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1 Introduction

This lecture continues the study of hybrid games and their logic, differential game logic
[Pla13, Pla14], that Lecture 20 on Hybrid Systems & Games started. Lecture 20 saw the
introduction of differential game logic with a focus on identifying and highlighting the
new dynamical aspect of adversarial dynamics. The meaning of hybrid games in differ-
ential game logic had been left informal, based on the intuition one relates to interactive
gameplay and decisions in trees. While it is possible to turn such a tree-type semantics
into an operational semantics for hybrid games [Pla14], the resulting development is
technically rather involved. Even if such an operational semantics is interesting and
touches on interesting concepts from descriptive set theory, it is unnecessarily compli-
cated compared.

This lecture will, thus, be devoted to developing a much simpler yet rigorous seman-
tics, a denotational semantics of hybrid games. Lecture 20 already highlighted sub-
tleties how never-ending game play ruins determinacy, simply because there never is
a state in which the winner would be declared. Especially the aspect of repetition and
its interplay with differential equations will need careful attention. The denotational
semantics will make this subtle aspect crystal clear.

These lecture notes are based on [Pla13, Pla14], where more information can be found
on logic and hybrid games. The most important learning goals of this lecture are:

Modeling and Control: We further our understanding of the core principles behind
CPS for the adversarial dynamics resulting from multiple agents with possibly
conflicting actions that occur in many CPS applications. This time, we devote
attention to the nuances of their semantics.

Computational Thinking: This lecture follows fundamental principles from compu-
tational thinking to capture the semantics of the new phenomenon of adversarial
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L21.2 Winning Strategies & Regions

dynamics in CPS models. We leverage core ideas from programming languages
by extending syntax and semantics of program models and specification and ver-
ification logics with the complementary operator of duality to incorporate adver-
sariality in a modular way into the realm of hybrid systems models. This leads
to a compositional model of hybrid games with compositional operators. Mod-
ularity makes it possible to generalize our rigorous reasoning principles for CPS
to hybrid games while simultaneously taming their complexity. This lecture in-
troduces the semantics of differential game logic dGL [Pla13, Pla14], which adds
adversarial dynamics to differential dynamic logic, which has been used as the
specification and verification language for CPS in the other parts of this course.
This lecture provides a perspective on advanced models of computation with al-
ternating choices. The lecture will also encourage us to reflect on the relationship
of denotational and operational semantics.

CPS Skills: This lecture focuses on developing and understanding the semantics of
CPS models with adversarial dynamics corresponding to how a system changes
state over time as multiple agents react to each other. This understanding is cru-
cial for developing an intuition for the operational effects of multi-agent CPS.
The presence of adversarial dynamics will cause us to reconsider the semantics of
CPS models to incorporate the effects of multiple agents and their mutual reac-
tions. This generalization, while crucial for understanding adversarial dynamics
in CPS, also shines a helpful complementary light on the semantics of hybrid sys-
tems without adversariality by causing us to reflect on choices. The semantics of
hybrid games properly generalizes the semantics of hybrid systems from earlier
lectures.

2 Semantics

What is the most elegant way of defining a semantics for differential game logic? How
could a semantics be defined at all? First of all, the dGL formulas φ that are used in the
postconditions of dGLmodal formulas 〈α〉φ and [α]φ define the winning conditions for
the hybrid game α. Thus, when playing the hybrid game α, we need to know the set of
states in which the winning condition φ is satisfied. That set of states in which φ is true
is denoted [[φ]]I , which defines the semantics of φ. The I in that notation is a reminder
that the semantics depends on the interpretation of predicate symbols as defined in
interpretation I . Thus, when we used to write ν |= φ to indicate that dL formula φ is
true in state ν, we will now write ν ∈ [[φ]]I , instead, to say that state ν is among the set
of states in which φ is true. Working with the set of states [[φ]]I in which a formula φ is
true will come in handy for defining a semantics of hybrid games.

The logic dGL has a denotational semantics. The dGL semantics defines, for each
formula φ, the set [[φ]]I of states in which φ is true. For each hybrid game α and each
set of winning states X , the dGL semantics defines the set ςα(X) of states from which
Angel has a winning strategy to achieve X in hybrid game α, as well as the set δα(X)
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of states from which Demon has a winning strategy to achieve X in α.
A state ν is a mapping from variables to R. An interpretation I assigns a relation

I(p) ⊆ Rk to each predicate symbol p of arity k. The interpretation further determines
the set of states S, which is isomorphic to a Euclidean space Rn when n is the number
of relevant variables. For a subset X ⊆ S the complement S \X is denoted X{. Let
νdx denote the state that agrees with state ν except for the interpretation of variable x,
which is changed to d ∈ R. The value of term θ in state ν is denoted by [[θ]]ν . The deno-
tational semantics of dGL formulas will be defined in Def. 1 by simultaneous induction
along with the denotational semantics, ςα(·) and δα(·), of hybrid games, defined later,
because dGL formulas are defined by simultaneous induction with hybrid games. The
(denotational) semantics of a hybrid game α defines for each interpretation I and each set of
Angel’s winning states X ⊆ S the winning region, i.e. the set of states ςα(X) from which
Angel has a winning strategy to achieve X (whatever strategy Demon chooses). The
winning region of Demon, i.e. the set of states δα(X) from which Demon has a winning
strategy to achieve X (whatever strategy Angel chooses) is defined later as well.
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L21.4 Winning Strategies & Regions

Definition 1 (dGL semantics). The semantics of a dGL formula φ for each interpreta-
tion I with a corresponding set of states S is the subset [[φ]]I ⊆ S of states in which
φ is true. It is defined inductively as follows

1. [[p(θ1, . . . , θk)]]
I = {ν ∈ S : ([[θ1]]ν , . . . , [[θk]]ν) ∈ I(p)}

That is, the set of states in which a predicate p(θ1, . . . , θk) is true is the set of
states ν in which the tuple ([[θ1]]ν , . . . , [[θk]]ν) of values of the terms θi in ν is
in the relation I(p) associated to predicate symbol p.

2. [[θ1 ≥ θ2]]I = {ν ∈ S : [[θ1]]ν ≥ [[θ2]]ν}
That is, the set of states in which θ1 ≥ θ2 is true is the set in which the value
of θ1 is greater than or equal to the value θ2.

3. [[¬φ]]I = ([[φ]]I){

That is, the set of states in which ¬φ is true is the complement of the set of
states in which φ is true.

4. [[φ ∧ ψ]]I = [[φ]]I ∩ [[ψ]]I

That is, the set of states in which φ ∧ ψ is true is the intersection of the states
in which φ is true with the set of states in which ψ is true.

5. [[∃xφ]]I = {ν ∈ S : νrx ∈ [[φ]]I for some r ∈ R}
That is, the states in which ∃xφ is true are those which only differ in the value
of x from a state in which φ is true.

6. [[〈α〉φ]]I = ςα([[φ]]
I)

That is, the set of states in which 〈α〉φ is true is Angel’s winning region to
achieve [[φ]]I in hybrid game α, i.e. the set of states from which Angel has a
winning strategy in hybrid game α to reach a state where φ holds.

7. [[[α]φ]]I = δα([[φ]]
I)

That is, the set of states in which [α]φ is true is Demon’s winning region to
achieve [[φ]]I in hybrid game α, i.e. the set of states from which Demon has a
winning strategy in hybrid game α to reach a state where φ holds.

A dGL formula φ is valid in I , written I |= φ, iff [[φ]]I = S. Formula φ is valid, � φ,
iff I |= φ for all interpretations I .

The semantics ςα(X) and δα(X) of Angel’s and Demon’s winning regions still needs
to be defined, which is the next goal.

Note that the semantics of 〈α〉φ cannot be defined as it would in dL via

[[〈α〉φ]]I =
{
ν ∈ S : ω ∈ [[φ]]I for some ω with (ν, ω) ∈ ρ(α)

}
First of all, the reachability relation (ν, ω) ∈ ρ(α) is only defined when α is a hybrid
program, not when it is a hybrid game. But the deeper reason is that the above shape is
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too harsh. Criteria of this shape would require Angel to single out a single state ν that
satisfies the winning condition ω ∈ [[φ]]I and then get to that state ω by playing α from
ν. Yet all that Demon then has to do to spoil that plan is lead the play into a different
state (e.g., one in which Angel would also have won) but which is different from the
projected ω. More generally, winning into a single state is really difficult. Winning by
leading the play into one of several states that satisfy the winning condition is more
feasible. This is what the winning region ςα([[φ]]

I) is supposed to capture. It captures
the set of states from which Angel has a winning strategy in hybrid game α to achieve
one of the states in which φ holds true. What a beneficial coincidence that the semantics
of dGL formulas was already defined in terms of the set of states in which they are true.

3 Winning Regions

Def. 1 needs a definition of the winning regions ςα(·) and δα(·) for Angel and Demon,
respectively, in the hybrid game α. Rather than taking a detour for understanding those
by operational game semantics (as in Lecture 20), the winning regions of hybrid games
can be defined directly, giving a denotational semantics to hybrid games.1

1The semantics of a hybrid game is not merely a reachability relation between states as for hybrid systems
[Pla12], because the adversarial dynamic interactions and nested choices of the players have to be taken
into account. For brevity, the following informal explanations sometimes say “win the game” when
really they mean “have a winning strategy to win the game”.
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L21.6 Winning Strategies & Regions

Definition 2 (Semantics of hybrid games). The semantics of a hybrid game α is a
function ςα(·) that, for each interpretation I and each set of Angel’s winning states
X ⊆ S, gives the winning region, i.e. the set of states ςα(X) from which Angel has
a winning strategy to achieve X (whatever strategy Demon chooses). It is defined
inductively as follows

1. ςx:=θ(X) = {ν ∈ S : ν
[[θ]]ν
x ∈ X}

That is, an assignment x := θ wins a game into X from any state whose mod-
ification ν[[θ]]νx after the change x := θ is in X .

2. ςx′=θ&H(X) = {ϕ(0) ∈ S : ϕ(r) ∈ X for some r ∈ R≥0 and (differentiable)
ϕ : [0, r]→ S such thatϕ(ζ) ∈ [[H]]I and dϕ(t)(x)

dt (ζ) = [[θ]]ϕ(ζ) for all 0 ≤ ζ ≤ r}
That is, Angel wins the differential equation game x′ = θ&H into X from
any state ϕ(0) from which there is a solution ϕ of x′ = θ of any duration r
that remains within H all the time and leads to a state ϕ(r) ∈ X in the end.

3. ς?H(X) = [[H]]I ∩X
That is, Angel wins into X for a challenge ?H from the states which satisfy
H to pass the challenge and are already in X , because challenges ?H do not
change the state.

4. ςα∪β(X) = ςα(X) ∪ ςβ(X)
That is, Angel wins a game of choice α ∪ β into X whenever she wins α into
X or wins β into X (by choosing a subgame she has a winning strategy for).

5. ςα;β(X) = ςα(ςβ(X))
That is Angel wins a sequential game α;β into X whenever she has a win-
ning strategy in game α to achieve ςβ(X), i.e. to make it to one of the states
from which she has a winning strategy in game β to achieve X .

6. ςα∗(X) will be defined later.

7. ςαd(X) = (ςα(X
{)){

That is, Angel wins αd to achieve X in exactly the states in which she does
not have a winning strategy in game α to achieve the opposite X{.

Demon’s winning regions are defined accordingly (Def. 3).
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Definition 3 (Semantics of hybrid games, continued). The winning region of De-
mon, i.e. the set of states δα(X) from which Demon has a winning strategy to
achieve X (whatever strategy Angel chooses) is defined inductively as follows

1. δx:=θ(X) = {ν ∈ S : ν
[[θ]]ν
x ∈ X}

That is, an assignment x := θ wins a game into X from any state whose mod-
ification ν[[θ]]νx after the change x := θ is in X .

2. δx′=θ&H(X) = {ϕ(0) ∈ S : ϕ(r) ∈ X for all r ∈ R≥0 and (differentiable)
ϕ : [0, r]→ S such thatϕ(ζ) ∈ [[H]]I and dϕ(t)(x)

dt (ζ) = [[θ]]ϕ(ζ) for all 0 ≤ ζ ≤ r}
That is, Demon wins the differential equation game x′ = θ&H into X from
any state ϕ(0) from which all solutions ϕ of x′ = θ of any duration r that
remain within H all the time lead to states ϕ(r) ∈ X in the end.

3. δ?H(X) = ([[H]]I){ ∪X
That is, Demon wins into X for a challenge ?H from the states which violate
H so that Angel fails her challenge ?H or that are already in X , because
challenges ?H do not change the state.

4. δα∪β(X) = δα(X) ∩ δβ(X)
That is, Demon wins a game of choice α ∪ β into X whenever he wins α into
X and also wins β into X (because Angel might choose either subgame).

5. δα;β(X) = δα(δβ(X))
That is Demon wins a sequential game α;β into X whenever he has a win-
ning strategy in game α to achieve δβ(X), i.e. to make it to one of the states
from which he has a winning strategy in game β to achieve X .

6. δα∗(X) will be defined later.

7. δαd(X) = (δα(X
{)){

That is, Demon wins αd to achieve X in exactly the states in which he does
not have a winning strategy in game α to achieve the opposite X{.

This notation uses ςα(X) instead of ςIα(X) and δα(X) instead of δIα(X), because the inter-
pretation I that gives a semantics to predicate symbols in tests and evolution domains is
clear from the context. Strategies do not occur explicitly in the dGL semantics, because
it is based on the existence of winning strategies, not on the strategies themselves. The
winning regions for Angel are illustrated in Fig. 1.

Just as the semantics dL, the semantics of dGL is compositional, i.e. the semantics of
a compound dGL formula is a simple function of the semantics of its pieces, and the
semantics of a compound hybrid game is a function of the semantics of its pieces. Fur-
thermore, existence of a strategy in hybrid game α to achieve X is independent of any
game and dGL formula surrounding α, but just depends on the remaining game α it-
self and the goal X . By a simple inductive argument, this shows that one can focus
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X

ςx:=θ(X)

Xx
′ =

θ

ςx′=θ(X)

X

[[φ]]I
ς?φ(X)

ςα (X)

ςβ(
X)

Xςα∪β(X) ςα(ςβ(X)) ςβ(X) X

ςα;β(X)

ςα∗(X) · · · ς3α(X) ς2α(X) ςα(X) X

X{

X

ςα(X
{)

ςαd(X)

Figure 1: Illustration of denotational semantics of hybrid games as winning regions

on memoryless strategies, because the existence of strategies does not depend on the
context, hence, by working bottom up, the strategy itself cannot depend on past states
and choices, only the current state, remaining game, and goal. This also follows from
a generalization of a classical result by Zermelo. Furthermore, the semantics is mono-
tone, i.e. larger sets of winning states induce larger winning regions, because it is easier
to win into larger sets of winning states.

Lemma 4 (Monotonicity [Pla13]). The semantics is monotone, i.e. ςα(X) ⊆ ςα(Y ) and
δα(X) ⊆ δα(Y ) for all X ⊆ Y .

Proof. A simple check based on the observation that X only occurs with an even num-
ber of negations in the semantics. For example, X ⊆ Y implies X{ ⊇ Y {, hence
ςα(X

{) ⊇ ςα(Y {), so ςαd(X) = (ςα(X
{)){ ⊆ (ςα(Y

{)){ = ςαd(Y ).

Before going any further, however, we need to define a semantics for repetition,
which will turn out to be surprisingly difficult.
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4 Advance Notice Repetitions

Def. 2 is still missing a definition for the semantics of repetition in hybrid games. The
semantics of repetition in hybrid systems was

ρ(α∗) =
⋃
n∈N

ρ(αn)

with αn+1 ≡ αn;α and α0 ≡ ?true .
The obvious counterpart for the semantics of repetition in hybrid games would, thus,

be
ςα∗(X)

?
=

⋃
n<ω

ςαn(X) (1)

where ω is the first infinite ordinal (if you have never seen ordinals before, just read
n < ω as n in natural numbers, i.e. as n ∈ N). Would that give the intended meaning
to repetition? Is Angel forced to stop in order to win if the game of repetition would
be played this way? Yes, she would, because, even though there is no bound on the
number of repetitions that she can choose, for each natural number n, the resulting
game ςαn(X) is finite.

Would this definition capture the intended meaning of repeated game play?
Before you read on, see if you can find the answer for yourself.
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L21.10 Winning Strategies & Regions

The issue is that each way of playing a repetition according to (1) would require
Angel to choose a natural number n ∈ N of repetitions and expose this number to Demon
when playing αn so that he would know how often Angel decided to repeat.

That would lead to what is called the advance notice semantics for α∗, which requires
the players to announce the number of times that game α will be repeated when the
loop begins. The advance notice semantics defines ςα∗(X) as

⋃
n<ω ςαn(X) whereαn+1 ≡

αn;α and α0 ≡ ?true and defines δα∗(X) as
⋂
n<ω δαn(X). When playing α∗, Angel,

thus, announces to Demon how many repetitions n are going to be played when the
game α∗ begins and Demon announces how often to repeat α×. This advance notice
makes it easier for Demon to win loops α∗ and easier for Angel to win loops α×, be-
cause the opponent announces an important feature of their strategy immediately as
opposed to revealing whether or not to repeat the game once more one iteration at a
time as in Def. 2. Angel announces the number n < ω of repetitions when α∗ starts.

The following formula, for example, turns out to be valid in dGL (see Fig. 2), but
would not be valid in the advance notice semantics:

x = 1 ∧ a = 1→ 〈((x := a; a := 0) ∩ x := 0)∗〉x 6= 1 (2)

If, in the advance notice semantics, Angel announces that she has chosen n repetitions
of the game, then Demon wins (for a 6= 0) by choosing the x := 0 option n − 1 times
followed by one choice of x := a; a := 0 in the last repetition. This strategy would not
work in the dGL semantics, because Angel is free to decide whether to repeat α∗ after
each repetition based on the resulting state of the game. The winning strategy for (2)
indicated in Fig. 2(left) shows that this dGL formula is valid.

Since the advance notice semantics misses out on the existence of perfectly reasonable
winning strategies, dGL does not choose this semantics. Nevertheless, the advance
notice semantics can be a useful semantics to consider for other purposes [QP12]. But
it is not interactive enough for proper hybrid game play.

5 ω-Strategic Semantics

The trouble with the semantics in Sect. 4 is that Angel’s move for the repetition reveals
too much to Demon, because Demon can inspect the remaining game αn to find out
once and for all how long the game will be played before he has to do his first move.

Let’s try to undo this. Another alternative choice for the semantics would have been
to allow only arbitrary finite iterations of the strategy function for computing the win-
ning region by using the ω-strategic semantics, which defines

ςα∗(X)
?
= ςωα (X) =

⋃
n<ω

ςnα(X)

along with a corresponding definition for δα∗(X). All we need to do for this is define
what it means to nest the winning region construction. For any winning condition
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Figure 2: Game trees for x = 1 ∧ a = 1 → 〈α∗〉x 6= 1 with game
α ≡ (x := a; a := 0) ∩ x := 0 (notation: x, a). (left) valid in dGL by strategy
“repeat once and repeat once more if x = 1, then stop” (right) false in ad-
vance notice semantics by the strategy “n − 1 choices of x := 0 followed by
x := a; a := 0 once”, where n is the number of repetitions Angel announced
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L21.12 Winning Strategies & Regions

X ⊆ S the iterated winning region of α is defined inductively as:

ς0α(X)
def
= X

ςκ+1
α (X)

def
= X ∪ ςα(ςκα(X))

The only states from which a repetition can win without actually repeating are the ones
that start at the goal X already (ς0α(X) = X). And the states from which a repetition
can win into X with κ + 1 repetitions are those that start in X as well as all the states
for which there is a winning strategy in the hybrid game α to achieve a state in ςκα(X).

Does this give the right semantics for repetition of hybrid games? Does it match
the existence of winning strategies that we were hoping to define? See Fig. 3 for an
illustration.

ςnα(X) · · · ς3α(X) ς2α(X) ςα(X) X

Figure 3: Iteration ςnα(X) of ςα(·) from winning condition X .

Before you read on, see if you can find the answer for yourself.
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The surprising answer is no for a very subtle but also very fundamental reason. The
existence of winning strategies for α∗ does not coincide with the ωth iteration of α.

Would the following dGL formula be valid in the ω-strategic semantics?

〈(x := 1;x′ = 1d ∪ x := x− 1)
∗〉 (0 ≤ x < 1) (3)

Before you read on, see if you can find the answer for yourself.
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L21.14 Winning Strategies & Regions

Abbreviate
〈(x := 1;x′ = 1d︸ ︷︷ ︸

β

∪ x := x− 1︸ ︷︷ ︸
γ

)

︸ ︷︷ ︸
α

∗〉 (0 ≤ x < 1)

It is easy to see that ςωα ([0, 1)) = [0,∞), because ςnα([0, 1)) = [0, n+ 1) for all n ∈ N by a
simple inductive proof (recall α ≡ β ∪ γ):

ς0β∪γ([0, 1)) = [0, 1)

ςn+1
β∪γ ([0, 1)) = [0, 1) ∪ ςβ∪γ(ςnβ∪γ([0, 1)))

IH
= [0, 1) ∪ ςβ∪γ([0, n+ 1))

= [0, 1) ∪ ςβ([0, n+ 1)) ∪ ςγ([0, n)) = [0, 1) ∪ ∅ ∪ [1, n+ 2) = [0, n+ 1 + 1)

Consequently,
ςωα ([0, 1)) =

⋃
n<ω

ςnα([0, 1)) =
⋃
n<ω

[0, n+ 1) = [0,∞)

Hence, the ω−semantics would indicate that the hybrid game (3) can exactly be won
from all initial states in [0,∞), that is, for all initial states that satisfy 0 ≤ x.

Unfortunately, this is quite some nonsense. Indeed, the hybrid game in dGL formula
(3) can be won from all initial states that satisfy 0 ≤ x. But it can also be won from
other initial states! So the ω-strategic semantics ςωα ([0, 1)) misses out on winning states.
It is way too small for a winning region. There are cases, where the ω-semantics is
minuscule compared to the true winning region and arbitrarily far away from the truth
[Pla13].

In (3), this ω-level of iteration of the strategy function for winning regions misses out
on Angel’s perfectly reasonable winning strategy “first choose x := 1;x′ = 1d and then
always choose x := x− 1 until stopping at 0 ≤ x < 1”. This winning strategy wins from
every initial state in R, which is a much bigger set than ςωα ([0, 1)) = [0,∞).

Now this is the final answer for the winning region of (3). In particular, the dGL
formula (3) is valid. Yet, is there a direct way to see that ςωα ([0, 1)) = [0,∞) is not the
final answer for (3) without having to put the winning region computations aside and
constructing a separate ingenious winning strategy?

Before you read on, see if you can find the answer for yourself.
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The crucial observation is the following. The fact ςωα ([0, 1)) = [0,∞) shows that the
hybrid game in (3) can be won from all nonnegative initial values with at most ω (“first
countably infinitely many”) steps. Let’s recall how the proof worked, which showed
ςnα([0, 1)) = [0, n) for all n ∈ N. Its inductive step basically showed that if, for whatever
reason (by inductive hypothesis really), [0, n) is in the winning region, then [0, n + 1)
also is in the winning region by simply applying ςα(·) to [0, n).

How about doing exactly that again? For whatever reason (i.e. by the above argu-
ment), [0,∞) is in the winning region. Doesn’t that mean that ςα([0,∞)) should again
be in the winning region by exactly the same inductive argument above?

Before you read on, see if you can find the answer for yourself.
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Note 5 (+1 argument). Whenever a set Y is in the winning region ςα∗(X) of repetition,
then ςα(Y ) also should be in the winning region ςα∗(X), because it is just one step away
from Y and α∗ could simply repeat once more. That is

Y ⊆ ςα∗(X) then ςα(Y ) ⊆ ςα∗(X)

Applying Note 5 to the situation at hand works as follows. The above inductive proof
showed ςωα ([0, 1)) = [0,∞), which explains that at least [0,∞) ⊆ ς(β∪γ)∗([0, 1)) is in the
winning region of repetition. By Note 5, the winning region ς(β∪γ)∗([0, 1)) should, thus,
also contain its one-step winning region ςβ∪γ([0,∞)) ⊆ ς(β∪γ)∗([0, 1)). Computing what
that is gives

ςβ∪γ([0,∞)) = ςβ([0,∞)) ∪ ςγ([0,∞)) = R ∪ [0,∞) = R

Beyond that, the winning region cannot contain anything else, because R is the whole
state space already and it is kind of hard to add anything to that. And, indeed, trying
to use the winning region construction once more on R does not change the result:

ςβ∪γ(R) = ςβ(R) ∪ ςγ(R) = R ∪ [0,∞) = R

This result, then coincides with what the ingenious winning strategy above told us as
well: formula (3) is valid, because there is a winning strategy for Angel from every
initial state. Except that the repeated ςβ∪γ(·) winning region construction seems more
systematic than an ingenious guess of a smart winning strategy. So it gives a more
constructive and explicit semantics.

Let’s recap. In order to find the winning region of the hybrid game described in (3),
it took us not just infinitely many steps, but more than that. After ω many iterations to
arrive at ςωα ([0, 1)) = [0,∞), it took us one more step to arrive at

ς(β∪γ)∗([0, 1)) = ςω+1
α ([0, 1)) = R

where we denote the number of steps we took overall by ω + 1, since it was one more
step than (first countable) infinitely many (i.e. ω many); see Fig. 4 for an illustration.
More than infinitely many steps to get somewhere are plenty. Even worse: there are
cases where even ω + 1 has not been enough of iteration to get to the repetition. The
number of iterations needed to find ςα∗(X) could in general by much larger [Pla13].

The existence of the above winning strategy is only found at the level ςω+1
α ([0, 1)) =

ςα([0,∞)) = R. Even though any particular use of the winning strategy in any game
play uses only some finite number of repetitions of the loop, the argument why it will
always work requires > ω many iterations of ςα(·), because Demon can change x to
an arbitrarily big value, so that ω many iterations of ςα(·) are needed to conclude that
Angel has a winning strategy for any positive value of x. There is no smaller upper
bound on the number of iterations it takes Angel to win, in particular Angel cannot
promise ω as a bound on the repetition count, which is what the ω-semantics would
effectively require her to do. But strategies do converge after ω + 1 iterations.
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ςω+1
α (X) ςωα (X) · · · ς3α(X) ς2α(X) ςα(X) X

Figure 4: Iteration ςω+1
α (X) of ςα(·) from winning condition X = [0, 1) stops when ap-

plying ςα(·) to the ωth infinite iteration ςωα (X).

Note 6. The ω-semantics is inappropriate, because it can be arbitrarily far away from
characterizing the winning region of hybrid games.

More generally, the semantics of repetition could be defined using

ς0α(X)
def
= X

ςκ+1
α (X)

def
= X ∪ ςα(ςκα(X))

ςλα(X)
def
=

⋃
κ<λ

ςκα(X) λ 6= 0 a limit ordinal

where we keep on computing winning regions at limit ordinals λ such as ω as the union
of all previous winning regions. The semantics of repetition could then be defined as
the union of all winning regions for all ordinals:

ςα∗(X) = ς∞(α)X =
⋃

κ ordinal

ςκα(X)

Note 7. Unfortunately, hybrid games might require rather big infinite ordinals until this
inflationary style of computing their winning regions stops [Pla14]. That translates into
an infinite amount of work and then some more, infinitely often, to compute the winning
region starting from ∅. Hardly the sort of thing we would like to wait for until we finally
know who wins the game.

Finally look back at dGL formula (3) and observe what the above argument about the
winning region computation terminating at ω+1 implies about bounds on how long it
takes Angel to win the game in (3). Since the winning region only terminates at ω + 1,
she could not win with any finite bound n ∈ N on the number of repetitions it takes her
to win. Even though she will surely win in the end according to her winning strategy,
she has no way of saying how long that would take.
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L21.18 Winning Strategies & Regions

Not that Angels would ever do that. But suppose she were to brag to impress Demon
by saying she could win within n ∈ N repetitions, then it would be hard for her to keep
that promise. No matter how big a bound n ∈ N she chose, Demon could always spoil
it from any negative initial state by evolving his differential equation x′ = 1d for longer
than n time units so that it takes Angel more than n rounds to decrease the resulting
value down to [0, 1) again.

This illustrates the dual of the discussion on the advance notice semantics in Sect. 4,
which showed that Demon could make Angel win faster than she announced just to
make her lose in the final round. In (3), Demon can always make Angel win later than
she promised even if she ultimately will still win. This is the sense in which ω+1 is the
only bound on the number of rounds it takes Angel to win the hybrid game in (3). This
shows that a variation of the advance notice semantics based on Angel announcing to
repeat at most n ∈ N times (as opposed to exactly n ∈ N times) would not capture the
semantics of repetition appropriately.

Expedition 1 (Ordinal arithmetic). Ordinals extend natural numbers. Natural num-
bers are inductively defined as the (smallest) set N containing 0 and the successor
n+1 of every number n ∈ N that is in the set. Natural numbers are totally ordered.
Given any two different natural numbers, one number is going to be strictly smaller
than the other one. For every finite set of natural numbers there is a smallest nat-
ural number that’s bigger than all of them. Ordinals extend this beyond infinity.
They just refuse to stop after all natural numbers have been written down:

0 < 1 < 2 < 3 < . . .

Taking all those (countably infinitely many) natural numbers {0, 1, 2, 3, . . . }, there
is a smallest ordinal that’s bigger than all of them. This ordinal is ω, the first infinite
ordinal.a

0 < 1 < 2 < 3 < · · · < ω

Unlike the ordinals 1, 2, 3, . . . from the natural numbers, the ordinal ω is a limit
ordinal, because it is not the successor of any other ordinal. The ordinals 1, 2, 3, . . .
are successor ordinals, because each of them is the successor n+1 of another ordinal
n. The ordinal 0 is special, because it is not a successor ordinal of any ordinal or
natural number.

Now, since ordinals are keen on satisfying that every ordinal has a successor, or
that every set of ordinals has an ordinal that is bigger, ω must have a successor as
well. Its successor is the successor ordinal ω + 1, the successor of which is ω + 2
and so on:

0 < 1 < 2 < · · · < ω < ω + 1 < ω + 2 < . . .

Of course, in ordinal land, there ought to be an ordinal that’s bigger than even all
of those ordinals as well. It’s the limit ordinal ω + ω = ω · 2, at which point we
have counted to countable infinity twice already and will keep on finding bigger
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ordinals, because even ω · 2 will have a successor, namely ω · 2 + 1:

0 < 1 < 2 < · · · < ω < ω + 1 < ω + 2 < . . . ω · 2 < ω · 2 + 1 < ω · 2 + 2 < . . .

Now the set of all these will have a bigger ordinal ω · 2+ω = ω · 3, which again has
successors and so on. That happens infinitely often so that ω · n will be an ordinal
for any natural number n ∈ N. All those infinitely many ordinals will also have a
limit ordinal that’s bigger than all of them, which is ω · ω = ω2. That one again has
a successor ω2 + 1 and so on, also see Fig. 5:

0 < 1 < 2 < . . . ω < ω+1 < ω+2 < . . . ω · 2 < ω · 2+1 < . . . ω · 3 < ω · 3+1 < . . .

ω2 < ω2+1 < . . . ω2+ω < ω2+ω+1 < . . . ωω < . . . ωω
ω
< . . . ωCK

1 < . . . ω1 < . . .

The first infinite ordinal is ω, the Church-Kleene ordinal ωCK
1 , i.e. the first nonre-

cursive ordinal, and ω1 is the first uncountable ordinal. Every ordinal κ is either a
successor ordinal, i.e. the smallest ordinal κ = ι+1 greater than some ordinal ι, or a
limit ordinal, i.e. the supremum of all smaller ordinals. Depending on the context,
0 is considered a limit ordinal or separate.

Ordinals support (non-commutative) addition, multiplication, and exponentia-
tion, which can be defined by induction on its second argument:

ι+ 0 = ι

ι+ (κ+ 1) = (ι+ κ) + 1 for successor ordinals κ+ 1

ι+ λ =
⊔
κ<λ

ι+ κ for limit ordinals λ

ι · 0 = 0

ι · (κ+ 1) = (ι · κ) + ι for successor ordinals κ+ 1

ι · λ =
⊔
κ<λ

ι · κ for limit ordinals λ

ι0 = 1

ικ+1 = ικ · ι for successor ordinals κ+ 1

ιλ =
⊔
κ<λ

ικ for limit ordinals λ

where
⊔

denotes the supremum or least-upper bound. Carefully note ordinal odd-
ities like the noncommutativity coming from 2 · ω = 4 · ω and ω · 2 < ω · 4.

aFor a moment read “ω = ∞” as infinity, but you will realize in an instant that this view does not
go far enough, because there will be reason to distinguish different infinities.
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Figure 5: Illustration of infinitely many ordinals up to ωω

15-424 LECTURE NOTES ANDRÉ PLATZER
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6 Summary

This lecture saw the introduction of a proper formal semantics for differential game
logic and hybrid games. This resulted in a simple denotational semantics, where the
meaning of all formulas and hybrid games is a simple function of the meaning of its
pieces. The only possible outlier was the semantics of repetition, which turned out to
be rather subtle and ultimately defined by higher-ordinal iterations of winning region
constructions. This led to an insightful appreciation for the complexities, challenges,
and flexibilities of hybrid games.

The next lecture will revisit the semantics of repetition to find a simpler implicit char-
acterization and leverage the semantic basis for the next leg in the logical trinity: ax-
iomatics.

Exercises

Exercise 1. The formula (3) was shown to need ω + 1 iterations of the winning region
construction to terminate with the following answer justifying the validity of (3).

ςα∗([0, 1)) = ςω+1
α ([0, 1)) = ςα([0,∞)) = R

What happens if the winning region construction is used again to compute ςω+2
α ([0, 1))?

How often does the winning region construction need to be iterated to justify validity
of

〈(x := x+ 1;x′ = 1d ∪ x := x− 1)
∗〉(0 ≤ x < 1)

Exercise 2. How often does the winning region construction need to be iterated to justify
validity of

〈(x := x− 1; y′ = 1d ∪ y := y − 1; z′ = 1d ∪ z := z − 1)
∗〉(x < 0 ∧ y < 0 ∧ z < 0)

Exercise 3 (* Clockwork ω). How often does the winning region construction need to be
iterated to justify validity of

〈(?y < 0;x := x− 1; y′ = 1d ∪ ?z < 0; y := y − 1; z′ = 1d ∪ z := z − 1)
∗〉(x < 0∧y < 0∧z < 0)
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