Lecture 19).

Definition 11 (Quantifier elimination). A first-order theory admits quantifier elim-
ination if, with each formula φ, a quantifier-free formula QE(φ) can be associated
effectively that is equivalent, i.e. φ↔ QE(φ) is valid (in that theory).

Theorem 12 (Tarski [Tar51]). The first-order logic of real arithmetic admits quantifier
elimination and is, thus, decidable.

Also recall from Lecture 18 and Lecture 19 that the quantifier-free formula QE(φ) is
constructed by substitution or virtual substitution from φ, with some side constraints
on the parameter relations.

Note 14. Virtual substitution in FOLR essentially leads to an equivalence of the form

∃xF ↔
∨
t∈T

At ∧ F t
x (4)

for a suitable finite set T of extended terms that depends on the formula F and that gets
substituted into F virtually, i.e. in a way that results in standard real arithmetic terms,
not extended terms.

The quantifier-elimination instantiations (4) are more useful than Theorem 5, because
the required terms T for instantiation can be computed effectively and the equivalence
holds whether or not the original formula was valid. This makes first-order logic of
real arithmetic decidable, while general first-order logic is only semidecidable, because
the proof of Theorem 8 still involves search over the appropriate Herbrand terms ti to
use, which were constructed effectively for FOLR. This pleasant basis makes it possible
to use the proof calculus of differential dynamic logic to synthesize constraints on the
parameters to make an intended conjecture valid [Pla10b]. Aside from the fact that real
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numbers are the appropriate basis for understanding real positions and velocities and
the like in cyber-physical systems.

7. The Miracle of Hybrid Systems

The dL calculus is sound [Pla08, Pla12b], that is, every formula that is provable using
the dL axioms and proof rules is valid, i.e., true in all states. That is, for all dL formulas
φ:

` φ implies � φ (5)

Soundness should be sine qua non for formal verification, but, for fundamental reasons
[PC07, Col07], is so complex for hybrid systems that it is sometimes inadvertently for-
saken. In logic, we ensure soundness just by checking locally once for each axiom and
proof rule. Thus, no matter how complicated a proof, the proven dL formula is valid,
because it is a (complicated) consequence of lots simple valid proof steps.

More intriguingly, however, our logical setting also enables us to ask the converse: is
the dL proof calculus complete, i.e., can it prove all that is true? That is, does the converse
of (5) hold? Theorem 10 as well as a simple corollary to Gödel’s incompleteness theorem
show that already the fragments for discrete dynamical systems and for continuous
dynamical systems are incomplete [Pla08].

In logic, the suitability of an axiomatization can still be established by showing com-
pleteness relative to a fragment [Coo78, HMP77]. This relative completeness, in which
we assume we were able to prove valid formulas in a fragment and prove that we can
then prove all others, also tells us how subproblems are related computationally. It
tells us whether one subproblem dominates the others. Standard relative completeness
[Coo78, HMP77], however, which works relative to the data logic, is inadequate for
hybrid systems, whose complexity comes from the dynamics, not the data logic, first-
order real arithmetic, which is perfectly decidable first-order real arithmetic [Tar51].

From Hybrid to Continuous. Using the proof calculus of dL, the problem of proving
properties of hybrid systems reduces completely to proving properties of elementary
continuous systems [Pla08].

Theorem 13 (Continuous relative completeness of dL [Pla08, Pla12b]). The dL cal-
culus is a sound and complete axiomatization of hybrid systems relative to differential
equations, i.e., every valid dL formula can be derived from elementary properties of differ-
ential equations.

In particular, if we want to prove properties of hybrid systems, all we need to do is to
prove properties of continuous systems, because the dL calculus completely handles
all other steps in the proofs that deal with discrete or hybrid systems. Of course, one
has to be able to handle continuous systems in order to understand hybrid systems,
because continuous systems are a special case of hybrid systems. But it turns out that

15-424 LECTURE NOTES ANDRÉ PLATZER
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this is actually all that one needs in order to verify hybrid systems, because the dL proof
calculus completely axiomatizes all the rest of hybrid systems.

This central result shows that we can prove properties of hybrid systems in the dL
calculus exactly as good as properties of differential equations can be proved. One di-
rection is obvious, because differential equations are part of hybrid systems, so we can
only understand hybrid systems to the extent that we can reason about their differen-
tial equations. We have shown the other direction by proving that all true properties of
hybrid systems can be reduced effectively to elementary properties of differential equa-
tions. Moreover, the dL proof calculus for hybrid systems can perform this reduction
constructively and, vice versa, provides a provably perfect lifting of every approach for
differential equations to hybrid systems.

Another important consequence of this result is that decomposition can be successful
in taming the complexity of hybrid systems. The dL proof calculus is strictly compo-
sitional. All proof rules prove logical formulas or properties of HPs by reducing them
to structurally simpler dL formulas. As soon as we understand that the hybrid systems
complexity comes from a combination of several simpler aspects, we can, hence, tame
the system complexity by reducing it to analyzing the dynamical effects of simpler
parts. This decomposition principle is exactly how dL proofs can scale to interesting
systems in practice. Theorem 13 gives the theoretical evidence why this principle works
in general, not just in the case studies that have been considered so far. This is a good
illustration of our principle of multi-dynamical systems and even a proof that the de-
compositions behind the multi-dynamical systems approach are successful. Note that,
even though Theorem 13 proves (constructively) that every true property of hybrid sys-
tems can be proved in the dL calculus by decomposition from elementary properties of
differential equations, it is still an interesting question which decompositions are most
efficient.

From Hybrid to Discrete. In a certain sense, it may appear to be more complicated
to handle continuous dynamics than discrete dynamics. If the continuous dynamics
are not just subsuming discrete dynamics but if they were “inherently more”, then one
might wonder whether hybrid systems verification could be understood with a discrete
dynamical system like a classical computer at all. Of course, such a naı̈ve consideration
would be quite insufficient, because, e.g., properties of objects in uncountable contin-
uous spaces can very well follow from properties of finitary discrete objects. Finite
dL proof objects, for example, already entail properties about uncountable continuous
state spaces of systems.

Fortunately, all such worries about the insufficiency of discrete ways of understand-
ing continuous phenomena can be settled once and for all by studying the proof-theoretical
relationship between discrete and continuous dynamics. We have shown not only that
the axiomatization of dL is complete relative to differential equations, but that it is also
complete relative discrete systems [Pla12b].
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Theorem 14 (Discrete relative completeness of dL [Pla12b]). The dL calculus is a
sound and complete axiomatization of hybrid systems relative to discrete systems, i.e.,
every valid dL formula can be derived from elementary properties of discrete systems.

Thus, the dL calculus can also prove properties of hybrid systems exactly as good as
properties of discrete systems can be proved. Again, the proof of Theorem 14 is con-
structive, entailing that there is a constructive way of reducing properties of hybrid
systems to properties of discrete systems using the dL calculus. Furthermore, the dL
calculus defines a decision procedure for dL sentences relative to an oracle for discrete
systems [Pla12b]. Theorems 13 and 14 lead to a surprising result aligning discrete and
continuous systems properties.

Theorem 15 (dL equi-expressibility [Pla12b]). The logic dL is expressible in both
its discrete and in its continuous fragment: for each dL formula φ there is a continuous
formula φ[ that is equivalent, i.e., � φ↔ φ[ and a discrete formula φ# that is equivalent,
i.e., � φ↔ φ#. The converse holds trivially. Furthermore, the construction of φ[ and φ#

is effective (and the equivalences are provable in the dL calculus).

The proof of the surprising result Theorem 15 is constructive but rather nontrivial (some
20 pages). Consequently, all hybrid questions (and, thus, also all discrete questions) can
be formulated constructively equivalently as purely continuous questions and all hy-
brid questions (also all continuous questions) can be formulated constructively equiva-
lently as purely discrete questions. There is a constructive and provable reduction from
either side to the other.

Note 18 (Complete logical alignment). As a corollary to Theorems 13 and 14, we can
proof-theoretically and constructively equate

hybrid = continuous = discrete

by a complete logical alignment in the sense that proving properties of either of those
classes of dynamical systems is the same as proving properties of any other of those classes,
because all properties of one system can be provably reduced in a complete, constructive,
and equivalent way to any of the other system classes.

Even though each kind of dynamics comes from fundamentally different principles,
they all meet in terms of their proof problems being interreducible, even constructively;
see Fig. 1. The proof problem of hybrid systems, the proof problem of continuous sys-
tems, and the proof problem of discrete systems are, thus, equivalent. Any proof tech-
nique for one of these classes of systems completely lifts to proof techniques for the
other class of systems.

Since the proof problems interreduce constructively, every technique that is success-
ful for one kind of dynamics lifts to the other kind of dynamics through the dL calculus
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Figure 1: The proof theory of hybrid systems provides a complete proof-theoretical
bridge aligning the theory of discrete systems and the theory of continuous
systems

in a provably perfect way. Induction, for example, is the primary technique for proving
properties of discrete systems. Hence, by Theorem 14, there is a corresponding induc-
tion technique for continuous systems and for hybrid systems. And, indeed, differential
invariants [Pla10a, Pla12d] are such an induction technique for differential equations
that has been used very successfully for verifying hybrid systems with more advanced
differential equations [PC08, PC09a, PC09b, PQ09, Pla10b, MGP13]. In fact, differential
invariants had already been introduced in 2008 [Pla10a] before Theorem 14 was proved
[Pla12b], but Theorem 14 implies that a differential invariant induction technique has
to exist. These results also show that there are sound ways of using discretization for
differential equations [Pla12b] and that numerical integration schemes like, e.g., Euler’s
method or more elaborate methods can be used for hybrid systems verification, which
is not at all clear a priori due to inherent numerical approximation errors, which may
blur decisions either way [PC07].

Challenges with Hybrid Relations. Theorem 15 is a hybrid miracle. Naı̈ve ways of
relating discrete and continuous dynamical systems are bound to fail. It is, for example,
not generally the case that a property F transfers from a continuous system to its Euler
discretization, nor vice versa. That is, neither the following equivalence nor the left-to-
right implication nor the right-to-left implication generally holds:

[x′ = θ]F
?↔ [(x := x+ hθ)∗]F (6)

This formula would relate a property F of a continuous dynamical system x′ = θ to
property F of its Euler discretization (x := x+ hθ)∗ with discretization step size h > 0
if only it were true. Unfortunately, as such, the formula is not generally valid. Fig. 2
illustrates a counterexample to formula (6) from prior work [Pla12b], to which we refer
for further details. The error of the Euler discretization grows quickly compared to
the true solution in Fig. 2. For example, F ≡ (x2 + y2 = 1) is an invariant of the true

15-424 LECTURE NOTES ANDRÉ PLATZER
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Figure 2: (left) Dark circle shows true solution, light line segments show Euler approx-
imation for discretization step h = 1

2 (right) Dark true bounded trigonometric
solution and Euler approximation in lighter colors with increasing errors over
time t

solution but not its approximation. On the bright side, the error can be smaller for some
(not all) smaller discretization steps h and the error is quite reasonable for a certain
period of time.

A. Löwenheim-Skolem-Herbrand-Theory in a Nutshell

The value of a logical formula is subject to interpretation in the semantics of the logic.
The truth-value of a formula generally3 depends on the interpretation of its symbols
(such as its free variables or function symbols). In a certain sense maybe the most naı̈ve
interpretation of first-order logic interprets all terms as themselves. Such an interpreta-
tion I is called Herbrand model. It stubbornly interprets a term f(g(a), h(b)) in the logic
as itself: [[f(g(a), h(b))]]I = f(g(a), h(b)). And likewise for all other ground terms.

That may sound like a surprising and stubborn interpretation. But, even more sur-
prisingly, it is not at all an uninsightful one, at least for first-order logic. So insightful,
that it even deserves a name: Herbrand models. Certainly, it is one of the many permit-
ted interpretations.

3Except of the best formulas, which are valid, i.e. true in all interpretations. But we still first need to
understand how those valid formulas are interpreted before we could call them valid.
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Definition 16 (Herbrand Model). An interpretation I is called Herbrand model if it
has the free semantics for ground terms, i.e.:

1. The domain D is the ground terms (i.e. terms without variables) Trm0(Σ)
over Σ

2. I(f) : Dn → D; (t1, . . . , tn) 7→ f(t1, . . . , tn) for each function symbol f of
arity n

Let Γ be a set of closed universal formulas. Trm0(Σ)(Γ) is the set of all ground term
instances of the formulas in Γ, i.e. with (all possible) ground terms in Trm0(Σ) instanti-
ated for the variables of the universal quantifier prefix.

Trm0(Σ)(Γ) = {φ(t1, t2, . . . , tn) : (∀x1 ∀x2 . . . ∀xn φ(x1, x2, . . . , xn)) ∈ Γ

t1, . . . , tn ∈ Trm0(Σ), for any n ∈ N}

That is, for any n ∈ N and for any formula

∀x1 ∀x2 . . . ∀xn φ(x1, x2, . . . , xn)

in Γ and for any ground terms t1, . . . , tn ∈ Trm0(Σ), the set Trm0(Σ)(Γ) contains the
following ground instance of φ:

φ(t1, t2, . . . , tn)

Theorem 17 (Herbrand [Her30]). Let Γ be a (suitable) set of first-order formulas (i.e.
closed universal formulas without equality and with signature Σ having at least one
constant). Then

Γ has a model ⇐⇒ Γ has a Herbrand model
⇐⇒ ground term instances Trm0(Σ)(Γ) of Γ have a model

Using the Herbrand theorem twice gives:
Γ has a model ⇐⇒ ground term instances Trm0(Σ)(Γ) of Γ have a Herbrand model

Theorem 8 (Semidecidability of first-order logic [Göd29]). Validity in first-order
logic is semidecidable, i.e. there is an algorithm that, given any formula φ of first-order
logic, correctly reports whether φ is valid or not and that also terminates for all φ that
indeed valid. The algorithm will not generally terminate when φ is not valid.

Proof. For suitable first-order formulas F (i.e. ¬F satisfies the assumptions of Theo-
rem 17), semidecidability follows from the following reductions:

F valid ⇐⇒ ¬F unsatisfiable

⇐⇒ Trm0(Σ)(¬F ) have no model by Theorem 17

⇐⇒ some finite subset of Trm0(Σ)(¬F ) has no Herbrand model by Corollary 4
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Thus, it remains to consider the assumptions in Theorem 17 whether first-order formu-
las that are not suitable can be turned into formulas that are suitable. First of all, Σ
can be assumed without loss of generality to have at least one constant symbol for, oth-
erwise, a constant can be added to Σ without changing validity of F . Furthermore, a
formula F is valid iff its universal closure is, where the universal closure of a formula
F is obtained by prefixing F with universal quantifiers ∀x for each variable x that oc-
curs free in F . Finally, existential quantifiers in first-order formula ¬F can be removed
without affecting satisfiability by Skolemization, which introduces new function sym-
bols much like the quantifier proof rules from Lecture 6 did.

Note 22 (Limitations of Herbrand models). Herbrand models are not the cure for every-
thing in first-order logic, because they unwittingly forget about the intimate relationship
of the term 2 + 5 to the term 5 + 2 and, for that matter, to the term 8− 1. All those terms
ought to denote the same identical object, but end up denoting different ground terms in
Herbrand models. In particular, a Herbrand model would not mind at all if a unary predi-
cate p would hold of 2 + 5 but not hold for 5 + 2 even though both ought to denote the same
object. Thus, Herbrand models are a little weak in arithmetic, but otherwise incredibly
powerful.

Herbrand’s theorem has a second form with a close resemblance to the core argu-
ments of quantifier elimination in first order logic of real arithmetic from Lecture 18
and Lecture 19.

Theorem 5 (Herbrand’s theorem: Herbrand disjunctions [Her30]). For a quantifier-
free formula φ(x) of a free variable x without equality

∃xφ(x) valid ⇐⇒ φ(t1)∨ · · ·∨φ(tn) valid for some n ∈ N and ground terms t1, . . . , tn

Proof. The proof follows directly from Theorem 17 and Corollary 4:

∃xφ(x) valid
⇐⇒ ¬∃xφ(x) unsatisfiable
⇐⇒ ∀x¬φ(x) has no model

⇐⇒ Trm0(Σ)(∀x¬φ(x)) has no model by Theorem 17
⇐⇒ {¬φ(t) : t ground term} has no model by definition
⇐⇒ {¬φ(t1), . . . ,¬φ(tn)} has no model for some t1, . . . , tn and some n by Corollary 4
⇐⇒ ¬φ(t1) ∧ · · · ∧ ¬φ(tn) has no model for some n and some t1, . . . , tn
⇐⇒ φ(t1) ∨ · · · ∨ φ(tn) valid for some n and some t1, . . . , tn

Theorem 5 continues to hold for first-order formulas ∃x1 . . . ∃xn φ(x1, . . . , xn) with
multiple existential quantifiers. More general forms of the Herbrand theorem hold for
arbitrary first-order formulas that are not in the specific form assumed above [Her30].
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These more general Herbrand theorems won’t be necessary for us, because, for valid-
ity purposes, first-order formulas can be turned into the form ∃x1 . . . ∃xn φ(x1, . . . , xn)
with quantifier-free φ(x1, . . . , xn) by introducing new function symbols for the univer-
sal quantifiers using essentially the quantifier proof rules from Lecture 6:4

(∀r)
Γ ` φ(s(X1, . . , Xn)),∆

Γ ` ∀xφ(x),∆
1 (∃l)

Γ, φ(s(X1, . . , Xn)) ` ∆

Γ,∃xφ(x) ` ∆
1

1s is a new (Skolem-Herbrand) function and X1, . . , Xn are all (existential) free logical variables
of ∀xφ(x).

The clou about quantifier rules ∀r,∃l is that they preserve validity. By soundness,
if their premiss is valid then so is their conclusion. Yet, in the case of rules ∀r,∃l the
converse actually holds as well. If their conclusion is valid then so is their premiss.
For rule ∀r, for example, the conclusion says that φ(x) holds for all values of x in all
interpretations where Γ holds and ∆ does not. Consequently, in those interpretations,
φ(s(X1, . . , Xn)) holds whatever the interpretation of s is, because s is a fresh function
symbol, which, thus, does not appear in Γ,∆.

Lemma 18 (Herbrandization). With each first-order logic formula ψ, a formula

∃x1 . . . ∃xn φ(x1, . . . , xn)

with quantifier-free φ(x1, . . . , xn) can be associated effectively that is valid if and only if
ψ is. The formula ∃x1 . . . ∃xn φ(x1, . . . , xn) uses additional function symbols that do not
occur in ψ.

The procedure in this proof will always succeed but it enumerates the ground terms
for instantiation rather blindly, which can cause for quite a bit of waiting. Neverthe-
less, refinements of this idea lead to very successful automated theorem proving tech-
niques for first-order logic known as instance-based methods [BT10], which restrict the
instantiation to instantiation-on-demand in various ways to make the procedure more
goal-directed. There are also many successful automatic theorem proving procedures
for first-order logic that are based on different principles, including tableaux and reso-
lution [Fit96].

Exercises

Exercise 1. The arguments for incompleteness and incompactness of dL hardly depend
on dL, but, rather, only on dL’s ability to characterize natural numbers. Incompleteness

4The new function symbols are usually called Skolem functions and the process called Skolemization,
because Thoralf Skolem introduced them in the first correct proof of the Skolem-Löwenheim theorem
[Sko20]. Strictly speaking, however, Herbrand functions and Herbrandization are the more adequate
names, because Jacques Herbrand introduced this dual notion for the first proof of the Herbrand the-
orem [Her30]. Skolemization and Herbrandization are duals. Skolemization preserves satisfiability
while Herbrandization preserves validity.
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and incompactness hold for other logics that characterize natural numbers due to a
famous result of Gödel [Göd31]. Both the discrete and the continuous fragment of dL
can characterize the natural numbers [Pla08].

1. Show that the natural numbers can be characterized in the discrete fragment of
dL, i.e. only using assignments and repetition.

2. Then go on to show that the natural numbers can also be characterized in the
continuous fragment of dL, i.e. using only differential equations.

3. Conclude from this that both the discrete and the continuous fragment of dL are
not compact, nor is any other logic that can characterize the natural numbers.
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[PC07] André Platzer and Edmund M. Clarke. The image computation problem
in hybrid systems model checking. In Alberto Bemporad, Antonio Bicchi,
and Giorgio Buttazzo, editors, HSCC, volume 4416 of LNCS, pages 473–486.
Springer, 2007. doi:10.1007/978-3-540-71493-4_37.
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[Pla12a] André Platzer. A complete axiomatization of quantified differential dy-

namic logic for distributed hybrid systems. Logical Methods in Computer Sci-
ence, 8(4):1–44, 2012. Special issue for selected papers from CSL’10. doi:

10.2168/LMCS-8(4:17)2012.
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http://dx.doi.org/10.1007/978-3-642-22438-6_34
http://dx.doi.org/10.1007/978-3-642-22438-6_34
http://dx.doi.org/10.2168/LMCS-8(4:17)2012
http://dx.doi.org/10.2168/LMCS-8(4:17)2012
http://dx.doi.org/10.1109/LICS.2012.64
http://dx.doi.org/10.1109/LICS.2012.13
http://dx.doi.org/10.2168/LMCS-8(4:16)2012
http://dx.doi.org/10.2168/LMCS-8(4:16)2012
http://bulletin.eatcs.org/index.php/beatcs/article/viewFile/292/274
http://bulletin.eatcs.org/index.php/beatcs/article/viewFile/292/274
http://dx.doi.org/10.1007/978-3-642-10373-5_13
http://dx.doi.org/10.1007/978-3-642-10373-5_13

	Introduction
	Soundness
	Soundness Challenge for CPS
	First-Order Logic
	Löwenheim-Skolem-Herbrand Theory in a Nutshell
	Back to CPS
	The Miracle of Hybrid Systems
	Löwenheim-Skolem-Herbrand-Theory in a Nutshell

