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1. Introduction

Reasoning about cyber-physical systems and hybrid systems requires understanding
and handling their real arithmetic, which can be challenging, because cyber-physical
systems can have complex behavior. Differential dynamic logic and its proof calculus
[Pla08, Pla10, Pla12] reduce the verification of hybrid systems to real arithmetic. How
arithmetic interfaces with proofs has already been discussed in Lecture 9 on Proofs &
Arithmetic. How real arithmetic with linear and quadratic equations can be handled
by virtual substitution has been shown in Lecture 18 on Virtual Substitution & Real
Equations. Today’s lecture shows how virtual substitution for quantifier elimination in
real arithmetic extends to the case of linear and quadratic inequalities.

These lecture notes are loosely based on [Wei97, Pla10, Appendix D]. They add sub-
stantial intuition and motivation that is helpful for following the technical develop-
ment. More information about virtual substitution can be found in the literature [Wei97].
See, e.g., [PQR09, Pas11] for an overview of other techniques for real arithmetic.

The most important learning goals of this lecture are:

Modeling and Control: This lecture refines the indirect impact that the previous lec-
ture had on CPS models and controls by informing the reader about the conse-
quences of the analytic complexity resulting from different arithmetical modeling
tradeoffs. There are subtle analytic consequences from different arithmetic formu-
lations of similar questions that can have an impact on finding the right tradeoffs
for expressing a CPS model. A safe distance of car x to a stopping light m could
equally well be captured as x ≤ m or as x < m, for example.

Computational Thinking: The primary purpose of today’s lecture is to understand
how arithmetical reasoning, which is crucial for CPS, can be done rigorously and
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L19.2 Virtual Substitution & Real Arithmetic

automatically not just for the equations considered in Lecture 18 on Virtual Sub-
stitution & Real Equations but also for inequalities. While formulas involving
sufficiently many quadratic equations among other inequalities could already be
handled using the techniques from Lecture 18, such extensions are crucial for
proving arithmetic formulas that involve only inequalities, which happens rather
frequently in a world of CPS where many questions concern inequality bounds on
distances. Developing an intuition for the working principles of real arithmetic
decision procedures can be very helpful for developing strategies to verify CPS
models at scale. We will again see the conceptually very important device in the
logical trinity: the flexibility of moving back and forth between syntax and se-
mantics at will. Virtual substitutions will again allow us to move back and forth
at will between syntax and semantics. This time, square roots will not be all there
is to it, but the logical trinity will lead us to ideas from nonstandard analysis to
bridge the gap between semantic operations that are inexpressible otherwise in
first-order logic of real arithmetic.

CPS Skills: The author is not aware of any impact that this lecture has on CPS skills,
because this lecture focuses on the handling arithmetic in CPS analysis.

2. Recall: Square Root
√
· Substitutions for Quadratics

Recall the way to handle quantifier elimination for linear or quadratic equations from
Lecture 18 on Virtual Substitution & Real Equations by virtually substituting in its sym-
bolic solutions x = −c/b or x = (−b±

√
b2 − 4ac)/(2a), respectively:

Theorem 1 (Virtual substitution of quadratic equations). For a quantifier-free formula
F with x 6∈ a, b, c, the following equivalence is valid over R:

a 6= 0 ∨ b 6= 0 ∨ c 6= 0→(
∃x (ax2 + bx+ c = 0 ∧ F )↔

a = 0 ∧ b 6= 0 ∧ F−c/bx̂

∨ a 6= 0 ∧ b2 − 4ac ≥ 0 ∧
(
F

(−b+
√
b2−4ac)/(2a)

x̂ ∨ F (−b−
√
b2−4ac)/(2a)

x̂

))
(1)

When using virtual substitutions of square roots from Lecture 18, the resulting for-
mula on the right-hand side of the biimplication is quantifier-free and can be chosen
for QE(∃x (ax2 + bx+ c = 0 ∧ F )) as long as it is not the case that a = b = c = 0. In
case a = b = c = 0, another formula in F needs to be considered for directing quantifier
elimination by commuting and reassociating ∧, because the equation ax2 + bx+ c = 0
is noninformative if a = b = c = 0, e.g. when a, b, c are the zero polynomials or even if
they just have a common root.
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Virtual Substitution & Real Arithmetic L19.3

The equivalent formula on the right-hand side of the biimplication in (1) is a formula
in the first-order logic of real arithmetic when using the virtual substitution of square
root expressions defined in Lecture 18.

3. Infinity∞ Substitution

Theorem 1 addresses the case where the quantified variable occurs in a linear or quadratic
equation, in which case it is efficient to use Theorem 1, because there are at most 3 sym-
bolic points to consider corresponding to the respective solutions of the equation. The
quantified variable might only occur in inequalities, however. Consider a formula of
the form

∃x (ax2 + bx+ c ≤ 0 ∧ F ) (x 6∈ a, b, c) (2)

where x does not occur in a, b, c. Under the respective conditions from Theorem 1, the
possible solutions−c/b, (−b+

√
d)/(2a), (−b−

√
d)/(2a) from (1) continue to be options

for solutions of (2), because one way of satisfying the weak inequality ax2 + bx+ c ≤ 0
is by satisfying the equation ax2 + bx+ c = 0. So if F is true for any of those solutions
of the quadratic equation (under the auspices of the additional constraints on a, b, c),
then (2) holds as well.

Yet, if those points do not work out, the weak inequality in (2) allows for more possi-
ble solutions than the equation does. For example, if a = 0, b > 0, then sufficiently small
values of x would satisfy 0x2 + bx+ c ≤ 0. Also, if a < 0, then sufficiently small values
of x would satisfy ax2 + bx+ c ≤ 0, because x2 grows faster than x and, thus the nega-
tive ax2 ultimately overcomes any contribution of bx and c to the value of ax2 + bx+ c.
But if we literally substituted each such smaller value of x into F , that would quickly

diverge into the full substitution
∨

t∈T F
t
x for the uninsightful case of T def

= R from Lec-
ture 18.

Now, one possibility of pursuing this line of thought may be to substitute smaller
and smaller values for x into (2) and see if one of those happens to work. There is a
much better way though. The only really small value that would have to be substituted
into (2) for x to see if it happens to work is one that is so negative that it is smaller than
all others: −∞, which is the lower limit of all negative real numbers. Alternatively,
−∞ can be understood as being “always as negative as needed, i.e. more negative than
anything else”. Think of −∞ as being built out of elastic rubber so that it always ends
up being smaller when being compared to any actual real number, because the elas-
tic number −∞ simply shrinks every time it is being compared to any other number.
Analogously,∞ is the upper limit of all real numbers or “always as positive as needed,
i.e. more positive than anything else”. The elastic rubber version of understanding∞
is such that ∞ always grows as needed every time it is being compared to any other
number.

Let ∞,−∞ be positive and negative infinities, respectively, i.e. choose extra elements
∞,−∞ 6∈ R with −∞ < r <∞ for all r ∈ R. Formulas of real arithmetic can be sub-
stituted with ±∞ for a variable x in the compactified reals R ∪ {∞,−∞}. Yet, just like
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L19.4 Virtual Substitution & Real Arithmetic

with square root expressions, ±∞ do not actually need to ever occur in the resulting
formula, because substitution of infinities into formulas can be defined differently. For
example, (x+ 5 > 0)∞x simplifies to false , while (x+ 5 < 0)∞x simplifies to true .

Note 2. Substitution of the infinity −∞ for x into an atomic formula for a polynomial

p
def
=
∑n

i=0 aix
i with polynomials ai that do not contain x is defined by the following

equivalences (accordingly for substituting∞ for x).

(p = 0)−∞x̂ ≡
n∧

i=0

ai = 0 (3)

(p ≤ 0)−∞x̂ ≡ (p < 0)−∞x̂ ∨ (p = 0)−∞x̂ (4)

(p < 0)−∞x̂ ≡ p(−∞) < 0 (5)

(p 6= 0)−∞x̂ ≡
n∨

i=0

ai 6= 0 (6)

Lines (3) and its dual (6) use that the only equation of real arithmetic that infinities ±∞
satisfy is the trivial equation 0 = 0. Line (4) uses the equivalence p ≤ 0 ≡ p < 0 ∨ p = 0
and is equal to (p < 0 ∨ p = 0)−∞x̂ by the substitution base from Lecture 18. Line (5)
uses a simple inductive definition based on the degree, deg(p), in the variable x of the
polynomial p to characterize whether p is ultimately negative at −∞ (or for sufficiently
negative numbers):

Note 3. Let p def
=
∑n

i=0 aix
i with polynomials ai that do not contain x. Whether p is

ultimately negative at −∞, suggestively written p(−∞) < 0, is easy to characterize by
induction on the degree of the polynomial:

p(−∞) < 0
def≡

{
p < 0 if deg(p) = 0

(−1)nan < 0 ∨ (an = 0 ∧ (
∑n−1

i=0 aix
i)(−∞) < 0) if deg(p) > 0

p(−∞) < 0 is true in a state in which limx→−∞ p(x) < 0.

The first line captures that the sign of polynomials of degree 0 in the variable x does
not depend on x, so p(−∞) < 0 iff the polynomial that has degree 0 in x and, thus, only
consists of a term p = a0 that is constant in x, is negative (which may still depend on the
value of other variables in a0 but not on x). The second line captures that the sign at−∞
of a polynomial of degree n = deg(p) > 0 is determined by the degree-modulated sign
of its leading coefficient an, because for x of sufficiently big value, the value of anxn will
dominate all lower-degree values, whatever their coefficients are. For even n > 0, xn <
0 while xn < 0 for odd n at −∞. In case the leading coefficient an evaluates to zero, the
value of p at −∞ depends on the value at −∞ of the remaining polynomial

∑n−1
i=0 aix

i

of lower degree, which can be determined recursively as (
∑n−1

i=0 aix
i)(−∞) < 0.
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Virtual Substitution & Real Arithmetic L19.5

Substitution of ∞ for x into an atomic formula is defined similarly, except that the
sign factor (−1)n disappears, because xn > 0 at∞ whatever value n > 0 has. Substitu-
tion of∞ or of −∞ for x into other first-order formulas is then defined on this basis as
in Lecture 18.

Example 2 (Sign of quadratic polynomials at −∞). Using this principle to check under
which circumstance the quadratic inequality from (2) evaluates to true yields the an-
swer from our earlier ad-hoc analysis of what happens for sufficiently small values of
x:

(ax2 + bx+ c ≤ 0)
−∞
x̂ ≡ (−1)2a < 0 ∨ a = 0 ∧ ((−1)b < 0 ∨ b = 0 ∧ c < 0)

≡ a < 0 ∨ a = 0 ∧ (b > 0 ∨ b = 0 ∧ c < 0)

One representative example for each of those cases is illustrated in Fig. 1. In the same
way, the virtual substitution can be used to see under which circumstance the remain-
der formula F from (2) also evaluates to true for sufficiently small values of x, exactly
when F−∞x̂ holds. In contrast, note that (at least for a 6= 0), the virtual substitution
of ∞ for x would not make sense to check (2) at, because in that case, the inequality
ax2 + bx+ c ≤ 0 is violated, as can be confirmed by checking(ax2 + bx+ c ≤ 0)

∞
x̂ . That

would be different if the inequality were ax2 + bx+ c ≥ 0.

x

case a < 0

−x2 + x+ 1

−∞
x

case a = 0 ∧ b > 0

x+ 1
2

−∞
x

case a = b = 0 > c

−1

−∞

Figure 1: Illustration of the value of different quadratic functions p where p−∞x̂ ≡ true

The crucial thing to note is again that the virtual substitution of infinities ±∞ for x
in F giving F±∞x̂ is semantically equivalent to the result F±∞x of the literal substitution
replacing xwith±∞, but operationally different, because the virtual substitution never
introduces actual infinities. Because of their semantical equivalence, we use the same
notation by abuse of notation.
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L19.6 Virtual Substitution & Real Arithmetic

Lemma 3 (Virtual substitution lemma for infinities). The result F−∞x̂ of the virtual
substitution is semantically equivalent to the the result F−∞x of the literal substitution, but
better behaved, because it stays within FOLR proper. Essentially, the following equivalence
of virtual substitution and literal substitution for infinites is valid:

F−∞x ↔ F−∞x̂

Keep in mind that the result F−∞x̂ of virtual substitution is a proper formula of FOLR,
while the literal substitution F−∞x could only be considered a formula in an extended logic
such as FOLR∪{−∞,∞} that allows for infinite quantities. The same property holds for F∞x̂ .

Note that the situation is, in a sense, the converse of Lecture 18, where the square root
expressions were already in the semantic domain R, and just had to be made accessible
in the syntactic formulas via virtual substitutions. In Lemma 3, instead, virtual substitu-
tions already know more about infinities ±∞ than the semantic domain R does, which
is why the semantic domain needs an extension to R ∪ {−∞,∞} for the alignment in
Lemma 3.

Expedition 1 (Infinite challenges with infinities in extended reals R ∪ {−∞,∞}).
The set R ∪ {−∞,∞} is seemingly easily written down as a semantic domain of
extended reals. What exactly do we mean by it? The set of reals to which we adjoin
two new elements, denoted −∞ and ∞ which are the minimum and maximum
element of the ordering ≤:

∀x (−∞ ≤ x ≤ ∞) (7)

This turns R ∪ {−∞,∞} into a complete lattice, because every subset has a supre-
mum and an infimum. The extended reals are a compactification of R. But where
does that leave the other arithmetic properties of R? What is∞+ 1 or∞+ x when
∞ is already infinitely big? The compatibility of ≤ with + expects∞ ≤ ∞ + x at
least for all x ≥ 0. By (7) also∞+ x ≤ ∞. Because∞ is so infinitely big, the same
∞ + x = ∞ is expected even for all x, except −∞. The compatibility of ≤ with ·
expects∞ ≤∞ · x at least for all x ≥ 1. By (7) also∞ · x ≤ ∞. Since∞ is infinitely
big, the same∞ · x =∞ is expected even for all x > 0.

∞+ x =∞ for all x 6= −∞
−∞+ x = −∞ for all x 6=∞
∞ · x =∞ for all x > 0

∞ · x = −∞ for all x < 0

−∞ · x = −∞ for all x > 0

−∞ · x =∞ for all x < 0
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Virtual Substitution & Real Arithmetic L19.7

This extension sounds reasonable. But the resulting set R∪{−∞,∞} is not a field.
Otherwise∞would have an additive inverse. But what xwould satisfy∞+x = 0?
One might guess x = −∞, but then one would also expect 0 = ∞ + (−∞) =
∞+ (−∞+ 1) = ((∞+ (−∞)) + 1 = 0 + 1 = 1, which is not a good idea to adopt
for proving anything in a sound way. Instead, problematic terms remain explicitly
undefined.

∞−∞ = undefined
0 · ∞ = undefined

±∞/±∞ = undefined
1/0 = undefined

Since these conventions make infinities somewhat subtle, we happily remember
that the only thing we need them for is to make sense of inserting sufficiently neg-
ative (or sufficiently positive) numbers into inequalities to satisfy them. That is still
mostly harmless.

4. Infinitesimal ε Substitutions

Theorem 1 addresses the case where the quantified variable occurs in a linear or quadratic
equation and the virtual substitution in Sect. 3 adds the case of sufficiently small values
for x to handle ax2 + bx+ c ≤ 0. Consider a formula of the form

∃x (ax2 + bx+ c < 0 ∧ F ) (x 6∈ a, b, c) (8)

In this case, the roots from Theorem 1 will not help, because they satisfy the equation
ax2 + bx+ c = 0 but not the strict inequality ax2 + bx+ c < 0. The virtual substitution
of−∞ for x from Sect. 3 still makes sense to consider, because the arbitrarily small neg-
ative numbers that it corresponds to might satisfy F and ax2 + bx+ c < 0. If −∞ does
not work, however, the solution of (8) could be near one of the roots of ax2 + bx+ c = 0,
just slightly off so that ax2 + bx+ c < 0 is actually satisfied rather than ax2 + bx+ c = 0.
How far off? Well, saying that exactly by any real number is again difficult, because any
particular real number might already have been too large in absolute value, depending
on the constraints in the remainder of F . Again, this calls for quantities that are always
as small as we need them to be.

Sect. 3 used a negative quantity that is so small that it is smaller than all negative
numbers and hence infinitely small (but infinitely large in absolute value). The neg-
ative infinity −∞ that is smaller no matter what other number we compare it with.
Analyzing (8) needs positive quantities that are infinitely small and hence also infinitely
small in absolute value. Infinitesimals are positive quantities that are always smaller
than all positive real numbers, i.e. “always as small as needed”. Think of them as built
out of elastic rubber so that they always shrink as needed when compared with any
actual positive real number so that the infinitesimals end up being smaller than posi-
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L19.8 Virtual Substitution & Real Arithmetic

tive reals. Another way of looking at infinitesimals is that they are the multiplicative
inverses of ±∞.

A positive infinitesimal∞ > ε > 0 is positive and an extended real that is infinites-
imal, i.e. positive but smaller than all positive real numbers (ε < r for all r ∈ R with
r > 0). For all non-zero polynomials p ∈ R[x] \ {0}, ζ ∈ R, the Taylor series

p(ζ + ε) =
∞∑
n=0

p(n)(ζ)

n!
(ζ + ε− ζ)n =

∞∑
n=0

p(n)(ζ)

n!
εn =

deg(p)∑
n=0

p(n)(ζ)

n!
εn

of p around ζ evaluated at ζ + ε (note that ε is small enough to be in the domain of
convergence of the Taylor series) can be used to show:

1. p(ζ + ε) 6= 0
that is, infinitesimals ε are always so small that they never yield roots of any equa-
tion, except the trivial zero polynomial. Whenever it looks like there might be a
root, the infinitesimal just became a bit smaller to avoid satisfying the equation.
And nonzero univariate polynomials p(x) only have finitely many roots, so the
infinitesimals will take care to avoid all of them by becoming just a little smaller.

2. p(ζ) 6= 0 ⇒ p(ζ)p(ζ + ε) > 0,
that is, p has constant sign on infinitesimal neighborhoods of nonroots ζ. If the
neighborhood around ζ is small enough (and for an infinitesimal it will be), then
the polynomial will not yet have changed sign on that interval, because the sign
will only change after passing one of the roots.

3. 0 = p(ζ) = p′(ζ) = p′′(ζ) = · · · = p(k−1)(ζ) 6= p(k)(ζ) ⇒ p(k)(ζ)p(ζ + ε) > 0,
that is the first nonzero derivative of p at ζ determines the sign of p in a small
enough neighborhoods of ζ (infinitesimal neighborhoods will be small enough),
because the sign will only change after passing one of the roots.

Note 5. Substitution of an infinitesimal expression e + ε with a square root expression
e = (a + b

√
c)/d and a positive infinitesimal ε for x into a polynomial p =

∑n
i=0 aix

i

with polynomials ai that do not contain x is defined by the following equivalences.

(p = 0)e+ε
x̂ ≡

n∧
i=0

ai = 0 (9)

(p ≤ 0)e+ε
x̂ ≡ (p < 0)e+ε

x̂ ∨ (p = 0)e+ε
x̂ (10)

(p < 0)e+ε
x̂ ≡ (p+ < 0)

e
x̂ (11)

(p 6= 0)e+ε
x̂ ≡

n∨
i=0

ai 6= 0 (12)

Lines (9) and its dual (12) use that infinitesimals offsets satisfy no equation except the
trivial equation 0=0 (case 1), which makes infinitesimals and infinities behave the same
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Virtual Substitution & Real Arithmetic L19.9

as far as equations go. Line (10) again uses the equivalence p ≤ 0 ≡ p < 0 ∨ p = 0. Line
(11) checks whether the sign of p at the square root expression e is already negative
(which will make p inherit the same negative sign after an infinitesimal offset at e + ε
by case 2) or will immediately become negative right away using a recursive formu-
lation of immediately becoming negative that uses higher derivatives (which deter-
mine the sign by case 3). The lifting to arbitrary quantifier-free formulas of real arith-
metic is again by substitution into all atomic subformulas and equivalences such as
(p > q) ≡ (p− q > 0) as defined in Lecture 18. Note that, for the case (p < 0)e+ε

x̂ , the
(non-infinitesimal) square root expression e gets virtually substituted in for x into a
formula p+ < 0, which characterizes whether p becomes negative immediately at or
after x (which will be virtually substituted by the intended square root expression e
momentarily).

Note 6. Whether p is immediately negative at x, i.e. negative itself or of a derivative p′

that makes it negative on an infinitesimal interval [x, x+ ε], suggestively written p+ < 0,
can be characterized recursively:

p+ < 0
def≡

{
p < 0 if deg(p) = 0

p < 0 ∨ (p = 0 ∧ (p′)+ < 0) if deg(p) > 0

p+ < 0 is true in a state in which limy→x+ p(x) = limy↘x p(x) = lim y>x
y→x

p(x) < 0 holds
for the limit of p at x from the right.

The first line captures that the sign of polynomials of degree 0 in the variable x does not
depend on x, so they are negative at x iff the polynomial p = a0 that has degree 0 in x
is negative (which may still depend on the value of other variables in a0). The second
line captures that the sign at x + ε of a non-constant polynomial is still negative if it
is negative at x (because x + ε is not far enough away from x for any sign changes by
case 2) or if x is a root of p but its derivative p′ at x is immediately negative, since the
first nonzero derivative at x determines the sign near x by case 3.

Example 4 (Sign of quadratic polynomials after second root). Using this principle to
check under which circumstance the quadratic strict inequality from (8) evaluates to
true at (−b+

√
b2 − 4ac)/(2a) + ε, i.e. right after its root (−b+

√
b2 − 4ac)/(2a), leads

to the following computation.

(ax2 + bx+ c)
+
< 0 ≡ ax2+bx+c < 0∨ax2+bc+c = 0∧(2ax+b < 0∨2ax+b = 0∧2a < 0)
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L19.10 Virtual Substitution & Real Arithmetic

with successive derivatives to break ties (i.e. zero signs in previous derivatives). Hence,

(ax2 + bx+ c < 0)
(−b+

√
b2−4ac)/(2a)+ε

x̂ ≡ ((ax2 + bx+ c)
+
< 0)

(−b+
√
b2−4ac)/(2a)

x̂ ≡

(ax2 + bx+ c < 0 ∨ ax2 + bc+ c = 0 ∧ (2ax+ b < 0 ∨ 2ax+ b = 0 ∧ 2a < 0))
(−b+

√
b2−4ac)/(2a)

x̂

≡ 0·1 < 0∨0 = 0∧((0 < 0 ∨ 4a2 ≤ 0 ∧ (0 < 0 ∨ −4a2(b2 − 4ac) < 0)︸ ︷︷ ︸
(2ax+b<0)

(−b+
√

b2−4ac)/(2a)
x̂

)∨ 0 = 0︸ ︷︷ ︸
(2ax+b=0)...x̂

∧ 2a1 < 0︸ ︷︷ ︸
2a<0

)

≡ 4a2 ≤ 0 ∧ −4a2(b2 − 4ac) < 0 ∨ 2a < 0

because the square root virtual substitution of its own root (−b+
√
b2 − 4ac)/(2a) into

ax2 + bx+ c gives (ax2 + bx+ c)
(−b+

√
b2−4ac)/(2a)

x̂ = 0 by construction (compare exam-
ple from Lecture 18). The virtual substitution into the other polynomial 2ax+ b above
computes as follows:

(2ax+ b)
(−b±

√
b2−4ac)/(2a)

x̂ ≡ 2a · (−b±
√
b2 − 4ac)/(2a) + b

= (−2ab+±2a
√
b2 − 4ac)/(2a) + b

= (−2ab + 2ab +±2a
√
b2 − 4ac)/(2a)

= (0 +±2a
√
b2 − 4ac)/(2a)

The resulting formula can be further simplified internally to

(ax2 + bx+ c < 0)
(−b+

√
b2−4ac)/(2a)+ε

x̂ ≡ 4a2 ≤ 0∧−4a2(b2 − 4ac) < 0∨ 2a < 0 ≡ 2a < 0

because the first conjunct 4a2 ≤ 0 ≡ a = 0 and, with a = 0, the second conjunct sim-
plifies to −4a2(b2 − 4ac)

0
a = −0(b2) < 0, which is impossible in the reals. This answer

makes sense. Because, indeed, exactly if 2a < 0 will a quadratic polynomial still eval-
uate to ax2 + bx+ c < 0 right after its second root (−b+

√
b2 − 4ac)/(2a). Fig. 2 illus-

trates to how this relates to the parabola point downwards, because of 2a < 0.

x

case a < 0

−x2 + x+ 1

x

case a > 0

x2 − x− 1

x

case a < 0

−1
2x

2 + x− 1
10

Figure 2: Illustration of the sign after the second root for quadratic functions p
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Virtual Substitution & Real Arithmetic L19.11

Formulas such as this one (2a > 0) are the result of a quantifier elimination procedure.
If the formula after quantifier elimination is either true or false , then you know for sure
that the formula is valid (true) or unsatisfiable (false), respectively. If the result of quan-
tifier elimination is true , for example, KeYmaera can close proof branches (marked by
proof rule R in our sequent proofs). Yet, quantifier elimination can also return other
formulas, such as 2a > 0, which are equivalent to the formula where quantifier elimi-
nation has been applied. In particular, they identify exactly under which circumstance
that respective quantified formula is true. This can be very useful for identifying the
missing assumptions to make a proof work and the corresponding statement true.

Note 7 (Quantifier elimination identifies requirements). If the result of quantifier
elimination is true , the corresponding formula is valid. If it is false , the corresponding
formula is not valid (and even unsatisfiable). In between, i.e. when quantifier elimination
results in a logical formula that is sometimes false and sometimes true, then this formula
identifies exactly the missing requirements that are needed to make the desired formula
true. This can be useful to synthesize missing requirements. Take care, however, not to
work with universal closures, in which case true and false are the only possible outcomes.

The crucial thing to note about the process is again that the virtual substitution of
infinitesimal expressions e + ε for x in F giving F e+ε

x̂ is semantically equivalent to the
result F e+ε

x of the literal substitution replacing x with e+ ε, but operationally different,
because the virtual substitution never introduces actual infinitesimals. Because of their
semantical equivalence, we use the same notation by abuse of notation.

Lemma 5 (Virtual substitution lemma for infinitesimals). The result F e+ε
x̂ of the vir-

tual substitution is semantically equivalent to the the result F e+ε
x of the literal substitu-

tion, but better behaved, because it stays within FOLR proper. Essentially, the following
equivalence of virtual substitution and literal substitution for infinitesimals is valid:

F e+ε
x ↔ F e+ε

x̂

Keep in mind that the result F e+ε
x̂ of virtual substitution is a proper formula of FOLR,

while the literal substitution F e+ε
x could only be considered a formula in an extended logic

such as FOLR[ε] that allows for infinitesimal quantities from nonstandard analysis.

Computationally more efficient substitutions of infinitesimals have been reported
elsewhere [BD07].

Expedition 2 (Nonstandard analysis: infinite challenges with infinitesimal ε). Infi-
nite quantities in the extended reals R ∪ {−∞,∞} already needed some attention
to stay away from undefined expressions. Infinitesimals are infinitely more subtle
than infinities. Real numbers are Archimedean, i.e. for every non-zero x ∈ R, there
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is an n ∈ N such that
|x+ x+ · · ·+ x︸ ︷︷ ︸

n times

| > 1

Infinitesimals are non-Archimedean, because it does not matter how often you add
ε, it still won’t sum to one. There is a myriad of ways of making sense of infinitesi-
mal quantities in nonstandard analysis, including surreal numbers, superreal num-
bers, and hyperreals. In a sense, infinitesimal quantities can be considered as mul-
tiplicative inverses of infinities but bring up many subtleties. For example, if an
infinitesimal ε is added to R, then the following terms need to denote values and
satisfy ordering relations:

ε2 ε x2 + ε (x+ ε)2 x2 + 2εx+ 5ε+ ε2

Fortunately, a rather tame version of infinitesimals is enough for the context of
virtual substitution. The crucial properties of infinitesimals we need are [dMP13]:

ε > 0

∀x ∈ R (x > 0→ ε < x)

That is, the infinitesimal ε is positive and smaller than all positive reals.

5. Quantifier Elimination by Virtual Substitution

The following quantifier elimination technique due to Weispfenning [Wei97] works for
formulas with a quantified variable that occurs at most quadratically.

Theorem 6 (Virtual substitution of quadratic constraints [Wei97]). LetF be a quantifier-
free formula in which all atomic formulas are of the form ax2 + bx+ c ∼ 0 for x-free poly-
nomials a, b, c (i.e. x 6∈ a, b, c) and ∼ ∈ {=,≤, <, 6=}, with corresponding discriminant

d
def
= b2 − 4ac. Then ∃xF is equivalent over R to the following quantifier-free formula:

F−∞x̂

∨
∨

(
ax2+bx+c

{
=
≤

}
0
)
∈F

(
a = 0 ∧ b 6= 0 ∧ F

−c/b
x̂ ∨ a 6= 0 ∧ d ≥ 0 ∧ (F

(−b+
√
d)/(2a)

x̂ ∨ F
(−b−

√
d)/(2a)

x̂ )
)

∨
∨

(ax2+bx+c{ 6=<}0)∈F

(
a = 0 ∧ b 6= 0 ∧ F

−c/b+ε
x̂ ∨ a 6= 0 ∧ d ≥ 0 ∧ (F

(−b+
√
d)/(2a)+ε

x̂ ∨ F
(−b−

√
d)/(2a)+ε

x̂ )
)

Proof. The proof is an extended form of the proof reported in the literature [Wei97].
The proof first considers the literal substitution of square root expressions, infinities,
and infinitesimals and then, as a second step, uses that the virtual substitutions that
avoid square root expressions, infinities, and infinitesimals are equivalent (Lecture 18,
Lemma 3 and 5). Let G denote the quantifier-free right-hand side so that the validity of
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the following formula needs to be shown:

∃xF ↔ G (13)

The implication from the quantifier-free formulaG to ∃xF in (13) is obvious, because
each disjunct of the quantifier-free formula has a conjunct of the form F t

x for some (ex-
tended) term t even if it may be a square root expression or infinity or term involving
infinitesimals. Whenever a formula of the form F t

x is true, ∃xF holds with that t as a
witness, even when t is a square root expression, infinity, or infinitesimal.

The converse implication from ∃xF to the quantifier-free formula G in (13) depends
on showing that the quantifier-free formula G covers all possible representative cases
and that the accompanying constraints on a, b, c, d are necessary so that they do not
constrain solutions in unjustified ways.

One key insight is that it is enough to prove (13) for the case where all variables in
F except x have concrete numeric real values, because the equivalence (13) is valid
iff it true in all states. So considering one concrete state at a time is enough. By a
fundamental property of real arithmetic called o-minimality, the set

S(F ) = {ν(x) ∈ R : ν |= F}

of all real values for x that satisfy F forms a finite union of (pairwise disjoint) intervals,
because the polynomials in F only change signs at their roots. There are only finitely
many roots now that the polynomials have become univariate, i.e. with the only vari-
able x, since all free variables are evaluated to concrete real numbers in ν. Without loss
of generality (by merging overlapping or adjacent intervals), all those intervals are as-
sume to be maximal, i.e. no bigger interval would satisfy F . So F actually changes its
truth-value at the lower and upper endpoints of these intervals (unless the interval is
unbounded).

The endpoints of these intervals are of the form−c/b, (−b+
√
d)/(2a), (−b−

√
d)/(2a)

or∞,−∞ for any of the polynomials ax2 + bx+ c in F , because all polynomials in F are
at most quadratic and all roots of those polynomials are of one of the above forms. In
particular, if −c/b is an endpoint of the intervals of S(F ) for a polynomial ax2 + bx+ c
in F , then a = 0, b 6= 0, because that is the only case where −c/b satisfies F , which has
only at most quadratic polynomials. Likewise, if (−b +

√
d)/(2a) or (−b −

√
d)/(2a)

are endpoints of intervals of S(F ) for a polynomial ax2 + bx+ c in F , then both imply
that a 6= 0 and discriminant d ≥ 0, otherwise there is no such solution in the reals.
Consequently, all the side conditions for the roots in the quantifier-free formula G are
necessary.

Now consider one interval I ⊆ S(F ) (if there is none, ∃xF is false and so will G
be). If I has no lower bound in R, then F−∞x̂ is true by construction (by Lemma 3, the
virtual substitution F−∞x̂ is equivalent to the literal substitution F−∞x in ±∞-extended
real arithmetic). Otherwise, let α ∈ R be the lower bound of I . If α ∈ I (i.e. I is closed
at the lower bound), then α is of the form −c/b, (−b +

√
d)/(2a), (−b −

√
d)/(2a) for

some equation (ax2 + bx+ c = 0) ∈ F or some weak inequality (ax2 + bx+ c ≤ 0) ∈ F
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from F . Since the respective extra conditions on a, b, c, d hold, the quantifier-free for-
mula G evaluates to true. If, otherwise, α 6∈ I (i.e. I is open at the lower bound
α), then α is of the form −c/b, (−b +

√
d)/(2a), (−b −

√
d)/(2a) for some disequation

(ax2 + bx+ c 6= 0) ∈ F or some strict inequality (ax2 + bx+ c < 0) ∈ F . Hence, the in-
terval I cannot be a single point. Thus, one of the infinitesimal increments −c/b +
ε, (−b +

√
d)/(2a) + ε, (−b −

√
d)/(2a) + ε is in I ⊆ S(F ), because infinitesimals are

smaller than all positive real numbers. Since the respective conditions a, b, c, d hold,
the quantifier-free formula G is again true. Hence, in either case, the quantifier-free
formula is equivalent to ∃xF in state ν. Since the state ν giving concrete real numbers
to all free variables of ∃xF was arbitrary, the same equivalence holds for all ν, which
means that the quantifier-free formula G is equivalent to ∃xF . That is G↔ ∃xF is
valid, i.e. � G↔ ∃xF .

Figure 3: (left) Illustration of roots e and infinitesimal offsets e + ε checked by virtual
substitution along with −∞ (right) Illustration of roots e and infinitesimal
offsets e− ε that could be checked along with +∞ instead

The order of the interval endpoints that the proof of Theorem 6 uses in addition to
−∞ are illustrated in Fig. 3(left). Observe that exactly one representative point is placed
in each of the regions of interest, −∞, each of the roots r, and just infinitesimally after
the roots at e+ ε. Alternatively, Theorem 6 could be rephrased to work with∞, at each
root e, and always before the roots at e− ε; see Fig. 3(right) and Exercise 3. The illustra-
tions in Fig. 3 show the ordering situation for a higher-degree polynomial p even if The-
orem 6 only makes use of the argument for p = ax2 + bx+ c up to degree 2. Quantifier
elimination procedures for higher degrees are still based on this fundamental principle,
but require more algebraic computations.

Finally note that it is quite possible that the considered polynomial p does not single
out the appropriate root e or off-root e + ε that satisfies F to witness ∃xF . So none of
the points illustrated in Fig. 3 will satisfy F , because only a point other than e+ ε in the
open interval between two roots will work.
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Note 10 (No rejection without mention). The key argument underlying all quantifier
elimination procedures in some way or another is that another part of F that is not satisfied
for any of the points in Fig. 3 that p brings about would have to mention another polynomial
q with different roots d or different off-roots d + ε that will then enter the big disjunction
in Theorem 6.

Example 7. The example of nonnegative roots of quadratic polynomials from Lecture 18
on Virtual Substitutions & Real Equations used Theorem 1 to construct and justify the
quantifier elimination equivalence:

QE(∃x (ax2 + bx+ c = 0 ∧ x ≥ 0))

≡ b2 − 4ac ≥ 0 ∧ (ba ≤ 0 ∧ ac ≥ 0 ∨ a ≥ 0 ∧ ac ≤ 0 ∨ a ≤ 0 ∧ ac ≤ 0)

under the assumption a 6= 0. Specializing to a case shown in Fig. 2 gives:

QE(∃x (x2 − x+ c = 0 ∧ x ≥ 0)) ≡ (−1)2 − 4c ≥ 0 ∧ (c ≥ 0 ∨ c ≤ 0) ≡ 1− 4c ≥ 0 ≡ c ≤ 1

4

By Theorem 6, the same square root expression substitution as in Lecture 18 on Virtual
Substitutions & Real Equations will happen for the atomic formula x2 − x+ c ≤ 0 ex-
cept that the case of−∞will be added as well as the root 0 that results from considering
the linear atomic formula −x ≥ 0:

QE(∃x (x2 − x+ c ≤ 0 ∧ x ≥ 0)) ≡

(x2 − x+ c ≤ 0 ∧ . . . )−∞x̂︸ ︷︷ ︸
false

∨1− 4c ≥ 0 ∨ (x2 − x+ c ≤ 0 ∧ x ≥ 0)
0
x̂︸ ︷︷ ︸

c≤0∧0≥0

≡ 1− 4c ≥ 0

Note that the additional disjunction x ≤ 0 coming from the root 0 of −x is in this case
subsumed by the previous disjunct 1− 4c ≥ 0. Hence, adding the roots of −x did not
modify the answer in this case. When adding a third conjunct−x+ 2 = 0, this becomes
critical:

QE(∃x (x2 − x+ c ≤ 0 ∧ x ≥ 0 ∧ −x+ 2 = 0))

Since the first two polynomials x2 − x+ c and −x are still the same, the same vir-
tual substitutions will happen as before. Except that they fail on the new conjunct
−x+ 2 = 0, because the root 0 of the polynomial −x from the second conjunct does not
satisfy−x+ 2 = 0 and because the virtual substitution of the roots (−1±

√
1− 4c)/2 of

the first polynomial x2 − x+ c fail:

(−x+ 2 = 0)
(−1±

√
1−4c)/2

x̂ ≡ ((1 +∓1
√
1− 4c)/2 + 2 = 0) ≡ ((3 +∓1

√
1− 4c)/2 = 0)

≡ ∓3 ≤ 0 ∧ 32 − (∓1)2(1− 4c) = 0 ≡ −3 ≤ 0 ∧ 32 − (−1)2(1− 4c) = 0 ≡ 8− 4c = 0

The latter is only possible for c = 2, which is ruled out by the discriminant condition
1− 4c ≥ 0 that precedes it. And, indeed, neither the roots of the quadratic polynomial
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illustrated in Fig. 2 nor the roots of−x nor−∞ are the right points to consider to satisfy
the last conjunct. Of course, the last conjunct expresses that by saying −x+ 2 = 0 quite
explicitly. Never mind that this is an equation for now. Either way, the atomic formula
clearly exposes that −x+ 2 is the polynomial that it cares about. So its roots might be
of interest and will, indeed, by considered in the big disjunction of Theorem 6 as well.
Since−x+ 2 is a visibly linear polynomial, its solution is x = −2/− 1 = 2 which is even
kind enough to be a standard real number so that literal substitution is sufficient and
no virtual substitution is needed. Consequently, the substitution of this root x = 2 of
the last conjunct into the full formula quickly yields:

(x2 − x+ c ≤ 0 ∧ x ≥ 0 ∧ −x+ 2 = 0)
2
x ≡ 22 − 2 + c ≤ 0 ∧ 2 ≥ 0 ∧ 0 = 0 ≡ 2 + c ≤ 0

This provides an answer that the quadratic polynomial x2 − x+ c itself could not fore-
see because it depends on the polynomial −x+ 2 to even take this root into considera-
tion. By Theorem 6, the overall result of quantifier elimination, thus, is the combination
of the cases considered separately above:

QE(∃x (x2 − x+ c ≤ 0 ∧ x ≥ 0 ∧ −x+ 2 = 0))

≡ (x2 − x+ c ≤ 0 ∧ . . . )−∞x̂︸ ︷︷ ︸
false

∨ 1− 4c ≥ 0 ∧ (· · · ∧ −x+ 2 = 0)
(−1±

√
1−4c)/2

x̂︸ ︷︷ ︸
8−4c=0

∨ −1 6= 0 ∧ (x2 − x+ c ≤ 0 ∧ x ≥ 0)
0
x︸ ︷︷ ︸

c≤0∧0≥0

∧ (−x+ 2 = 0)0x︸ ︷︷ ︸
2=0

∨ −1 6= 0 ∧ (x2 − x+ c ≤ 0 ∧ x ≥ 0 ∧ −x+ 2 = 0)
2
x︸ ︷︷ ︸

2+c≤0

≡ 2 + c ≤ 0 ≡ c ≤ −2

In this particular case, observe that Theorem 1 using −x+ 2 = 0 as the key formula
would have been most efficient, because that would have gotten the answer right away
without fruitless disjunctions. This illustrates that it pays off to pay attention with
real arithmetic and always choose the computationally most parsimonious approach.
But the example also illustrates that the same computation would happen if the third
conjunct would have been−x+ 2 ≤ 0, in which case Theorem 1 would not have helped.

Optimizations are possible for virtual substitution [Wei97] if there is only one quadratic
occurrence of x, and that occurrence is not in an equation. If that occurrence is an
equation, Theorem 1 already showed what to do. If there is only one occurrence of
a quadratic inequality, the following variation of Theorem 6 works, which uses exclu-
sively linear fractions.
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Note 11 ([Wei97]). Let
(
Ax2 +Bx+ C

{
≤
<
6=

}
0

)
∈ F be the only quadratic occurrence

of x. In that case, ∃xF is equivalent over R to the following quantifier-free formula:

A = 0 ∧B 6= 0 ∧ F−C/B
x̂ ∨A 6= 0 ∧ F−B/(2A)

x̂

∨ F−∞x̂ ∨ F∞x̂
∨

∨
(
0x2+bx+c

{
=
≤

}
0
)
∈F

(
b 6= 0 ∧ F−c/bx̂

)
∨

∨
(0x2+bx+c{ 6=<}0)∈F

(
b 6= 0 ∧ (F

−c/b+ε
x̂ ∨ F−c/b−εx̂ )

)

The clou in this case is that the extremal values of Ax2 +Bx+ C are at the roots of the
derivative

(Ax2 +Bx+ C)′ = 2AX +B
!
= 0 i.e. x = − B

2A

Since the only quadratic occurrence in Note 11 is not an equation, this extremal value
is the only point of the quadratic polynomial that matters. In this case, F−B/(2A)

x̂ will
substitute −B/(2A) for x in the only quadratic polynomial as follows:(
Ax2 +Bx+ C

{
≤
<

6=

}
0

)−B/(2A)

x̂

≡

(
A
(−B)2

4A2
+
−B2

2A
+ C

{
≤
<

6=

}
0

)
≡

(
−B2

4A
+ C

{
≤
<

6=

}
0

)

The formula resulting from Note 11 might be bigger than that of Theorem 6 but it does
not increase the polynomial degrees.

Further optimizations are possible if some signs of a, b are known, because several
cases in the quantifier-free expansion then become impossible and can be simplified to
true or false immediately. This helps simplify the formula in Theorem 6, because one of
the cases a = 0 versus a 6= 0 might drop. But it also reduces the number of disjuncts in
F−∞x̂ , see Example 2, and in the virtual substitutions of square roots (Lecture 18) and of
infinitesimals (Sect. 4), which can lead to significant simplifications.

Theorem 6 also applies for polynomials of higher degrees in x if all those factor to
polynomials of at most quadratic degree in x [Wei97]. Degree reduction is also possible
by renaming based on the greatest common divisor of all powers of x that occur in F .
If a quantified variable x occurs only with degrees that are multiples of an odd number
d then virtual substitution can use ∃xF (xd) ≡ ∃y F (y). If x only occurs with degrees
that are multiples of an even number d then ∃xF (xd) ≡ ∃y (y ≥ 0 ∧ F (y)). Finally, the
cases in Theorem 6 with infinitesimals +ε are only needed if x occurs in strict inequal-

ities in F . The cases F (−b+±
√
d)/(2a)

x̂ are only needed if x occurs in equations or weak
inequalities.
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6. Summary

Virtual substitution is one technique for eliminating quantifiers in real arithmetic. It
works for linear and quadratic constraints and can be extended to some cubic cases
[Wei94]. Virtual substitution can be applied repeatedly from inside out to eliminate
quantifiers. In each case, however, virtual substitution requires the eliminated vari-
able to occur with small enough degrees only. Even if that was the case initially, it
may stop to be the case after eliminating the innermost quantifier, because the degrees
of the formulas resulting from virtual substitution may increase. In that case, degree
optimizations and simplifications may sometimes work. If not, then other quantifier
elimination techniques need to be used, which are based on semialgebraic geometry or
model theory. Virtual substitution alone always works for mixed quadratic-linear for-
mulas, i.e. those in which all quantified variables occur linearly except for one variable
that occurs quadratically. In practice, however, many other cases turn out to work well
with virtual substitution.

By inspecting Theorem 6 and its optimizations, we also observe that it is interesting
to look at only closed sets or only open sets, corresponding to formulas with only≤ and
= or sets with only < and 6= conditions, because half of the cases then drop out of the
expansion in Theorem 6. Furthermore, if the formula ∃xF only mentions strict inequal-
ities < and disequations 6=, then all virtual substitutions will involve infinitesimals or
infinities. While both are conceptually more demanding than virtual substitutions with
mere square root expressions, the advantage is that both infinitesimals and infinities
rarely satisfy any equations (except when they are trivial because all coefficients are
zero). In that case, most formulas simplify tremendously. That is an indication in the
virtual substitution method for a more general phenomenon: existential arithmetic with
strict inequalities or, dually, validity of universal arithmetic with weak inequalities, is
computationally easier.

A. Semialgebraic Geometry

The geometric counterpart of polynomial equations or quantifier-free first-order for-
mulas with polynomial equations are affine varieties. The geometric counterpart of
first-order formulas of real arithmetic that may mention inequalities are called semi-
algebraic sets in real algebraic geometry [BCR98, BPR06]. By quantifier elimination,
the sets definable with quantifiers is the same as the sets definable without quantifiers.
Hence, the formulas of first-order real arithmetic exactly define semialgebraic sets:

Definition 8 (Semialgebraic Set). S ⊆ Rn is an semialgebraic set iff it is defined by a finite
intersection of polynomial equations and inequalities or any finite union of such sets.

S =

t⋃
i=1

s⋂
j=1

{x ∈ Rn : p(x) ∼ 0} where ∼ ∈ {=,≥, >}
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The geometric counterpart of the quantifier elimination result is that semialgebraic
sets are closed under projection (the other closure properties are obvious in logic).

Theorem 9 (Tarski Seidenberg [Tar51, Sei54]). Semialgebraic sets are closed under finite
unions, finite intersections, complements and projection to linear subspaces.

The semialgebraic sets corresponding to a number of interesting systems of polyno-
mial inequalities are illustrated in Fig. 4.

x

y

|y| ≤ x3
x

y

x2 + y2 ≤ 1

x

y

y2 = x2(x+ 1)
∧ x ≤ 0.44

x

y

|y| ≥ x3
∧ |y| ≤ 1.7x z ≤ x2 − y2

∧z ≥ x2 − y2

Figure 4: Systems of polynomial inequalities describe semialgebraic sets

Exercises

Exercise 1. Consider
∃x (ax2 + bx+ c ≤ 0 ∧ F ) (14)

The virtual substitution of the roots of ax2 + bx+ c = 0 according to Sect. 2 as well as
of −∞ according to Sect. 3 will lead to

F−∞x̂ ∨a = 0∧b 6= 0∧F−c/bx̂ ∨a 6= 0∧b2−4ac ≥ 0∧
(
F

(−b+
√
b2−4ac)/(2a)

x̂ ∨F (−b−
√
b2−4ac)/(2a)

x̂

)
But when F is−ax2 + bx+ e < 0, then none of those cases necessarily works. Does that
mean the result of virtual substitution is not equivalent to (14)? Where is the catch in
this argument?

Exercise 2. Perform quantifier elimination by virtual substitution to compute

QE(∃x (x2 − x+ c ≤ 0 ∧ x ≥ 0 ∧ −x+ 2 ≤ 0))
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Exercise 3. Develop and prove a virtual substitution formula for quadratic polynomials
analog to Theorem 6 that uses the points illustrated in Fig. 3(right) instead of Fig. 3(left).
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