15-424: Foundations of Cyber-Physical Systems

Lecture Notes on
Virtual Substitution & Real Equations

André Platzer

Carnegie Mellon University
Lecture 18

1. Introduction

Cyber-physical systems are important technical concepts for building better systems
around us. Their safe design requires careful specification and verification, which this
course provides using differential dynamic logic and its proof calculus [Pla08, Plal0,
Plal2b]. The proof calculus for differential dynamic logic has a number of powerful
axioms and proof rules (especially in Lecture 5, Lecture 6, Lecture 11, and Lecture 12).
In theory, the only difficult problem in proving hybrid systems safety is finding their
invariants or differential invariants [Pla08, Plal2a] (Lecture 13 on Differential Invari-
ants & Proof Theory). In practice, however, the handling of real arithmetic is another
challenge that you have faced in your labs, even though the problem is easier in theory.
How arithmetic interfaces with proofs by way of the proof rules iV,iJ has already been
discussed in Lecture 6 on Truth & Proof. But how does the handling of real arithmetic
by quantifier elimination really work?

Today’s lecture shows one technique for deciding interesting formulas of first-order
real arithmetic. Understanding how such techniques for real arithmetic work is inter-
esting for at least two reasons. First of all, it is important to understand why this miracle
happens at all that something as complicated and expressive as first-order logic of real
arithmetic is decidable. But this lecture is also helpful to get an intuition about how
real arithmetic decision procedures work. With such an understanding, you are better
prepared to identify the limitations of these techniques, learn when they are likely not
to work out in due time, and get a sense of what you can do to help arithmetic prove
more complicated properties. For complex proofs, it is often very important to use your
insights and intuitions about the system to help the prover along to scale your verifica-
tion results to more challenging systems in feasible amounts of time. An understanding
how arithmetic decision procedures work helps to focus such insights on the parts of
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L18.2 Virtual Substitution & Real Equations

the arithmetic analysis that has a big computational impact. Quite substantial impact
has been observed for handling the challenges of real arithmetic [Pla07, dMP13].

There are a number of different approaches to understanding real arithmetic and its
decision procedures besides Tarski’s original seminal breakthrough [Tar51]. There is
an algebraic approach using cylindrical algebraic decompositions [Col75], which leads
to practical procedures, but is highly nontrivial. There are simple and elegant model-
theoretic approaches using semantic properties of logic and algebra [Rob77], which are
easy to understand, but do not lead to any particularly useful algorithms. There is a rea-
sonably simple Cohen-H6rmander algorithm [Coh69, H6r83] that, unfortunately, does
not generalize well into a practical algorithm. Other simple but inefficient decision pro-
cedures are also described elsewhere [KK71, Eng93]. And there is virtual substitution
[Wei97], a syntactical approach that fits well to the understanding of logic that we have
developed in this course and leads to highly efficient algorithms (although not in the
most general cases). As a good compromise of accessibility and practicality, this lecture
focuses on virtual substitution [Wei97].

These lecture notes are loosely based on [Wei97, Plal0, Appendix D]. They add sub-
stantial intuition and motivation that is helpful for following the technical develop-
ment. More information about virtual substitution can be found in the literature [Wei97].
See, e.g., [PQR09Y, Pas11] for an overview of other techniques for real arithmetic.

The most important learning goals of this lecture are:

Modeling and Control: This lecture has an indirect impact on CPS models and con-
trols by informing the reader about the consequences of the analytic complexity
resulting from different arithmetical modeling tradeoffs. There is always more
than one way of writing down a model. It becomes easier to find the right trade-
offs for expressing a CPS model with some knowledge of and intuition for the
working principles of the workhorse of quantifier elimination that will handle
the resulting arithmetic.

Computational Thinking: The primary purpose of today’s lecture is to understand
how arithmetical reasoning, which is crucial for CPS, can be done rigorously and
automatically. Developing an intuition for the working principles of real arith-
metic decision procedures can be very helpful for developing strategies to verify
CPS models at scale. The lecture also serves the purpose of learning to appreciate
the miracle that quantifier elimination in real arithmetic provides by contrasting
it with closely related problems that have fundamentally different challenges. We
will also see a conceptually very important device in the logical trinity: the flex-
ibility of moving back and forth between syntax and semantics at will. We have
seen this principle in action already in the case of differential invariants in Lec-
ture 10 on Differential Equations & Differential Invariants, where we moved back
and forth between analytic differentiation % and syntactic derivations (-)’ by way
of the derivation lemma and the differential substitution lemma as we saw fit.
This time, we leverage the same conceptual device for real arithmetic (rather than
differential arithmetic) by working with virtual substitutions to bridge the gap
between semantic operations that are inexpressible otherwise in first-order logic
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of real arithmetic. Virtual substitutions will again allow us to move back and forth
at will between syntax and semantics.

CPS Skills: The author is not aware of any impact that this lecture has on CPS skills,
because the primary point of this lecture is to get a sense of the pragmatics of CPS
analysis.

2. Framing the Miracle

First-order logic is an expressive logic in which many interesting properties and con-
cepts can be expressed, analyzed, and proven. It is certainly significantly more expres-
sive than propositional logic, which is decidable by NP-complete SAT solving.

In classical (uninterpreted) first-order logic (FOL), no symbol (except possibly equal-
ity) has a special meaning. There are only predicate symbols p, ¢, r,... and function
symbols f, g, h,... whose meaning is subject to interpretation. And the domain that
quantifiers range over is subject to interpretation. In particular, a formula of first-order
logic is only valid if it holds true for all interpretations of all predicate and function
symbols and all domains.

In contrast, first-order logic of real arithmetic (FOLr or the theory of real-closed field
arithmetic FOLgcr [Plal0, Appendix D]) is interpreted, because its symbols have a spe-
cial fixed interpretation. The only predicate symbols are =, >, >, <, <, # and they mean
exactly equality, greater-or-equals, greater-than, etc., and the only function symbols are
+, —, -, which mean exactly addition, subtraction, and multiplication of real numbers.
Furthermore, the quantifiers quantify over the set R of all real numbers.!

The first special interpretation for symbols that comes to mind may not necessarily
by the real numbers but maybe the natural numbers N with + for addition and - for
multiplication on natural numbers and where quantifiers range over the natural num-
bers. That gives the first-order logic of natural numbers (FOLy). Is FOLy easier or harder
than FOL? How do both compare to FOLr? What would happen compared to FOLq,
the first-order logic of rational numbers? FOLg is like FOLr and FOLy, except that the
rational numbers Q are used as the domain of quantification and interpretation of vari-
ables, rather than R and N, respectively. How do those different flavors of first-order
logic compare? How difficult is it to prove validity of logical formulas in each case?

Before you read on, see if you can find the answer for yourself.

!Respectively over another real-closed field, but that has been shown not to change validity [Tar51].
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Uninterpreted first-order logic FOL is semidecidable, because there is a (sound and
complete [G6d30]) proof procedure that is algorithmic and able to prove all true sen-
tences of first-order logic [Her30]. The natural numbers are more difficult. Actually
much more difficult! By Godel’s incompleteness theorem [G6d31], first-order logic
FOLy of natural numbers does not have a sound and complete effective axiomatiza-
tion. FOLy is neither semidecidable nor cosemidecidable [Chu36]. There is neither an
algorithm that can prove all valid formulas of FOLy nor one that can disprove all for-
mulas of FOLy that are not valid. One way of realizing the inherent challenge of the
logic of natural numbers in retrospect is to use that not all questions about programs
can be answered effectively (for example the halting problem of Turing machines is un-
decidable) [Chu36, Tur37], in fact “none” can [Ric53], and then encode questions about
classical programs into the logic of natural numbers.

Yet, a miracle happened. Alfred Tarski proved in 1930 [Tar31, Tar51] that reals are
much better behaved and that FOLR is decidable, even though this seminal result re-
mained unpublished for many years and only appeared in full in 1951 [Tar51].

The first-order logic FOLg of rational numbers, however, was shown to be undecid-
able [Rob49], even though rational numbers may appear to be so close to real numbers.
Rationals are lacking something important: completeness (in the topological sense).
The square root /2 of 2 is a perfectly good witness for 3z 22 = 2 but only a real num-
ber, not a rational one.

The first-order logic FOL¢ of complex numbers, though, is again perfectly decidable
[Tar51, CC56].

Note 1 (The miracle of reals. Overview of validity problems of first-order logics).
Logic  Validity
FOL  semidecidable
FOLy not semidecidable nor cosemidecidable
FOLg not semidecidable nor cosemidecidable
FOLRr decidable

FOL¢ decidable
\§ J

3. Quantifier Elimination

Alfred Tarski’s seminal insight for deciding real arithmetic is based on quantifier elimi-
nation, i.e. the successive elimination of quantifiers from formulas so that the remaining
formula is equivalent but structurally significantly easier, because it has less quantifiers.
Why does eliminating quantifiers help? When evaluating a logical formula for whether
it is true or false in a given state (i.e. an assignment of real numbers to all its free vari-
ables), arithmetic comparisons and polynomial terms are easy, because all we need to
do is plug the numbers in and compute according to their semantics (recall Lecture 2
on Differential Equations & Domains). For example, for a state v with v(z) = 2, we can
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easily evaluate the logical formula
22> 2/ 20 <3Vad <a?
to false by following the semantics, which ultimately just plugs in 2 for x:
[#2 >2A20 <3Va® <a?], =22 >2A2-2<3V2 <22 = false
Similarly, in a state w with w(z) = —1, the same formula evaluates to true:
[22 > 2720 <3Vva® <2?], = (—1)2>2A2-(=1) <3V (=1)® < (=1)* = true

But quantifiers are a difficult matter, because they require us to check for all possible
values of a variable (in the case Va F') or to find exactly the right value for a variable that
makes the formula true (in the case of Jz F'). The easiest formulas to evaluate are the
ones that have no free variables (because then their value does not depend on the state
v) and that also have no quantifiers (because then there are no choices for the values
of the quantified variables during the evaluation). Quantifier elimination can take a
logical formula that is closed, i.e. has no free variables, and equivalently remove its
quantifiers, so that it becomes easy to evaluate the formula to true or false. Quantifier
elimination also works for formulas that still have free variables. Then it will eliminate
all quantifiers in the formula but the original free variables will remain in the resulting
formula, unless it simplifies in the quantifier elimination process.

Definition 1 (Quantifier elimination). A first-order theory admits quantifier elimi-
nation if, with each formula ¢, a quantifier-free formula QE(¢) can be associated
effectively that is equivalent, i.e. ¢ <+ QE(¢) is valid (in that theory).

That is, a first-order theory that admits quantifier elimination if there is a computer
program that outputs a quantifier-free formula QE(¢) for any input formula ¢ in that
theory such that the input and output are equivalent (¢ < QE(¢) is valid) and such
that the output QE(¢) is quantifier-free.

Theorem 2 (Tarski [Tar51]). The first-order logic of real arithmetic admits quantifier
elimination and is, thus, decidable.

The operation QE is further assumed to evaluate ground formulas (i.e., without vari-
ables), yielding a decision procedure for closed formulas of this theory (i.e., formulas
without free variables). For a closed formula ¢, all it takes is to compute its quantifier-
free equivalent QE(¢) by quantifier elimination. The closed formula ¢ is closed, so has
no free variables or other free symbols, and neither will QE(¢). Hence, ¢ as well as its
equivalent QE(¢) are either equivalent to true or to false. Yet, QE(¢) is quantifier-free,
so which one it is can be found out simply by evaluating the (variable-free) concrete
arithmetic in QE(¢) as in the above examples.
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Example 3. Quantifier elimination uses the special structure of real arithmetic to ex-
press quantified arithmetic formulas equivalently without quantifiers and without us-
ing more free variables. For instance, QE yields the following equivalence:

QE(3z (222 + ¢ <5)) = ¢ <5.

In particular, the formula 3z (222 + ¢ < 5) is not valid, but only true if ¢ < 5 holds, as
has been so aptly described by the outcome of the above quantifier elimination result.

Example 4. Quantifier elimination can be used to find out whether a first-order formula
of real arithmetic is valid. Take 3z (222 + ¢ < 5), for example. A formula is valid
iff its universal closure is, i.e. the formula obtained by universally quantifying all free
variables. After all, valid means that a formula is true for all interpretations. Hence,
consider the universal closure Ve 3z (2:1:2 + ¢ < 5), which is a closed formula, because it
has no free variables. Quantifier elimination could, for example, lead to

QE (Ve 3z (222+¢ < 5)) = QE(Ve QE(3z (22%4¢ < 5))) = QE(Ve (¢ < 5)) = —100 < 5A5 < 5A100 < 5

The resulting formula still has no free variables but is now quantifier-free, so it can
simply be evaluated arithmetically. Since the conjunct 100 < 5 evaluates to false, the
universal closure Ve 3z (222 + ¢ < 5) is equivalent to false and, hence, the original for-
mula 3z (222 + ¢ < 5) is not valid (although still satisfiable for ¢ = 1).

Geometrically, quantifier elimination corresponds to projection, see Fig. 1.

y F=3(y>0A1—2z— 18322+ 1.662° > y)

/\ z QE(F) =075 <xAx<0.68Vz>1.17

Figure 1: The geometric counterpart of quantifier elimination for 3y is projection onto
the z axis

Note that, when using QE, we usually assume it would already evaluate ground

arithmetic, so that the only two possible outcomes of applying QE to a closed formula
are true and false.
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Alfred Tarski’s result that quantifier elimination over the reals is possible and that
real arithmetic is decidable was groundbreaking. The only issue is that the complexity
of Tarski’s decision procedure is non-elementary, i.e. cannot be bounded by any tower

of exponentials 22", which made it quite impractical. Still, it was a seminal break-
through because it showed reals to be decidable at all. It was not until another seminal
result in 1949 by Julia Robinson, who proved the rationals to be undecidable [Rob49].
It took many further advances [Sei54, Coh69, KK71, H6r83, Eng93] and a major break-
through by George Collins in 1975 [Col75] until more practical procedures had been
found [Col75, CH91, Wei97]. The virtual substitution technique shown in this lecture
has been implemented in Redlog [DS97], which has an interface for KeYmaera [PQO08].
There is also a recent approach of combining ideas from SMT solving with nonlinear
real arithmetic [JdAM12] implemented in the SMT solver Z3, which has an interface for
KeYmaera.

4. Homomorphic Normalization for Quantifier Elimination

The first insight for defining quantifier elimination is to understand that the quantifier
elimination operation commutes with almost all logical connectives, so that QE only
needs to be defined for existential quantifiers. Consequently, as soon as we understand
how to eliminate existential quantifiers, universal quantifiers can be eliminated as well
just by double negation.

QE(A A B) = QE(A) A QE(B)
QE(AVB) QE < )V QE(B)
QE(~4) = ~QE(4)
QE(Vz A) = QE(—3Jz —A)

These transformations isolate existential quantifiers for quantifier elimination. In par-
ticular, it is sufficient if quantifier elimination focuses on existentially quantified vari-
ables. When using the QE operation inside out, i.e. when using it repeatedly to elim-
inate the inner-most quantifier to a quantifier-free equivalent and then again eliminat-
ing the inner-most quantifier, the quantifier elimination is solved if only we manage to
solve it for 3z A with a quantifier-free formula A. If A is not quantifier-free, its quanti-
fiers can be eliminated from inside out:

QE(3xz A) = QE(Jx QE(A)) if A not quantifier-free
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It is possible, although not necessary and not even necessarily helpful, to simplify the
form of A as well. The following transformations transform the kernel of a quantifier
into negation normal form using deMorgan’s equivalences.

QE(3z(AV B))=QE(3z A) v QE(3z B)
QE(3z—-(A A B)) = QE(3z (~AV -B))
QE(3z—(AV B)) = QE(3z (AN -B))

QE(Jdz——A) = QE(3z A)

Distributivity can be used to simplify the form of the quantifier-free kernel A to disjunc-
tive normal form and split existential quantifiers over disjuncts:

QE(3z (AN (BVC)))

QE(3z ((AV B) A C))
QE(3z (AV B))

QE(3z (AA B)V (AAC)))
QE(3z ((AAC)V (BAC)))
QE((3z A) V (3z B))

The only remaining case to address is the case QE(3z (A A B)) where A A B is a purely
conjunctive formula (yet it can actually have any number of conjuncts, not just two).
Using the following normalizing equivalences,

p=q¢g=p—q=0
pP=2qg=p—q=>0
pP>q=p—q>0
PFG=p—q#0
p<q=q—p=>0
p<qg=q—p>0

-p=>q)=p<gq
~(p>q9)=p<gq
-(p=q)=p#q
-p#qQ=p=

it is further possible to normalize all atomic formulas equivalently to one of the forms
p=0,p>0,p>0,p#0. Since p# 0=p >0V p <0, disequations # are unnecessary
in theory as well (although they are quite useful in practice).

5. Substitution Base

Virtual substitution is a quantifier elimination technique that is based on substituting
extended terms into formulas virtually, i.e. without the extended terms? actually occur-
ring in the resulting constraints.

*Being an extended real term really means it is not a real term, but somehow closely related. We will see
more concrete extended real terms and how to get rid of them again later.
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~

Note 4. Virtual substitution essentially leads to an equivalence of the form

JuF < \/ A AF} (1)
te’T

for a suitable finite set T' of extended terms that depends on the formula F' and that gets
substituted into F virtually, i.e. in a way that results in standard real arithmetic terms,
knot extended terms. )

Such an equivalence is how quantifier elimination can work. Certainly if the right-hand
side of (1) is true, then ¢ is a witness for 3z F'. The key to establishing an equivalence of
the form (1) is to ensure that if F" has a solution at all (in the sense of 3x F' being true),
then F' must already hold for one of the cases in 7. That is, 7" must cover all repre-
sentative cases. There might be many more solutions, but if there is one at all, one of

the possibilities in 7" must be a solution as well. If we were to choose all real numbers

7 & R, then (1) would be trivially valid, but then the right-hand side is not a formula

because it is uncountably infinitely long, which is even worse than the quantified form
on the left-hand side. But if a finite set 1" is sufficient for the equivalence (1) and the ex-
tra formulas A; are quantifier-free, then the right-hand side of (1) is structurally simpler
than the left-hand side, even if it may be (sometimes significantly) less compact.

The various ways of virtually substituting various forms of extended reals e into
logical formulas equivalently without having to mention the actual extended reals is
the secret of virtual substitution. The first step is to see that it is enough to define
substitutions only on atomic formulas of the form p = 0,p < 0,p < 0 (or, just as well,
onp=0,p > 0,p > 0). If o denotes such an extended substitution of 6 for x, then o lifts
to arbitrary first-order formulas homomorphically® as follows

oc(ANB)=0AN0B
0(AVB)=0cAVoB
o(—mA) =-cA
o(VyA) =VyoA ifr#Ayandy &0
o(FyA) =3TycA ifrAyandy &0
olp=q)=0o(p—q=0)
op<q)=c(p—q<0)
op<q)=o(p—q=<0)
olp>q)=o(qg—p<0)
olp=q)=o(qg—p<0)
)

This lifting applies the substitution ¢ to all subformulas, with minor twists on quanti-
fiers for admissibility and normalization of atomic formulas into the canonical forms

*With a caveat on admissibility for quantifiers to avoid capture of variables.
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p=0,p <0,p <0 for which ¢ has been assumed to already have been defined.

From now on, all that remains to be done for defining a substitution or virtual sub-
stitution is to define it on atomic formulas of the remaining forms p = 0,p < 0,p <0
and the above construction will take care of substituting in any first-order formulas. Of
course, the above construction is only helpful for normalizing atomic formulas that are
not already of one of those forms, so the term ¢ above can be assumed not to be the
term 0.

6. Term Substitutions
Consider a formula of the form
dx (bxr +c=0AF) (x €b,c) (2)

where = does not occur in the terms b, c. Let’s consider how a first mathematical solu-
tion to this formula might look like. The only solution that the conjunct bx + ¢ = 0 has
is x = —c/b. Hence, the left conjunct in (2) only holds for z = —¢/b, so formula (2) can
only be true if F" also holds for that single solution —¢/b in place of z. That is, formula
(2) holds only if F, /b does. Hence, (2) is equivalent to the formula F o/ b, which is
quantifier-free.

So, how can we eliminate the quantifier in (2) equivalently?

Before you read on, see if you can find the answer for yourself.
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Most certainly, F, /b s quantifier-free. But it is not exactly always equivalent to (2)
and, thus, does not necessarily qualify as its quantifier eliminate form. Oh no! What
we wrote down is a good intuitive start, but does not make any sense at all if b = 0,
for then —c/b would have been a rather ill-devised division by zero. Performing such
divisions by zero sounds like a fairly shaky start for an equivalence transformation such
as quantifier elimination. And certainly sounds like a shaky start for anything that is
supposed to ultimately turn into a proof.

Let’s start over. The first conjunct in (2) has the only solution x = —¢/bif b # 0. In
that case, indeed, (2) is equivalent to F, ¢/ b, because the only way for (2) to be true
then is exactly when the second conjunct F' holds for the solution of the first conjunct,

i.e. when F, c/b holds. But there is, in general, no way of knowing whether evaluation
could yield b # 0 or not, because b might be a complicated polynomial term that is only
zero under some interpretations, not under all. Certainly if b is the zero polynomial, we
know for sure. Or if b is a polynomial that is never zero, such as a sum of squares plus
a positive constant. In general, if b = 0, then, the first conjunct in (2) has all numbers
for = as solutions if ¢ = 0 and, otherwise, has no solution at all if ¢ # 0. In the latter
case, b = 0,c # 0, (2) is false, because its first conjunct is already false. In the former
case, b = ¢ = 0, however, the first conjunct bx + ¢ = 0 is trivial and does not impose any
constraints on x, nor does it help for finding out a quantifier-free equivalent of (2). In
that case b = ¢ = 0, the trivial constraint will be dropped and the remaining formula
will be considered recursively instead.

Note 5. In the non-degenerate case b # 0 with x & b,c, (2) can be rephrased into a
quantifier-free equivalent over R as follows:

b#£0— (Fz(br+c=0AF) < b#0AF, /") (3)

All it takes is, thus, the ability to substitute the term —c/b for x in the formula F'. The di-

vision —c¢/b that will occur in F, /" for ordinary term substitutions can cause technical
annoyances but at least it is well-defined, because b # 0 holds in that context. Instead of

pursuing the looming question how exactly this substitution in F}, /" works, we make
the question more general by moving the quadratic case already.
7. Square Root /- Substitutions for Quadratics
Consider a formula of the form
3z (ax* +bx +c=0AF) (x € a,b,c) 4)

where = does not occur in the terms a, b, c. The generic solution of its first conjunct
is x = (—=b £ Vb? — 4ac)/(2a), but that, of course, again depends on whether a could
evaluate to zero, in which case linear solutions may be possible and the division by
2a is most certainly not well-defined; see Fig.2. Whether a could be zero may again
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22441 —§x2+x—ﬁ 0x2+x+%

Figure 2: Roots of quadratic functions p

sometimes be hard to say when a is a polynomial term that has roots, but does not
always evaluate to 0 either (which only the zero polynomial would). So let’s be more
careful this time to find an equivalent formulation right away for all possible cases of
a, b, c. The cases to consider are where the first conjunct is either a constant equation (in
which case the equation imposes no interesting constraint on x) or a linear equation (in
which case x = —c¢/b is the solution Sect. 6) or a proper quadratic equation with a # 0
(in which case z = (=b+ Vb? — 4ac)/(2a) is the solution). The trivial equation 0 = 0
when a = b = ¢ = 0 is again useless, so another part of /" would have to be considered
in that case, and the equation ¢ = 0 for a = b = 0, ¢ # 0 is again false.

When az? + bx = 0 is either a proper linear or a proper quadratic equation, its respec-
tive solutions single out the only points that can solve (4), so the only points in which
it remains to be checked whether the second conjunct F" also holds.

Theorem 5 (Virtual substitution of quadratic equations). For a quantifier-free formula
F with x ¢ a,b, ¢, the following equivalence is valid over R:

a#0Vb#0Vc#0—
(Ela;(ax2+ba:+c:O/\F)H
a=0Ab#O0NF /"
Va#0AbE—4dac>0A (Fgg_b+\/m)/(2a) \/Fag—b—\/mv@a))>

N ©)

Hold on, we fortunately noticed just in time for writing down the formula (5) that
(—=b + Vb2 — 4ac)/(2a) only ever makes actual sense in the reals if b* — 4ac > 0, because
the square root is otherwise imaginary, which is hard to find in FOLR.

The resulting formula on the right-hand side of the biimplication is quantifier-free
and, thus, sounds like it could be chosen for QE(3x (az? + bz + ¢ = 0 A F)) as long as
it is not the case thata = b = ¢ = 0.
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Note 7. The important thing to notice, though, is that (—b £+ v/b> — 4ac)/(2a) is not a
polynomial term, nor even a rational term, because it involves a square root +/-. Hence, (5)
is not generally a formula of first-order real arithmetic! Unless we do something about its
square roots and divisions.

Recall from Lecture 2 on Differential Equations & Domains that the terms of FOLR are
polynomials with rational coefficients in Q. So 422 + %x — 1.41 is a polynomial term of
FOLg. But 422 + %x — 1.41 is not, because of the division by variable y, which should
make us panic about y possibly being zero in any case. And 422 + Lz — v/2 is not either,
because of the square root v/2.

Note 8 (Semantic domains versus syntactic expressions). While the domains that the
quantifiers ¥V and 3 of first-order logic FOL of real arithmetic quantify over includes reals
like \/2, the terms and logical formulas themselves are syntactically restricted to be built
from polynomials with rational coefficients. Square roots (and all higher roots) are already
part of the semantic domain R, but not allowed in the syntax of FOLR.

Of course, it is still easy to write down a formula such as 3z 2% = 2 which indirectly
makes sure that 2 will have to assume the value v/2, but that formula mentions a quan-
tifier again.

Square roots are really not part of real arithmetic. But they can be defined, still,
by appropriate quadratures. For example, the positive root x = ,/y can be defined as
2?2 =y Ay > 0. Let's find out how square roots such as (—b + Vb2 — 4ac)/(2a) can be
substituted into first-order formulas systematically without the need for involving any
square roots in the resulting formula.

A square root expression is an expression of the form

(a+bv/e)/d

with polynomials a, b, ¢,d € Q[z1, ..., z,] of rational coefficients in the variables z1, . . ., zy,
and, for well-definedness, d # 0 A ¢ > 0. Square root expressions with the same /c can
be added and multiplied symbolically by considering them as algebraic objects:*

(a+bve)/d+ (a' +VVe)/d = ((ad + da’) + (bd' + db)/c)/(dd)

(a+ b@)/d) - (¢ + BVa)/d) = ((ad’ +0Ke) + (a¥ + b))/ (dd) O

Another way of saying that is that square root expressions with the same /c provide an
addition and a multiplication operation that leads to square root expressions. Substi-
tuting (a + by/c)/d for a variable z in a polynomial term p, thus, leads to a square root

“Despite the poor notation, please don’t mistake the primes for derivatives here. The name a’ is not
the derivative of a here but just meant as a name for a polynomial term that happens to go by the
misleading name o’
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expression pg““ﬁ)/ 4= (@ + by/c)/d with the same +/c, because the arithmetic resulting
from evaluating the polynomial only requires addition and multiplication using (6).°

Note 9. Subsequent symbolic addition and multiplication makes it possible to substitute a
square root expression in for a variable in a polynomial to form. Yet, the result pg(cﬁbﬁ)/ d
is still a square root expression, which still cannot be written down directly in first-order
real arithmetic. Yet, as soon as a square root expression appears in an atomic formula of

kﬁ'rst‘—order real arithmetic, that square root can be rephrased equivalently to disappear. )

The substitution of a square root expression (a’ + b'+/c)/d" into a polynomial p for z

to form p;(,;”b\/a/ ¢ by polynomial evaluation leads to a square root expression, say the

square root expression p(xaurb/‘ﬁ)/ d _ (a+ by/c)/d.
The next step is to handle the comparison of the resulting square root expression to 0
in atomic formulas p ~ 0 for some ~ € {=, <, <}. That works by characterizing it using

the square root expression p\ vo/d,

(b~ 0)" VI = (VAN )
Suppose the square root expression pg‘l’”"ﬁ)/  from the polynomial evaluationis (a + by/c)/d.
All that remains to be done is to rewrite (a + b+/c)/d ~ 0 equivalently in FOLg.

Assume d # 0 A ¢ > 0 for well-definedness. For square-root-free expressions (b = 0)
with just divisions, i.e. those of the form (a + 0,/c)/d, the following equivalences hold:

(a+0yc)/d=0=a=0
(a+0c)/d<0=ad <0
(a+0vc))Jd<0=ad <0

Assume d # 0 A ¢ > 0 for well-definedness. For square root expressions (a + by/c)/d
with arbitrary b, the following equivalences hold:

(a+bv/e)/d=0=ab<0Aa®>—b*c=0
(a4+b/c)/d<0=ad <OANa®>—b*c>0Vbd <OAa®>—b’c <0
(a+bve)/d<0=ad <0OAa*—b*c>0Vbd <OA(ad <0V a?—b*c<0)

The first line characterizes that = 0 holds iff a, b have different signs (possibly 0) and
their squares cancel, because a? = b%c. The second line characterizes that < 0 holds
iff a> > b%c so that a will dominate, which has a different sign than d, or if a®> < b%c
so that b\/c will dominate, which has a different sign than d (possibly 0). The squares
a2 — b%c = a2 — b2,/c” is the square of the absolute value of the involved terms, which
uniquely identifies the truth-values along with the accompanying sign conditions. The

°In practice, the polynomial addition and multiplication operations for a polynomial ) are performed by
Horner’s scheme for dense polynomials 7 and by repeated squaring for sparse polynomials 7.
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third line characterizes that < 0 holds iff a strictly dominates, because a? > b%c and
the dominant a, d have different signs or if b, d have different signs and either a, d have
different signs as well (so a, b have the same sign or 0 and different than d) or b strictly
dominates because a? < b?c. The last case involves a little extra care for the required
sign conditions to avoid the = 0 case.

This defines the substitution of a square root (a + by/c)/d for x into atomic formulas
and can be lifted to all first-order logic formulas as explained in Sect.5. The important
thing to observe is that the result of this substitution does not introduce square root
expressions nor divisions even though the square root expression (a + b\/c)/d had the
square root /c and the division /d. Substitution of a square root (a + b+/c)/d for z into a
(quantifier-free) first-order formula F' then works as usual by substitution in all atomic
formulas (as defined in Sect.5). The result of such a virtual substitution is denoted by
F(a+b\f c)/d

Ttis CruC1al to note that the virtual substitution of square root expression (a + by/c)/d

for z in F giving F(”H’\/)/ ? is semantically equivalent to the result F\*™"V/? of the
literal substitution replacmg x with (a + by/c)/d, but operationally quite different, be-
cause the virtual substitution never introduces square roots or divisions. Because of
their semantical equivalence, we use the same notation by abuse of notation.

-

Lemma 6 (Virtual substitution lemma for square roots). The result F(Hb‘[)/ ¢ of

the virtual substitution is semantically equivalent to the the result Fletovo i/ of the lit-
eral substitution, but better behaved, because it stays within FOLg proper. Essentially,
the following equivalence of virtual substitution and literal substitution for square root

expressions is valid:
Flatbyo)/d F§a+bﬁ)/d

Keep in mind, though, that the result F<"+b‘/)/ ¢ of virtual substitution is a proper formula

of FOLR, while the literal substitution Fé“b\[)/ ¢ could actually only even be considered
a formula in an extended logic that allows for a syntactic representation of divisions and
square root expressions within a context in which they are meaningful (no divisions by
zero, no imaginary roots).

g J

Using Lemma 6, Theorem 5 continues to hold when using the so-defined square root

virtual substitutions F, (=b£Vb7=4a0)/(29) that turn (5) into a valid formula of first-order real

arithmetic, without scary square root expressions. In particular, since the fraction —c/b
also is a (somewhat impoverished) square root expression (—c+ 0+/0)/b, the FOLg

formula F, /" in (5) can be formed and rephrased equivalently using the square root
virtual substitution as well. Hence, the quantifier-free right-hand side of (5) neither
introduces square roots nor divisions but happily remains a proper formula in FOLR.
With this virtual substitution, the right-hand side of the biimplication (5) can be cho-
sen as QE (3z (az? + bz + ¢ = 0 A F)) if it is not the case that a = b = ¢ = 0.
When using square root substitutions, divisions could, thus, also have been avoided
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in the quantifier elimination (3) for the linear case. Thus, the right-hand side of (3) can
be chosen as QE (3z (bx + ¢ = 0 A F)) if it is not the case that b = ¢ = 0.

8. Optimizations

Before going any further, it is helpful to notice that virtual substitutions admit a num-
ber of useful optimizations that make it more practical. When substituting a square

root expression (a + by/c)/d for a variable z in a polynomial p, the resulting square root

expression p<"+bﬁ)/ ¢ = (@ + by/c)/d will end up occurring with a higher power of the

form d = d* where k is the degree of p in variable . This is easy to see just by in-
specting the definitions of addition and multiplication from (6). Such larger powers of
d can be avoided using the equivalences (pg®> ~ 0) = (pg ~ 0) and, if ¢ # 0, using also
(pg? ~ 0) = (p ~ 0) for arithmetic relations ~ € {=, >, > #, <, <}. Since d # 0 needs to
be assumed for well-definedness of a square root expression (a + by/c)/d, the degree of

d in the result F; (V) of the virtual substitution can, thus, be lowered to either 0 or 1
depending on whether it ultimately occurs as an even or as an odd power (Exercise 7).
If d occurs as an odd power, its occurrence can be lowered to degree 1. If d occurs as
an even powet, its occurrence can be reduced to degree 0, which makes it disappear
entirely.

The significance of lowering degrees does not just come from the conceptual and
computational impact that large degrees have on the problem of quantifier elimination,
but, for the case of virtual substitution, also from the fact that virtual substitution only
works for certain bounded but common degrees.

Example 7. Using this principle to check under which circumstance the quadratic equal-
ity from (4) evaluates to true requires a nontrivial number of algebraic and logical com-
putations to handle the virtual substitution of the respective roots of az? + bz +c¢ =0
into F'.

Just out of curiosity: What would happen if we tried to apply the same virtual sub-
stitution coming from this equation to ax? + bz + ¢ = 0 itself instead of to F'? Imagine,
for example, that ax? + bz + ¢ = 0 shows up a second time in F. Let’s only consider
the case of quadratic solutions, i.e. where a # 0. And let’s only consider the root
(—b+ Vb? — 4ac)/(2a). The other cases are left as an exercise. First virtually substitute
(—=b+ Vb? —4dac)/ (2a) into the polynomial az? + bx + cleading to symbolic square root
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expression arithmetic:

(az® + bz + c)ngb+ b*—dac)/(2a)

= a((=b+ Vb — 4ac)/(2a))? + b((—b + /b2 — dac)/(2a)) + ¢

= a((b? + % — dac + (—b — b)V/b2 — dac)/(4a?)) + (=b? + b\/b2 — dac)/(2a) + ¢

= (ab®+ ab® — da2c + (—ab — ab)\/b? — dac)/(4a2) + (—=b* + 2ac + by/b2 — dac) /(2q)
= ((ab® + ab® — 4a2c)2a + (—b? + 2ac)4a® + ((—ab — ab)2a + bda?)\/b? — dac)/(4a?)
— (2607 + 2a%67 — 8a¥C + —4a®D? + 8P + (—2a2h — 2a®b + 4a20)\/b? — dac)/(4a?)
= (0+0V0)/1=0

So (az? + bz + ¢)\ TV 19/ ig the zero square root expression? That is actually ex-

2
actly as expected by construction, because (—b + v/b? — 4ac)/(2a) is supposed to be the
root of az? + bz + c in the case where a # 0 A b? — 4ac > 0. In particular, if az? + bx + ¢
occurs again in F' as either an equation or inequality, its virtual substitute in the various

cases just ends up being;:

b+vb2—4ac)/(2a)

(ax2+bm+c:0)fi_ = ((04+0V0)/1=0)=(0-1=0) = true
(az? + bz + ¢ < )Y/ — (04 0v/0)/1 < 0) = (0-1 < 0) = true
(az? + ba + e < 0) YT CY — (04 0v/0)/1 < 0) = (01 < 0) = false
(az® + bz + ¢ # 0);7“@)/(2“) = ((0+0V0)/1 #0) = (0-1# 0) = false

And that makes sense as well. After all, the roots of ax? + bz + ¢ = 0 satisfy the weak
inequality az? + br + ¢ < 0 but not the strict inequality az? + bz + ¢ < 0. In particu-
lar, Theorem 5 could substitute the roots of ax? + bz + ¢ = 0 also into the full formula
az? 4+ bx + ¢ = 0 A F under the quantifier, but the formula resulting from the left con-
junct az? + be + ¢ = 0 will always simplify to true so that only the virtual substitution
into F' will remain, where actual logic with real arithmetic happens.

The above computations are all that is needed for Theorem 5 to show the following
quantifier elimination equivalences:

a#0— 3z (ax® +br+c=0Aaz’ + bz +c=0) < b* — 4ac > 0 A true)
a#0— (3z(azx® + bz +c=0Aaz® +br +c<0) < b? —dac > 0 A true)

With analog computations for the case (—b — v/b? — 4ac)/(2a), this also justifies:

a#0— 3z(ax? +br+c=0Aaz? +bx+c<0) < b> —4dac > 0 A false)
a#0— (3z(ax® +bx+c=0Aax® +bx +c #0) < b* — dac > 0 A false)
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Consequently, in a context where a # 0 is known, for example because it is a term such
as 5 or y2 + 1, Theorem 5 and simplification yields the following quantifier elimination
results:

QE(3z (azx? +bx +c=0Aaz? +bx +c=0)) = b* — dac > 0
QE(3z (az® +br +c=0Aax?® +br+c <0)) =b*> —4dac >0
QE(3z (az® +bx + ¢ = 0 A ax® + bx + ¢ < 0)) = false
QE(3z (az® +bx +c=0Aax? +bx +c #0)) = false

In a context where a # 0 is not known, more cases become possible and the disjunctive
structure in Theorem 5 remains, leading to a case distinction on whether a = 0 or a # 0.

Example 8 (Nonnegative roots of quadratic polynomials). Consider the formula
3z (az® +bxr +c=0A2z > 0) (7)

for the purpose of eliminating quantifiers using Theorem 5. For simplicity, again as-
sume a # 0 is known, e.g., because a = 5. Since a # 0, Theorem 5 will only consider the

two square root expressions (—b + vb? — 4ac)/(2a) and (—b — Vb? — 4ac)/(2a) and no
linear roots. The first thing that happens during the virtual substitution of those roots
into the remaining formula F' = (z > 0) is that the construction in Sect. 5 will flip > 0
around to a base case —x < 0. On that base case, the substitution of the square root
expression (—b + vb? — 4ac)/(2a) into the polynomial —z leads to the following square
root computations following (6):

—(=b+Vb% —dac)/(2a) = ((—140V/b? — 4ac)/1)-((=b+V/b? — dac)/(2a) = (b—/b? — 4ac)/(2a)

Observe how the unary minus operator expands to multiplication by -1, whose repre-
sentation as a square root expression with square root vb? — 4acis (—1 + 0v/b? — 4ac) /1.
The virtual square root substitution of this square root expression, thus, yields

(—{L‘ < 0) gbfx/ b%2—4ac)/(2a)

= 020 <OA B — (—1)2(B¥ —dac) >0V —1-2a <OA B — (—1)2(B¥ — 4ac) <0
= 2ba <0A4dac>0V —2a<0A4ac<0

For the second square root expression (—b — v/b? — 4ac)/(2a), the corresponding poly-
nomial evaluation leads to

—(=b—Vb? — 4dac)/(2a) = ((—14+0Vb? — 4ac) /1)-((—b— /b — dac)/(2a) = (b+V/'b? — dac)/(2a)

The virtual square root substitution of this square root expression, thus, yields

(—.CL' < 0) (Ab+ Vb2—4ac)/(2a)

= 020 <OAB —12(F¥ —4ac) >0V 1-2a <OAK —12(F — 4ac) <0
2ba < 0A4dac>0V2a<0A4dac<0
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Consequently, since a # 0, Theorem 5 implies the quantifier elimination equivalence:

a#0— (Jz(az® +br+c=0Az >0)
<—>b2—4a020/\(2ba§0/\4a020\/—2a§0/\4ac§O\/2ba§0/\4@020\/2a§0/\4ac§0))

Consequently, in a context where a # 0 is known, 5 yields the following quantifier
elimination results:

QE(3z (az® +br +c=0Az >0))
Eb2—4a020/\(2ba§0/\4a020V—2a§0/\4ac§0\/W\/2a§0/\4ac§0)
Eb2—4aczOA(baSOAaCZOVaZO/\acgOVaSO/\aCSO)

The sign conditions that this formula expresses make sense when you consider that the
original quantified formula (7) expresses that the quadratic equation has a nonnegative
root.

9. Summary

This lecture showed part of the miracle of quantifier elimination and quantifier elimi-
nation is possible in first-order real arithmetic. Today’s technique works for formulas
that normalize into an appropriate form as long as the technique can latch on to a linear
or quadratic equation for all quantified variables. Note that there can be higher-degree
or inequality occurrences of the variables as well within the formula F' of Theorem 5,
but there has to be at least one linear or quadratic equation. Commuting the formula so
that it has the required form is easily done if such an equation is anywhere at all. What
is to be done if there is no quadratic equation but only other quadratic inequalities is
the topic of the next lecture.

It is also foreseeable that the virtual substitution approach will ultimately run into
difficulties for pure high-degree polynomials, because those generally have no radi-
cals to solve the equations. That is where other more algebraic quantifier elimination
techniques come into play that are beyond the scope of this lecture.

Virtual substitution of square root expressions uses simple symbolic computations:

(a+By)/6 + (o + B'y7) /6" = ((ad” + d0') + (80" + 658')v/7)/ (66")
((e+By)/0) - (o + B'y7)/¢') = ((aa’ + BB") + (' + Ba’)\/7)/(60")

The following expansions were the core of eliminating square root expressions by vir-
tual substitutions. For square root expressions (o + 3./7)/0 with 6 # 0 A v > 0 for well-
definedness, the following equivalences hold:

(a+By7)/6=0=aB<0Aa*—[*y=0

(a+By7)/6<0=ad <ON®> - >y >0VBEI<0AQ? - B2y <0

(a+By7)/6<0=ad <OANa®>— %y >0V B <OA(ad <0V a®— %y <0)

15-424 LECTURE NOTES ANDRE PLATZER



L18.20 Virtual Substitution & Real Equations

A. Real Algebraic Geometry

This course follows a logical view on cyber-physical systems. It is helpful to develop an
intuition to what geometric objects the various logical concepts correspond. The part
that is most interesting in this context is real algebraic geometry [BCR98] as it relates to
real arithmetic [BPR06]. General algebraic geometry is also very elegant and beautiful,
especially over algebraically closed fields [Har95, CLO92].

The geometric counterpart of polynomial equations are real affine algebraic varieties.
Every set F' of polynomials defines a geometric object, its variety, i.e. the set of points
on which all those polynomials are zero.

Definition 9 (Real Affine Algebraic Variety). V' C R" is an affine variety iff, for some
set F' C R[X1, ..., X,] of polynomials over R:

V=V(F)={zeR": f(r)=0forall f € F}
i.e., affine varieties are subsets of R" that are definable by a set of polynomial equations.

The converse construction is that of the vanishing ideal, which describes the set of all
polynomials that are zero on a given set V.

Definition 10 (Vanishing Ideal). I C R[X}, ..., X,,] is the vanishing ideal of V' C R™:
I(V):={feR[Xy,...,X,] : f(z)=0forall f eV}
i.e., all polynomials that are zero on all of V.

Affine varieties and vanishing ideals are related by

S CV(I(9)) for any set S C R"
V=V{IV)) if V an affine variety
FCG = V(F)2V(G)

Affine varieties and vanishing ideals are intimately related by Hilbert’s Nullstellensatz
over algebraically closed fields such as C and by Stengle’s Nullstellensatz over real-
closed fields such as R.

The affine varieties corresponding to a number of interesting polynomials are illus-
trated in Fig. 3.

Exercises

Exercise 1. Example7 showed that az? + bz + ¢ = 0 simplifies to true for the virtual
substitution of the root (—b + vb? — 4ac)/(2a). Show that the same thing happens for
the root (—b — Vb2 — 4ac)/(2a) and the root (—c + 01/0)/b.
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dx¥+ 42y + 9xy? — 9y — 362 + 36y =0

Figure 3: Polynomial equations describe (real) affine (algebraic) varieties

Exercise 2. Example 7 argued that the simplification of az? + bz + ¢ = 0 to true for the
virtual substitution of the root (—b + v/b?> — 4ac)/(2a) is to be expected, because the
real number to which (—b + Vb2 — 4ac)/(2a) evaluates is a root of ax? + bz + ¢ = 0 in
the case where a # 0 A b? — 4ac > 0. Yet, what happens in the case where the extra
assumption a # 0 A b2 — 4ac > 0 does not hold? What is the value of the virtual
substitution in that case? Is that a problem? Discuss carefully!

Exercise 3. Use Theorem 5 to eliminate quantifiers in the following formula, assuming
a # 0 is known:
Jz (ax® +br +c=0Az < 1)

Exercise 4. Use Theorem 5 to eliminate quantifiers in the following formula, assuming
a # 0is known:
2 (ax? +bx +c=0A23+2 <0)

Exercise 5. How does Example 8 change when removing the assumption that a # 0?

Exercise 6. Would first-order logic of real arithmetic miss the presence of 7? That is, if
we delete 7 from the domain and make all quantifiers range only over R \ {r}, would
there be any formula that notices by having a different truth-value? If we delete v/5
from the domain, would FOLR notice?

Exercise 7. Consider the process of substituting a square root expression (a + b\/c)/d for
a variable z in a polynomial p. Let k be the degree of p in variable z, so that d occurs

as d* with power k in the result p;ﬁb‘[c)/d = (@+by/c)/d. Let § = 1 when k is odd

and 6 = 0 when £ is even. Show that the following optimization can be used for the
virtual substitution. Assume d # 0 A ¢ > 0 for well-definedness. For square-root-free
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expressions (b = 0) with just divisions, i.e. those of the form (a + 0,/¢)/d, the following
equivalences hold:

(a+0yc)Jd=0=a=0
(a+0vc)/d<0=ad <0
(a+0vc)/d<0=ad <0
(a+0vc)/d#0=a #0

Assume d # 0 A ¢ > 0 for well-definedness. For square root expressions (a + by/c)/d
with arbitrary b, the following equivalences hold:

(a+by/e)/d=0=ab<0Aa*—b*c=0

(a+bye)/d<0=ad® <ONa®>—b2c>0Vbd’ <0Aa®-b%c<0
(a+bye)/d<0=ad® <0Aa®>—b*c>0Vbd® <OA(ad® <0V a?—b*c<0)
(a+bv/c)/d#0=ab>0Va®—b*c#0
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