
15-424: Foundations of Cyber-Physical Systems

Lecture Notes on
Differential & Temporal Proofs

André Platzer

Carnegie Mellon University
Lecture 17

1 Introduction

This lecture continues the study of temporal aspects of cyber-physical systems that Lec-
ture 16 on Differential & Temporal Logics started. The trace semantics of hybrid pro-
grams as well as the semantics of differential temporal dynamic logic (dTL) [Pla10], a
temporal extension of differential dynamic logic dL [Pla08, Pla12], have been discussed
in said lecture. That was very useful, because dTL gives us a way of expressing CPS
correctness properties that depend on their temporal behavior, with the most promi-
nent one being that a CPS is supposed to be safe always at all times in the future. But
that alone is not enough, unless we also find a way to verify such temporal proper-
ties of CPS to find out whether they are true, not just specify them to state what we
would like to be true. This is what today’s lecture focuses on: how to prove temporal
properties of cyber-physical systems. Needless to say that the axiomatics of temporal
properties of CPS will give us a complementary understanding of their syntactic and
semantic representation from Lecture 16 by the general principles of the logical trinity
of syntax, semantics, and axiomatics.

This lecture is based on [Pla10, Chapter 4], which extends [Pla07]. Proof rules for
more general temporal properties of hybrid systems are handled elsewhere [JP14].

The most important learning goals of this lecture are:

Modeling and Control: We get a more detailed understanding for the difference be-
tween temporal and nontemporal properties of CPS models. An understanding
for the temporal behavior of CPS also has an immediate impact on their simula-
tion challenges, because a number of differences in how suitable CPS models are
for simulation purposes are only reflected in their temporal behavior and corre-
sponding temporal properties.

15-424 LECTURE NOTES October 27, 2014 ANDRÉ PLATZER

http://symbolaris.com/course/fcps14.html
http://www.cs.cmu.edu/~aplatzer/andre.html
http://symbolaris.com/course/fcps14/16-difftemporal.pdf
http://symbolaris.com/course/fcps14/16-difftemporal.pdf
http://symbolaris.com/course/fcps14/16-difftemporal.pdf


L17.2 Differential & Temporal Proofs

Computational Thinking: This lecture focuses on rigorous reasoning techniques for
the temporal aspects of CPS. It also addresses subtle aspects with identifying
specifications and critical properties of CPS. Since Differential temporal dynamic
logic dTL [Pla10] extends differential dynamic logic, we can continue to use the
familiar proof rules for its nontemporal parts, but need to develop new proof rules
for its new temporal operators. A secondary goal in this lecture is practicing the
logical trinity consisting of the relationship of syntax, semantics, and axiomatics.
Temporal properties of CPS cause some new phenomena in proof rules that we
have not seen before.

CPS Skills: Another secondary but useful goal of today’s lecture is to develop an in-
tuition for the question which parts of a proof (and, by duality, which parts of a
system) will be affected by temporal properties. This can be helpful for identify-
ing the relevant dynamical aspects for each part of a CPS and understanding the
analytic impact of modeling tradeoffs concerning temporal behaviors of CPS.

2 Temporal Proof Rules

When extending a logic, it is not enough to extend just the syntax (Lecture 16) and
semantics (Lecture 16). The third part of the logical trinity, the proof rules, also need to
be extended to handle the new concepts, that is the temporal modalities of dTL.

This section shows a sequent calculus for verifying temporal specifications of hybrid
systems in differential temporal dynamic logic dTL. With the basic idea being to per-
form a symbolic decomposition, the calculus transforms hybrid programs successively
into simpler logical formulas describing their effects. Statements about the temporal be-
haviour of a hybrid program are successively reduced to corresponding nontemporal
statements about the intermediate states. This lecture shows a proof calculus for dif-
ferential temporal dynamic logic dTL that inherits the proof rules of dL from previous
lectures and adds new proof rules for temporal modalities.

Inherited Nontemporal Rules The dTL calculus is presented in Fig. 1 and inherits the
(nontemporal) dL proof rules, i.e., the propositional, first-order, dynamic, and global
rules from dL. That is, it includes the propositional and quantifier rules from Lecture 6.
The dynamic rules (〈;〉–[′]) and global rules ([]gen,〈〉gen,ind,con) for handling nontem-
poral dynamic modalities are also inherited directly from Lecture 6.

The only minor additional observation is that the rules [∪],〈∪〉 for nondeterministic
choices can be generalized to apply to formulas of the form [α ∪ β]π where π is an
arbitrary trace formula, and not just a state formula as in dL. Thus, π may begin with �
or ♦, which is why the rules are repeated in this generalized form as [∪]� and 〈∪〉♦ in
Fig. 1.

Temporal Rules The new temporal rules in Fig. 1 for the dTL calculus successively
transform temporal specifications of hybrid programs into nontemporal dL formulas.

15-424 LECTURE NOTES ANDRÉ PLATZER

http://symbolaris.com/course/fcps14/16-difftemporal.pdf
http://symbolaris.com/course/fcps14/16-difftemporal.pdf
http://symbolaris.com/course/fcps14/06-truth.pdf
http://symbolaris.com/course/fcps14/06-truth.pdf


Differential & Temporal Proofs L17.3

Note 1.

([∪]�)
[α]π ∧ [β]π

[α ∪ β]π
1

([;]�)
[α]�φ ∧ [α][β]�φ

[α;β]�φ

([?]�)
φ

[?χ]�φ

([:=]�)
φ ∧ [x := θ]φ

[x := θ]�φ

([′]�)
[x′ = θ]φ

[x′ = θ]�φ

([∗n]�)
[α;α∗]�φ
[α∗]�φ

([∗]�)
[α∗][α]�φ

[α∗]�φ

(〈∪〉♦)
〈α〉π ∨ 〈β〉π
〈α ∪ β〉π

1

(〈;〉♦)
〈α〉♦φ ∨ 〈α〉〈β〉♦φ

〈α;β〉♦φ

(〈?〉♦)
φ

〈?χ〉♦φ

(〈:=〉♦)
φ ∨ 〈x := θ〉φ
〈x := θ〉♦φ

(〈′〉♦)
〈x′ = θ〉φ
〈x′ = θ〉♦φ

(〈∗n〉♦)
〈α;α∗〉♦φ
〈α∗〉♦φ

(〈∗〉♦)
〈α∗〉〈α〉♦φ
〈α∗〉♦φ

1π is a trace formula and—unlike the state formulas φ and ψ—may thus begin with a temporal
modality � or ♦. That is, π could be of the form φ or �φ or ♦φ for a state formula φ.

Figure 1: Axiomatization of differential temporal dynamic logic dTL

15-424 LECTURE NOTES ANDRÉ PLATZER



L17.4 Differential & Temporal Proofs

φ ∧ [x := θ]φ

[x := θ]�φ
ν ω

φ

[x := θ]φ

x := θ
φ

[x′ = θ]φ

[x′ = θ]�φ
ν ω

x′ = f(x)
ωs

φ

x′ = f(x) �φ

[α]�φ ∧ [α][β]�φ

[α;β]�φ

ν s ω

α;β �φ

α

�φ
[β]�φ

β

�φ

α;β ≡ α (if non-terminate)�φ

[α]�φ ∧ [β]�φ

[α ∪ β]�φ
ν

ω1

ω2

α
�φ

β �φ

α ∪ β

[α∗][α]�φ

[α∗]�φ
ν ω

α∗
�φ

α∗

α α

[α]�φ

α

�φ

Figure 2: Correspondence of temporal proof rules and trace semantics

The idea underlying this transformation is to decompose hybrid programs and recur-
sively augment intermediate state transitions with appropriate correctness properties
that need to be shown for the original temporal property of the whole system. An
illustration of the correspondence of a representative set of proof rules for temporal
modalities to the trace semantics of hybrid programs (Lecture 16)) is shown in Fig. 2
and will be explained in detail subsequently.

Since a property of a form [α]�φ expresses that formula φ is true at all times always
throughout every execution of α, we also say informally that φ is a (temporal) invariant
of the hybrid program α. The reason for this name is that φ then plays a role some-
what similar to a loop invariant or a differential invariant, except that it holds always
throughout the execution of the system.

The most fundamental rule for temporal properties is the one for sequential compo-
sitions. Rule [;]� decomposes invariants of α;β (i.e., [α;β]�φ holds) into a temporal

15-424 LECTURE NOTES ANDRÉ PLATZER

http://symbolaris.com/course/fcps14/16-difftemporal.pdf


Differential & Temporal Proofs L17.5

invariant that holds throughout α (i.e., [α]�φ) and a temporal invariant of β that holds
when β is started in any final state of α (i.e., [α]([β]�φ)). The difference of rule [;]� com-
pared to the dL rule [;] thus is that the dTL rule [;]� also checks the safety invariant φ at
all (symbolic) states in between the execution of α and β, and recursively in all possible
intermediate states because the temporal modality � remains both on α (in [α]�φ) and
on β (in [β]�φ). See Fig. 2 for an illustration of this proof principle. As an aside, note
that the same reasoning principle also works for nonterminating traces of α, because β
will just never start in those cases but the subformula [α]�φ already expresses that all
nonterminating behaviors of α also satisfy φ all the time.

Rule [:=]� expresses that invariants of assignments just need to hold before and after
the discrete change, because there are no other intermediate states. The rule [?]� is sim-
ilar, except that tests do not actually lead to any state change, so that φ holding before
the test is all there is to it, because φ will already have to hold after the test ?H if it held
before. Rule [′]� can directly reduce invariants of continuous evolutions to nontemporal
formulas, because restrictions of solutions of differential equations are themselves so-
lutions of different duration and thus already included in the evolutions of x′ = θ. If a
property φ is true after all solutions of x′ = θ of any duration, then it is also true always
throughout every solution of x′ = θ of every duration. In particular, observe that the
handling of differential equations within hybrid systems is fully encapsulated within
the fragment of dynamic rules from dL, which makes differential invariants, differential
cuts, differential weakening, and differential ghosts available for temporal properties
right away.

The (optional) iteration rule [∗n]� can partially unwind loops. It relies on rule [;]� and
is simpler than dL rule [∗n], because the other rules will inductively produce a premise
to show that φ holds in the current state, because of the temporal modality �φ. The
dual rules 〈∪〉♦,〈;〉♦,〈?〉♦,〈:=〉♦,〈′〉♦,〈∗n〉♦ work similarly.

In dL (Lecture 7 on Control Loops & Invariants), the primary means for handling
loops are the invariant induction (ind) and variant convergence (con) rules. Because
dTL is built on top of dL, the logic dTL takes a different, completely modular approach
for verifying temporal properties of loops based on the dL capabilities for verifying
nontemporal properties of loops. Rules [∗]� and 〈∗〉♦ actually define temporal properties
of loops inductively. Rule [∗]� expresses that φ holds at all times during repetitions of α
(i.e., [α∗]�φ) iff, after repeating α any number of times, φ holds at all times during one ex-
ecution of α (i.e., [α∗]([α]�φ)). See Fig. 2 for an illustration. Dually, 〈∗〉♦ expresses that α
holds at some time during repetitions of α (i.e., 〈α∗〉♦φ) iff, after some number of repe-
titions of α, formula φ holds at some point during one execution of α (i.e., 〈α∗〉(〈α〉♦φ)).
In this context, the nontemporal modality 〈α∗〉 can be thought of as skipping over to
the iteration of α during which φ actually occurs, as expressed by the nested dTL for-
mula 〈α〉♦φ.

15-424 LECTURE NOTES ANDRÉ PLATZER

http://symbolaris.com/course/fcps14/07-loops.pdf


L17.6 Differential & Temporal Proofs

Note 2. The inductive definition rules [∗]� and 〈∗〉♦ completely reduce temporal proper-
ties of loops to dTL properties of standard nontemporal dL-modalities such that standard
induction (ind) or convergence rules (con) can be used for the outer nontemporal modality
of the loop. Hence, after applying the inductive loop definition rules [∗]� and 〈∗〉♦, the
standard dL loop invariant and variant rules can be used for verifying temporal properties
of loops without change, except that the postcondition contains temporal modalities.

Overall, the temporal repetition rule [∗]� makes it possible to reduce a temporal prop-
erty of a repetition to a nontemporal property of a repetition and a temporal property
of a non-repetition, both of which are easier. Combining the temporal repetition defi-
nition rule [∗]� with the nontemporal loop induction rule ind′ using a loop invariant ϕ
leads to:

[∗]�

ind′
Γ ` ϕ ϕ ` [α]ϕ ϕ ` [α]�φ

Γ ` [α∗][α]�φ
Γ ` [α∗]�φ

Note that all proof rules for atomic hybrid programs α (i.e., for an α of the form x := θ,
?H , or x′ = θ) could be summarized into a single rule:

φ ∧ [α]φ

[α]�φ
φ ∨ 〈α〉φ
〈α〉♦φ for atomic α (1)

because the atomic hybrid programs have no temporal behavior that is not already
captured at the initial or final states. But the separate proof rules are more efficient,
because they leave out parts that are already implied (the postcondition check in the
case of [?]�,〈?〉♦ and the precondition check in the case of [′]�,〈′〉♦). What happens in the
case of differential equations with evolution domain constraints? Does (1) work when
α is of the form x′ = θ&H? Is the following proof rule sound? Or is there a better way?

φ ∧ [x′ = θ&H]φ

[x′ = θ&H]�φ (2)

Before you read on, see if you can find the answer for yourself.

15-424 LECTURE NOTES ANDRÉ PLATZER



Differential & Temporal Proofs L17.7

The proof rule (2) for differential equations with evolution domain constraints looks
good but there is a rather subtle issue. Since differential equations are allowed to evolve
for zero duration, the first conjunct φ seems irrelevant, so that (2) could maybe be sim-
plified to:

[x′ = θ&H]φ

[x′ = θ&H]�φ
It is imperative not to do that! If the system starts in a state ν where the evolution
domain constraint H holds (ν |= H), the first conjunct φ is, indeed, irrelevant, because
[x′ = θ&H]φ implies that all solutions of any duration are safe, including the one of
duration zero, which stays at the initial state. However, if the system starts in a state
where the evolution domain constraint H does not hold, then there is no solution of
x′ = θ&H at all, which exempts the premise from having to show anything for that
case. Recall that [x′ = θ& false]φ is vacuously true, because φ holds after all runs of
x′ = θ& false just because there are none. Contrast this with the case of [x′ = θ&H]�φ.
If the system starts in a state ν where the evolution domain constraint H does not hold
(ν 6|= H), then there is no trace except the error trace (ν̂, Λ̂). But the temporal invariant
�φ in [x′ = θ&H]�φ still requires φ to hold at all (non-error) states along that trace,
i.e., requires φ to hold at ν. No matter what the system, the initial state is always the
beginning of every trace, even if the system ends up failing to execute right away. In
particular, [x′ = θ& false]�φ is equivalent to φ.

Consequently, the canonical proof rule for differential equations with evolution do-
main constraints would be

(H → [x′ = θ&H]φ) ∧ (¬H → φ)

[x′ = θ&H]�φ

where the first conjunct considers the case if the evolution domain constraint holds,
in which case the temporal postcondition �φ is equivalent to φ. The second conjunct
considers the case where the differential equation cannot run except into an error state
right away, in which case φ needs to hold regardless. Now since this first conjunct
trivially implies φ, it does not change anything if we add an extra φ to that. Since the
system x′ = θ&H has no behavior outside H , it does not change anything if we add
[x′ = θ&H]φ in the second conjunct. This leads to the following variation:

(H → φ ∧ [x′ = θ&H]φ) ∧ (¬H → φ ∧ [x′ = θ&H]φ)

[x′ = θ&H]�φ

But now the same conditions need to be shown in the premise whetherH holds initially
or not, which, after simplification, exactly leads to the sound proof rule from (2), which
we give the name [&]�:

Note 3. ([&]�)
φ ∧ [x′ = θ&H]φ

[x′ = θ&H]�φ

15-424 LECTURE NOTES ANDRÉ PLATZER



L17.8 Differential & Temporal Proofs

Remember that it is imperative to keep the conjunct φ in the premise of [&]�.
Even though not necessary, other rules generalize to the temporal case as well such

as the generalization rule []gen whose temporal counterpart is gen�.

Note 4 (Temporal generalization).

(gen�)
ψ ` φ

[α]�ψ ` [α]�φ

Similarly for the practical form []gen′ of the generalization rule with the temporal coun-
terpart:

(gen�)
Γ ` [α]�ψ,∆ ψ ` φ

Γ ` [α]�φ,∆
Rules for handling [α]♦φ and 〈α〉�φ are briefly discussed in [Pla10] and elaborated

in much more detail along with many extensions to more general temporal formulas
elsewhere [JP14]. The core challenge is that there is no obvious analogue of the compo-
sitional proof rules [;]�,〈;〉♦ for the alternation cases [α]♦φ and 〈α〉�φ.

3 Temporal Bouncing Ball

Recall the bouncing ball that has served us so well in previous lectures.

(2gx ≤ 2gH − v2 ∧ x ≥ 0 ∧ g > 0 ∧H ≥ 0 ∧ 1 ≥ c ≥ 0)→ [ball∗](0 ≤ x ≤ H). (3)

Use the following abbreviations and the invariant ϕ from Lecture 11 refining the invari-
ant Lecture 7:

ball ≡ x′ = v, v′ = −g&x ≥ 0; (?x > 0 ∪ (?x = 0; v :=−cv))

Γ ≡ g > 0 ∧H ≥ 0 ∧ 1 ≥ c ≥ 0,

ϕ ≡ 2gx ≤ 2gH − v2 ∧ x ≥ 0

〈x := ..(t)〉F ≡ 〈x := x+ vt− g

2
t2; v := v − tg〉F.

When simplifying the ball dynamics to remove evolution domain constraints:

x′ = v, v′ = −g; (?x > 0 ∪ (?x = 0; v :=−cv))

the proof for the simplified bouncing ball property without evolution domain con-
straint is shown in Fig. 3. The dL proof for the original non temporal bouncing ball
property (3) with an evolution domain constraint is shown in Fig. 4. Note that 〈x := ..(t)〉F
is used as an update in the proof, i.e., proof rules are applied directly to its postcondi-
tion F leaving the update around.

15-424 LECTURE NOTES ANDRÉ PLATZER

http://symbolaris.com/course/fcps14/07-loops.pdf
http://symbolaris.com/course/fcps14/11-diffcut.pdf
http://symbolaris.com/course/fcps14/07-loops.pdf


Differential & Temporal Proofs L17.9

∗
i∀ Γ, ϕ, s≥0, x+ vs− g

2s
2 = 0 ` 2g(H − (x+ vs− g

2s
2)) ≤ 2gH − (−cv + cgs)2 ∧ (H − (x+ vs− g

2s
2)) ≥ 0

〈:=〉 Γ, ϕ, s≥0, 〈x := ..(s)〉x = 0 ` 〈x := ..(s)〉〈v :=−cv〉 ϕ
[:=] Γ, ϕ, s≥0, 〈x := ..(s)〉x = 0 ` 〈x := ..(s)〉[v :=−cv] ϕ
→r Γ, ϕ, s≥0 ` 〈x := ..(s)〉(x = 0→ [v :=−cv] ϕ)
[?] Γ, ϕ, s≥0 ` 〈x := ..(s)〉[?x = 0][v :=−cv] ϕ
[;] Γ, ϕ, s≥0 ` 〈x := ..(s)〉[?x = 0; v :=−cv] ϕ

∗
i∀ Γ, ϕ, s≥0, x+ vs− g

2s
2 > 0 ` 2g(H − (x+ vs− g

2s
2)) ≤ 2gH − (v − gs)2 ∧ (H − (x+ vs− g

2s
2)) ≥ 0

〈:=〉 Γ, ϕ, s≥0, 〈x := ..(s)〉x > 0 ` 〈x := ..(s)〉 ϕ
→r Γ, ϕ, s≥0 ` 〈x := ..(s)〉(x > 0→ ϕ)
[?] Γ, ϕ, s≥0 ` 〈x := ..(s)〉[?x > 0] ϕ

. . .

Γ, ϕ, s≥0 ` 〈x := ..(s)〉[?x > 0] ϕ

. . .

Γ, ϕ, s≥0 ` 〈x := ..(s)〉[?x = 0; v :=−cv] ϕ
∧r Γ, ϕ, s≥0 ` 〈x := ..(s)〉([?x > 0] ϕ ∧ [?x = 0; v :=−cv] ϕ)
[∪] Γ, ϕ, s≥0 ` 〈x := ..(s)〉[?x > 0 ∪ (?x = 0; v :=−cv)] ϕ
→r Γ, ϕ ` s≥0→ 〈x := ..(s)〉[?x > 0 ∪ (?x = 0; v :=−cv)] ϕ
∀r Γ, ϕ ` ∀t≥0 〈x := ..(t)〉[?x > 0 ∪ (?x = 0; v :=−cv)] ϕ
[′] Γ, ϕ ` [x′′ = −g][?x > 0 ∪ (?x = 0; v :=−cv)] ϕ
[;] Γ, ϕ ` [x′′ = −g; (?x > 0 ∪ (?x = 0; v :=−cv))] ϕ

ind′ Γ, ϕ ` [(x′′ = −g; (?x > 0 ∪ (?x = 0; v :=−cv)))∗] (0≤x≤H)
→r,∧l ` Γ∧ϕ→ [(x′′ = −g; (?x > 0 ∪ (?x = 0; v :=−cv)))∗] (0≤x≤H)

Figure 3: Non-temporal bouncing ball proof (no evolution domain)

15-424 LECTURE NOTES ANDRÉ PLATZER



L17.10 Differential & Temporal Proofs

∗
i∀ Γ ∧ ϕ, s≥0, , x+ vs− g

2s
2 = 0 ` 2g(H − (x+ vs− g

2s
2)) ≤ 2gH − (−cv + cgs)2 ∧ (H − (x+ vs− g

2s
2)) ≥ 0

〈:=〉 Γ ∧ ϕ, s≥0, , 〈x := ..(s)〉x = 0 ` 〈x := ..(s)〉〈v :=−cv〉 ϕ
[:=] Γ ∧ ϕ, s≥0, , 〈x := ..(s)〉x = 0 ` 〈x := ..(s)〉[v :=−cv] ϕ
→r Γ ∧ ϕ, s≥0, 〈x := ..(s)〉x ≥ 0 ` 〈x := ..(s)〉(x = 0→ [v :=−cv] ϕ)
[?] Γ ∧ ϕ, s≥0, 〈x := ..(s)〉x ≥ 0 ` 〈x := ..(s)〉[?x = 0][v :=−cv] ϕ
[;] Γ ∧ ϕ, s≥0, 〈x := ..(s)〉x ≥ 0 ` 〈x := ..(s)〉[?x = 0; v :=−cv] ϕ

∗
i∀ Γ ∧ ϕ, s≥0, , x+ vs− g

2s
2 > 0 ` 2g(H − (x+ vs− g

2s
2)) ≤ 2gH − (v − gs)2 ∧ (H − (x+ vs− g

2s
2)) ≥ 0

〈:=〉 Γ ∧ ϕ, s≥0, , 〈x := ..(s)〉x > 0 ` 〈x := ..(s)〉 ϕ
→r Γ ∧ ϕ, s≥0, 〈x := ..(s)〉x ≥ 0 ` 〈x := ..(s)〉(x > 0→ ϕ)
[?] Γ ∧ ϕ, s≥0, 〈x := ..(s)〉x ≥ 0 ` 〈x := ..(s)〉[?x > 0] ϕ

. . .

. . . ` 〈x := ..(s)〉[?x > 0] ϕ

. . .

Γ ∧ ϕ, s≥0, 〈x := ..(s)〉x ≥ 0 ` 〈x := ..(s)〉[?x = 0; v :=−cv] ϕ
∧r Γ ∧ ϕ, s≥0, 〈x := ..(s)〉x ≥ 0 ` 〈x := ..(s)〉([?x > 0] ϕ ∧ [?x = 0; v :=−cv] ϕ)
[∪] Γ ∧ ϕ, s≥0, 〈x := ..(s)〉x ≥ 0 ` 〈x := ..(s)〉[?x > 0 ∪ (?x = 0; v :=−cv)] ϕ
→r Γ ∧ ϕ, s≥0 ` 〈x := ..(s)〉x ≥ 0→ 〈x := ..(s)〉[?x > 0 ∪ (?x = 0; v :=−cv)] ϕ
→r Γ ∧ ϕ ` s≥0→ (〈x := ..(s)〉x ≥ 0→ 〈x := ..(s)〉[?x > 0 ∪ (?x = 0; v :=−cv)] ϕ)
∀r Γ ∧ ϕ ` ∀t≥0 (〈x := ..(t)〉x ≥ 0→ 〈x := ..(t)〉[?x > 0 ∪ (?x = 0; v :=−cv)] ϕ)
[′] Γ ∧ ϕ ` [x′′ = −g&x ≥ 0][?x > 0 ∪ (?x = 0; v :=−cv)] ϕ
[;] Γ ∧ ϕ ` [x′′ = −g&x ≥ 0; (?x > 0 ∪ (?x = 0; v :=−cv))] ϕ

ind′ Γ ∧ ϕ ` [(x′′ = −g&x ≥ 0; (?x > 0 ∪ (?x = 0; v :=−cv)))∗] (0≤x≤H)
→r ` Γ ∧ ϕ→ [(x′′ = −g&x ≥ 0; (?x > 0 ∪ (?x = 0; v :=−cv)))∗] (0≤x≤H)

Figure 4: Nontemporal bouncing ball proof (with evolution domain)

15-424 LECTURE NOTES ANDRÉ PLATZER



Differential & Temporal Proofs L17.11

4 Verification Example

Recall the bouncing ball. The proofs from previous lectures or Fig. 4 can be generalized
easily to a proof of the temporal property

2gx ≤ 2gH − v2 ∧ x ≥ 0 ∧ g > 0 ∧H ≥ 0 ∧ 1 ≥ c ≥ 0

→ [(x′′ = −g&x ≥ 0; (?x > 0 ∪ (?x = 0; v :=−cv)))
∗
]�(0 ≤ x ≤ H). (4)

The only aspect of the proof that changes is that the temporal proof rules in Fig. 1 are
used instead of the dynamic proof rules for dL, and that the resulting extra proof goals
for the invariance property at intermediate steps have to be proven.

In contrast, the proof in Fig. 3 for the simplified dynamics without evolution domain
restriction x ≥ 0 cannot be generalized to a proof of the temporal property

2gx ≤ 2gH − v2 ∧ x ≥ 0 ∧ g > 0 ∧H ≥ 0 ∧ 1 ≥ c ≥ 0

→ [(x′′ = −g; (?x > 0 ∪ (?x = 0; v :=−cv)))
∗
]�(0 ≤ x ≤ H). (5)

because the premise Γ, ϕ ` [x′′ = −g]ϕ resulting from the bottom-most occurrence of
a sequential composition rule cannot be shown. This difference in provability is for
good reasons. The property in (4) is valid, but the property in (5) is not! While there
was no noticeable semantical difference between the nontemporal dL counterparts of
the properties (4) versus (5), there is a decisive difference between the corresponding
temporal properties (5) and (4). Because there is no evolution domain restriction in (5),
its hybrid program does not prevent continuous evolution to a negative height under
the floor (x < 0), for which 0 ≤ x ≤ H does not hold.

The reason for this discrepancy of the temporal version compared to the nontemporal
versions thus is that the nontemporal modalities do not “see” the temporary violation
of 0 ≤ x ≤ H . Such a temporary violation of 0 ≤ x during the continuous evolution
does not produce a successful run of the hybrid program, because it is blocked by
the subsequent tests ?x = 0 and ?x > 0. A state with negative height fails both tests.
While this behaviour does not give a successful program transition of (ν, ω) ∈ ρ(ball)
by Lecture 3 so that the proof in Fig. 3 is correct, the behaviour still gives a valid trace
σ ∈ τ(ball) by Lecture 16. This trace σ is a partial trace, because it ends in a failure state
Λ, but it is still one of the traces that [ball]�(0 ≤ x ≤ H) quantifies over (quite unlike
[ball](0 ≤ x ≤ H), which only considers final states of successful traces).

The proof of the temporal bouncing ball formula (5) is shown in Fig. 5, which is a
direct counterpart of the nontemporal proof in Fig. 4. Some additional premises are
elided for space reasons (marked as /). The bottom-most use of the rule gen� has an
additional premise ϕ→ 0 ≤ x ≤ H , which proves easily. The bottom-most use of rule
[;]� has an additional premise which proves as in Lecture 7 already, just with an extra
conjunct coming from [&]�:

Γ ∧ ϕ ` ϕ ∧ [x′′ = −g&x ≥ 0]ϕ
[&]�Γ ∧ ϕ ` [x′′ = −g&x ≥ 0]�ϕ

15-424 LECTURE NOTES ANDRÉ PLATZER

http://symbolaris.com/course/fcps14/03-choicecontrol.pdf
http://symbolaris.com/course/fcps14/16-difftemporal.pdf
http://symbolaris.com/course/fcps14/07-loops.pdf


L17.12 Differential & Temporal Proofs

∗
i∀ /Γ ∧ ϕ, s≥0, , x+ vs− g

2s
2 = 0 ` 2g(H − (x+ vs− g

2s
2)) ≤ 2gH − (−cv + cgs)2 ∧ (H − (x+ vs− g

2s
2)) ≥ 0

〈:=〉 Γ ∧ ϕ, s≥0, , 〈x := ..(s)〉x = 0 ` 〈x := ..(s)〉(ϕ ∧ 〈v :=−cv〉ϕ)
[:=]� Γ ∧ ϕ, s≥0, , 〈x := ..(s)〉x = 0 ` 〈x := ..(s)〉[v :=−cv]�ϕ
→r Γ ∧ ϕ, s≥0, 〈x := ..(s)〉x ≥ 0 ` 〈x := ..(s)〉(x = 0→ [v :=−cv]�ϕ)
[?] / Γ ∧ ϕ, s≥0, 〈x := ..(s)〉x ≥ 0 ` 〈x := ..(s)〉[?x = 0][v :=−cv]�ϕ
[;]� Γ ∧ ϕ, s≥0, 〈x := ..(s)〉x ≥ 0 ` 〈x := ..(s)〉[?x = 0; v :=−cv]�ϕ

∗
i∀ Γ ∧ ϕ, s≥0, 〈x := ..(s)〉x ≥ 0 ` 2g(H − (x+ vs− g

2s
2)) ≤ 2gH − (v − gs)2 ∧ (H − (x+ vs− g

2s
2)) ≥ 0

〈:=〉Γ ∧ ϕ, s≥0, 〈x := ..(s)〉x ≥ 0 ` 〈x := ..(s)〉ϕ
[?]�Γ ∧ ϕ, s≥0, 〈x := ..(s)〉x ≥ 0 ` 〈x := ..(s)〉[?x > 0]�ϕ

. . .

. . . ` 〈x := ..(s)〉[?x > 0]�ϕ
. . .

Γ ∧ ϕ, s≥0, 〈x := ..(s)〉x ≥ 0 ` 〈x := ..(s)〉[?x = 0; v :=−cv]�ϕ
∧r Γ ∧ ϕ, s≥0, 〈x := ..(s)〉x ≥ 0 ` 〈x := ..(s)〉([?x > 0]�ϕ ∧ [?x = 0; v :=−cv]�ϕ)
[∪]� Γ ∧ ϕ, s≥0, 〈x := ..(s)〉x ≥ 0 ` 〈x := ..(s)〉[?x > 0 ∪ (?x = 0; v :=−cv)]�ϕ
→r Γ ∧ ϕ, s≥0 ` 〈x := ..(s)〉x ≥ 0→ 〈x := ..(s)〉[?x > 0 ∪ (?x = 0; v :=−cv)]�ϕ
→r Γ ∧ ϕ ` s≥0→ (〈x := ..(s)〉x ≥ 0→ 〈x := ..(s)〉[?x > 0 ∪ (?x = 0; v :=−cv)]�ϕ)
∀r Γ ∧ ϕ ` ∀t≥0 (〈x := ..(t)〉x ≥ 0→ 〈x := ..(t)〉[?x > 0 ∪ (?x = 0; v :=−cv)]ϕ)
[′] Γ ∧ ϕ ` [x′′ = −g&x ≥ 0][?x > 0 ∪ (?x = 0; v :=−cv)]�ϕ
[;]� / Γ ∧ ϕ ` [x′′ = −g&x ≥ 0; (?x > 0 ∪ (?x = 0; v :=−cv))]�ϕ

gen�/ Γ ∧ ϕ ` [x′′ = −g&x ≥ 0; (?x > 0 ∪ (?x = 0; v :=−cv))]�(0≤x≤H)
ind′ Γ ∧ ϕ ` [ball∗][x′′ = −g&x ≥ 0; (?x > 0 ∪ (?x = 0; v :=−cv))]�(0≤x≤H)
[∗]� Γ ∧ ϕ ` [(x′′ = −g&x ≥ 0; (?x > 0 ∪ (?x = 0; v :=−cv)))∗]�(0≤x≤H)
→r ` Γ ∧ ϕ→ [(x′′ = −g&x ≥ 0; (?x > 0 ∪ (?x = 0; v :=−cv)))∗]�(0≤x≤H)

Figure 5: Temporal bouncing ball proof (with evolution domain)

15-424 LECTURE NOTES ANDRÉ PLATZER



Differential & Temporal Proofs L17.13

making crucial use of the evolution domain constraint x ≥ 0. The use of rule [;]� near
the top has an additional premise proving as follows:

Γ ∧ ϕ, s≥0, 〈x := ..(s)〉x ≥ 0 ` 〈x := ..(s)〉ϕ
[?]�Γ ∧ ϕ, s≥0, 〈x := ..(s)〉x ≥ 0 ` 〈x := ..(s)〉[?x = 0]�ϕ

Finally, the top-most use of the 〈:=〉 rule has a second premise for proving the left
conjunct, which is once again:

Γ ∧ ϕ, s≥0, , 〈x := ..(s)〉x = 0 ` 〈x := ..(s)〉ϕ

Finally note that the temporal proof in Fig. 5 was conducted to retain the closest possible
resemblance with the nontemporal proof in Fig. 4. But the temporal induction rule [∗]�
followed by the nontemporal induction rule ind′ does not actually require a proof of
the loop invariant ϕ to hold throughout one iteration of the loop. It would have been
sufficient to prove

Γ ∧ ϕ ` [x′′ = −g&x ≥ 0; (?x > 0 ∪ (?x = 0; v :=−cv))]�(0≤x≤H)

directly without generalizing the temporal postcondition �(0≤x≤H) to �ϕ via gen�.
That would have led to a proof of the same shape as in Fig. 5, just without gen� and
with easier arithmetic in the end, because 0≤x≤H is only a linear constraint on position.

Observe how the temporal analogue of the proof in Fig. 4 shows how every interme-
diate symbolic state in the hybrid program for the bouncing ball is checked for safety
as illustrated by the checkpoint symbol ∧ in the following hybrid program:

∧
(
∧x
′ = v, v′ = −g&x ≥ 0∧; ∧(∧?x > 0 ∪ (∧?x = 0; ∧v :=−cv∧))∧

)∗
This is another reminder why temporal proofs will check some states repeatedly. There
are ways of avoiding such redundancy in the proofs to simplify the computational com-
plexity, but they increase the conceptual complexity of the proof rules, which makes
them useful for automation but not necessarily for humans [JP14].

5 Summary

This lecture showed a systematic way of specifying and verifying temporal properties
of hybrid systems. The focus was on safety properties that hold always throughout
the evolution of the system and are specified as [α]�φ with a mix of a temporal and
a dynamic modality instead of just a dynamic modality as in [α]φ. The difference is
that [α]�φ includes that safety condition φ holds at all intermediate states during all
traces of α, whereas [α]φ only specifies that φ holds at the end of each trace of α. This
difference matters in systems that have more intermediate states than final states. The
difference is insignificant for systems that can “stop anytime”, because those will al-
ready include all intermediate states of longer system runs as the final state of a corre-
sponding shorter system run. This has been the case in almost all systems studied in
this course and is frequently the case in practice.

15-424 LECTURE NOTES ANDRÉ PLATZER



L17.14 Differential & Temporal Proofs

The systematic way of ensuring safety always throughout the execution of hybrid
systems is the use of the dynamic and temporal modality [α]�φ, which works whether
or not the system has the special structure that allows it to stop anytime. In a nutshell,
the temporal proof rules for [α]�φ properties lead to additional branches that corre-
spond to the safety conditions at the respective intermediate state. It can be shown
that temporal dTL properties reduce to nontemporal dL properties completely [Pla10,
Chapter 4], justifying the intimate relation of temporal and nontemporal properties
That completeness result made crucial use of the clever form of the [∗]� proof rule.

Properties whose temporal counterpart does not hold such as (5) not only indicate
that the safety property does not hold throughout the system, but also that the sys-
tems might be hard to simulate, because they can run into unsafe dead ends during
execution.

Other temporal modalities are more involved and discussed elsewhere [JP14].

Exercises

Exercise 1. Can you give a formula of the following form that is valid?

[α]�φ ∧ ¬[α]φ

Exercise 2. Can you give a temporal box version of the differential invariant proof rule?

Exercise 3. The proof rules in (1) were argued to hold for any atomic hybrid program
α. Yet, differential equations with evolution domain constraints were not captured in
Fig. 1. Is the case where α is of the form x′ = θ&H sound for (1)? Justify why and
correct the statement if necessary.

Exercise 4. Augment the nontemporal proof shown in Fig. 4 to a proof of (4). Which
of the steps fails when trying to turn Fig. 3 into a proof attempt of (5) and why does
that happen? Conduct a proof of (4) that directly proves the postcondition without
generalization gen�.

Exercise 5. Which of the following proof rule attempts are sound? Discuss carefully.

Γ ` ϕ ϕ ` [α]ϕ ϕ ` φ
Γ ` [α∗]�φ

Γ ` ϕ ϕ ` [α]ϕ ϕ ` �φ
Γ ` [α∗]�φ

Γ ` ϕ ϕ ` [α]�ϕ ϕ ` φ
Γ ` [α∗]�φ

Exercise 6. In which case does the temporal [α]�φ differ from the nontemporal [α]φ.
Hint: consider a number of different forms that α could have.

References

[JP14] Jean-Baptiste Jeannin and André Platzer. dTL2: Differential temporal dynamic
logic with nested temporalities for hybrid systems. In Stéphane Demri, Deepak
Kapur, and Christoph Weidenbach, editors, IJCAR, volume 8562 of LNCS,
pages 292–306. Springer, 2014. doi:10.1007/978-3-319-08587-6_22.

15-424 LECTURE NOTES ANDRÉ PLATZER

http://dx.doi.org/10.1007/978-3-319-08587-6_22


Differential & Temporal Proofs L17.15

[Pla07] André Platzer. A temporal dynamic logic for verifying hybrid system invari-
ants. In Sergei N. Artëmov and Anil Nerode, editors, LFCS, volume 4514 of
LNCS, pages 457–471. Springer, 2007. doi:10.1007/978-3-540-72734-7_32.

[Pla08] André Platzer. Differential dynamic logic for hybrid systems. J. Autom. Reas.,
41(2):143–189, 2008. doi:10.1007/s10817-008-9103-8.

[Pla10] André Platzer. Logical Analysis of Hybrid Systems: Proving Theorems for Complex
Dynamics. Springer, Heidelberg, 2010. doi:10.1007/978-3-642-14509-4.

[Pla12] André Platzer. Logics of dynamical systems. In LICS, pages 13–24. IEEE, 2012.
doi:10.1109/LICS.2012.13.

15-424 LECTURE NOTES ANDRÉ PLATZER

http://dx.doi.org/10.1007/978-3-540-72734-7_32
http://dx.doi.org/10.1007/s10817-008-9103-8
http://dx.doi.org/10.1007/978-3-642-14509-4
http://dx.doi.org/10.1109/LICS.2012.13

	Introduction
	Temporal Proof Rules
	Temporal Bouncing Ball
	Verification Example
	Summary

