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1 Introduction

This course is devoted to the study of the Foundations of Cyber-Physical Systems
[Plal2¢, Plal2b]. Lecture 3 on Choice & Control explained hybrid programs, a pro-
gram notation for hybrid systems [Pla08, Pla10, Plal2c, Plal2a]. Lecture 4 on Safety &
Contracts defined differential dynamic logic [Pla08, Pla10, Plal2c, Plal2a] as a speci-
fication and verification logic for hybrid programs. Lecture 5 on Dynamical Systems
& Dynamic Axioms and subsequent lectures studied proof principles for differential
dynamic logic with which we can prove correctness properties of hybrid systems. In
your labs, you have demonstrated aptly how you can model, specify, and verify quite
sophisticated and challenging robots.

Yet, there was one rather puzzling phenomenon that we noticed in Lecture 4 only
then did not have a chance to consider any further. For a hybrid program o and differ-
ential dynamic logic formula ¢, the modal formula

[a]¢

expresses that all final states reached by all runs of « satisfy the logical formula ¢. The
modal formula [a]¢ is, consequently, false exactly in those states from which « can reach
a final state that violates the safety condition ¢. Yet, what about states from which the
final state reached by running « is safe but some intermediate state along the execution
of o was not safe?

Shouldn’t systems that violate safety conditino ¢ at an intermediate state be consid-
ered unsafe as well?

The short answer is: that depends.

Does it even make a difference whether we study intermediate states as well or only
worry about final states?
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L16.2 Differential & Temporal Logics

The short answer is again: that depends.

What exactly it depends on and how to systematically approach the general case of
safety throughout the system execution is what today’s lecture studies. The key to the
answer will be understanding the temporal behavior of hybrid programs. The hybrid
trace semantics of hybrid programs will also give us a deeper understanding of the
hybrid aspect of time in hybrid systems.

This lecture is based on [Plal0, Chapter 4], which is a significant extension of [Pla07],
and incorporates some aspects of follow-up work [JP14] to which we refer for a more
general account to temporal aspects in hybrid systems verification. The thoughts on
time in this lecture are related to an upcoming article [Pla14].

The most important learning goals of this lecture are:

Modeling and Control: We find identify one additional dynamical aspect, the aspect
of temporal dynamics, i.e. how state changes over time throughout a system ex-
ecution. It is important to learn to judge under which circumstance temporal
dynamics is important for understanding a CPS and when in can be neglected
without loss. Part of today’s lecture is also about understanding time, never a
bad goal to have.

Computational Thinking: This lecture addresses subtle aspects with identifying spec-
ifications and critical properties of CPS. We will also see how to express temporal
variations of postconditions for CPS models. This lecture introduces differential
temporal dynamic logic dTL [Plal0] extending the differential dynamic logic that
is used as the specification and verification language for CPS in the other parts
of this course by temporal aspects. Secondary goals in this lecture are practic-
ing the first half of the logical trinity consisting of the relationship of syntax and
semantics.

CPS Skills: We add a new dimension into our understanding of the semantics of a CPS
model: the temporal dimension corresponding to how exactly a system changes
state as a function of time. Such temporal changes have been implicit in the se-
mantics of hybrid programs so far, because that was based on reachability rela-
tions. Today’s lecture will make the temporal change explicit as a function of
time. This helps understanding nuances in the semantics of hybrid systems either
based on state reachability or on temporal traces, which further helps sharpen our
intuition for the operational effects of CPS as dynamic functions over time.

2 Temporalizing Hybrid Systems

In order to be able to distinguish whether a CPS is safe at the end of its run or safe al-
ways throughout its run, differential dynamic logic dZ will be extended with additional
temporal modalities. The resulting logic extends dC and is called differential temporal dy-
namic logic (dTL) [Plal0, Chapter 4]. The modal formula

(oo
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Differential & Temporal Logics L16.3

of d [Pla08, Plal2c] expresses that all final states reached by all runs of « satisfy the
logical formula ¢. The same dC formula [a]¢ is allowed in the logic dTL and has the
same semantics [Plal0, Chapter 4]. The new temporal modal dTL formula

[a]0¢

instead, expresses that all states reached all along all traces of « satisfy ¢. Those two
modalities can be be used to distinguish systems that are always throughout from those
that are only safe in final states. For example, if the dTL formula

[ A =[e]0é

is true in an initial state v, then the system o will be safe (in the sense of satisfying ¢)
in all final states reached after running « from v, but is not safe always throughout all
traces of all runs of « from v. Can that happen?

You should try to answer this question before it is discussed in a later part of these
lecture notes.

3 Syntax of Differential Temporal Dynamic Logic

The differential temporal dynamic logic dTL extends differential dynamic logic [Pla08,
Pla10, Plal2c] with temporal modalities for verifying temporal specifications of hybrid
systems. Hence, dTL has two kinds of modalities:

Modal operators. Modalities of dynamic logic express statements about all possible
behaviour ([a]7) of a system «, or about the existence of a trace ((a)~), satisfying
condition 7. Unlike in standard dynamic logic, o is a model of a hybrid system.
The logic dTL uses hybrid programs to describe a as in previous lectures. Yet,
unlike in standard dynamic logic [HKTO00] or dZ, 7 is a trace formula in dTL, and =
can refer to all states that occur during a trace using temporal operators.

Temporal operators. For dTL, the temporal trace formula (¢ expresses that the for-
mula ¢ holds all along a trace selected by [a] or («). For instance, the state for-
mula (a)0¢ says that the state formula ¢ holds at every state along at least one
trace of a.. Dually, the trace formula { ¢ expresses that ¢ holds at some point dur-
ing such a trace. It can occur in a state formula («){ ¢ to express that there is such
a state in some trace of «, or as [a]0¢ to say that along each trace there is a state
satisfying ¢. The primary focus of attention in today’s lecture is on homogeneous
combinations of path and trace quantifiers like [o](J¢ or (a){¢.

The formulas of dTL are defined similarly to differential dynamic logic. However,
the modalities [o] and (a) accept trace formulas that refer to the temporal behavior of
all states along a trace. Inspired by CTL and CTL* [EC82, EH86], dTL distinguishes
between state formulas, which are true or false in states, and trace formulas, which
are true or false for system traces. The sets Fml of state formulas and Fmlr of trace
formulas with variables in ¥ are simultaneously inductively defined in Def. 1.
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L16.4 Differential & Temporal Logics

Definition 1 (dTL formula). The (state) formulas of differential temporal dynamic logic
(dTL) are defined by the grammar (where ¢, ¢ are dTL state formulas, 7 is a dTL
trace formula, 01, 62 (polynomial) terms, = a variable, o a HP):

¢, =01 =026 2 02|~ |dANY | oV | =Y |Vxo|3xd||a]r|{a)r

The trace formulas of dTL are defined by the grammar (where ¢ is a dTL state for-
mula):

Tu=¢|0¢| 09
Operators >, <, <, <+ can be defined as usual, e.g., ¢ <> Y = (¢ — ) A (Y — ¢).

N\ v

Formulas without OJ and ¢ are nontemporal formulas and have the same semantics as
the corresponding dZ formulas. Unlike in CTL, dTL state formulas are true on a trace
if they hold for the last state of a trace, not for the first. Thus, when ¢ is a state formula,
dTL formula [«]¢ expresses that ¢ is true at the end of each trace of o, which is the same
as the dC formula [a]¢. In contrast, [a]C¢ expresses that ¢ is true all along all states of
every trace of a. This combination gives a smooth embedding of nontemporal dZ into
dTL and makes it possible to define a compositional calculus. Like CTL, dTL allows
nesting with a branching time semantics [EC82], e.g., [¢]0(x > 2 — (5)0z < 0).

Figure 1: Sample trajectory of a bouncing ball (plotted as position over real time)
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Differential & Temporal Logics L16.5

4 Hybrid Time

The semantics of differential temporal dynamic logic refers to the temporal behavior
of hybrid programs along a trace over time. Our first goal will therefore be to find the
right notion of time for the job.

Let us consider the familiar bouncing ball; see Fig.1. The bouncing ball is flying
through the air toward the ground, bounces back up when it hits the ground, and will
again fly up. Then, as gravity wins over, it will fly down again for a second bounce, and
so forth, leading to a lot of interesting physics including questions of how the kinetic
energy transforms into potential energy as the ball deforms by an elastic collision on
the ground and then reverses the deformation to gain kinetic energy [Cro00].

Alternatively, we decided in Lecture 4 on Safety & Contracts to put our multi-dynamical
systems glasses on [Plal2c] and realized that the bouncing ball dynamics consists of
two phases that, individually, are easy to describe and interact to form a hybrid system.
There is the flying part, where the ball does not do anything but move according to
gravity.! And then there is the bouncing part, where the ball bounces back from the
ground. While there is more physics involved in the bouncing, a simple description is
that the bounce on the ground will make the ball invert its velocity vector (from down
to up) and slow down a little (since the friction loses energy). Both aspects separately,
the flying and the bouncing, are easy to understand. They interact as a hybrid sys-
tem, where the ball flies continuously through the air until it hits the ground where
it bounces back up by a discrete jump of its velocity from negative to positive. These
thoughts led us to a hybrid program model for the bouncing ball along with its specifi-
cation in differential dynamic logic from Lecture 4 on Safety & Contracts:

0<zAxz=HAv=0Ag>0A1>c>0—
(2 =v,v' = —g&z>0; if(:c:O)v::—cv)*] 0<znAnz<H) (1)

A typical run of the bouncing ball program in (1) will follow an alternating succes-
sion of a continuous trajectory for the differential equation 2’ = v, v’ = —g within the
evolution domain z > 0 for a certain nonzero duration and an instantaneous discrete
jump following the discrete change if(z = 0)v := —cv at a discrete instant of time.
This succession gives rise to a subtlety. If we ask what value the velocity and height of
the bouncing ball have at a certain point in time ¢;, chances are that that is not going
to have an unambiguous answer. Whenever the ball is on the ground (z = 0) bounc-
ing back up, there are two velocities we could be referring to. The negative velocity
where the ball was still flying downwards and the subsequent positive velocity after
the bounce which reverted direction by v := —cv. So if we are trying to define a trace as
a function 0 : R — S from real time R to the state space S, we will utterly fail produc-
ing a function, because the velocity values at a time ¢; with o(¢)(z) = 0 are not unique.
What could we do about that?

Before you read on, see if you can find the answer for yourself.

!Taking the usual models of air resistance into account turned out to be easy as well as we saw in Lecture
11 on Differential Equations & Proofs.
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L16.6 Differential & Temporal Logics

The way out of this dilemma is to blow up time. Ever since Lecture 12 on Ghosts &
Differential Ghosts, we are used to seeing extra dimensions everywhere. Time is one of
those cases where a spooky extra dimension can help clarify what is going on. Let’s add
a second dimension to time so that we can distinguish between the first and the second
time that the ball was at the ordinary real time ¢;. The first such time (maybe denoted
t1.1) will have negative velocity, the second one (denoted t;.2) positive velocity. Think
of this as buying a pair of chronophotographic hyper-time spectacles and looking at the
same world as before with a more fine-grained notion of time to discover that there is
succession in things that looked indistinguishable before.?

It turns out, however, that rather than suffixing real points in time ¢; with a natural
number j to form t¢;.j, it is more convenient to turn it around and consider time T as
a cartesian product N x R such that a point in time (j, ) consists of a natural number
Jj € N counting how many discrete steps have happened so far and a real number
t € R,t > 0 indicating the real amount of time it took to get there.
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Figure 2: Two possible hybrid time domains for the sample trajectory of a bouncing ball
with discrete time step j and continuous time ¢

This succession of continuous and discrete transitions in Fig.1 gives rise to the hy-
brid time domain 7" shown in Fig. 2(left). Here, the intervals are either compact inter-
vals [t;, ;1] of positive duration ¢;11 — t; > 0 during which the ball is flying through
the air continuously according to the differential equation, or they are point intervals
[ti,t;] and a discrete transition happens at that single point in time that changes the
sign and magnitude of the ball’s velocity by a bounce described in the assignment. For
example, [t1, 2] is the time interval during which the ball is flying after its first bounce.
And the point interval [¢s, t2] represents the point in time during which the subsequent
discrete transition of bouncing happened, while [t2, t3] would be the flying phase after
the second bounce.

While this choice of a hybrid time domain gives a nice visual representation of the
overall progress of time, the lower bound of the intervals is not particularly informa-

*This is one of the many amazing cases where we follow Wheeler’s expression of Henri Poincaré’s
thoughts: “Time is defined so that motion looks simple” [MTW?73, p. 23].
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Differential & Temporal Logics L16.7

tive, because it coincides with the upper bound of the previous interval of time. It
gets notationally easier if all lower bounds of all intervals are normalized to 0 and only
the duration r; = t;41 — t; is retained as the upper bound; see Fig. 2(right). Both hy-
brid time domains in Fig. 2 are ultimately equivalent but the one on the right is easier
to work with. Fig.3 shows the particular sample trajectory of the bouncing ball from
Fig. 1 plotted on its corresponding hybrid time domain 7" from Fig. 2(right). That illus-
tration separates out the various discrete and continuous pieces of the trajectory of the
bouncing ball into separate fragments of the two-dimensional hybrid time.

h
\

Te's T4 T3 T2 T To

Figure 3: Sample trajectory of a bouncing ball plotted as position & over its hybrid time
domain with discrete time step j and continuous time ¢

This particular illustration nicely highlights the hybrid nature of the bouncing ball
dynamics. The downside, however, is that the hybrid domain 7" shown in Fig.2 is
specific to the particular bouncing ball trajectory from Fig. 1 and Fig. 3 and does not fit
to any other bouncing ball trajectories.

Before we proceed, we illustrate two more phenomena that are worth noticing: sub-
division and super-dense computations. While Fig.2 shows one hybrid time domain
for the sample trajectory in Fig. 1, there are infinitely many other hybrid time domains
that fit to the original sample trajectory shown in Fig.1 and just subdivide one of the
intervals of a flying phase into two subintervals during which the ball just keeps on
flying the way it did before. The first flying phase, for example, could just as well be
subdivided into the continuous phase where the ball is flying up according to the dif-
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L16.8 Differential & Temporal Logics

ferential equation followed by a continuous phase where the ball is flying down, still
according to the same differential equation. This happens whenever the continuous
evolution stops before the ball was on the ground, in which case the hybrid program
from (1) will loop around without actually changing any variables. That would yield a
different hybrid time domain with multiple intervals of positive duration in immediate
succession but still essentially the same behavior of the hybrid system in the end. So
subdivision of time domains does not yield characteristically different behavior. Like-
wise, there can be hybrid systems that have multiple discrete steps (corresponding to
point intervals in the hybrid time domain) in immediate succession before a continuous
transition happens again. For example, a car could, successively, switch gears and dis-
able the adaptive cruise control system and engage a warning light to alert the driver
before it ceases control again to the continuous driving behavior. Hence, while strict al-
ternation of discrete and continuous transitions may be the canonical example to have
in mind, it is most definitely not the only relevant scenario.

5 Trace Semantics of Hybrid Programs

In differential dynamic dZ [Pla08, Plal2c] from Lecture 4, modalities only refer to the
final states of system runs and the semantics is a reachability relation on states: State w
is reachable from state v using system « if there is a run of o which terminates in w
when started in v. For dTL, however, formulas can refer to intermediate states of runs
as well. To capture this, we change the semantics of a hybrid system « to be the set of
its possible traces, i.e., successions of states that occur during the evolution of . The
relation between the initial and the final state alone is not sufficient.

States define the values of system variables during a hybrid evolution. A state is a
map v : ¥ — R. In addition, we distinguish a separate state A to denote the failure of a
system run when it is aborted due to a test 7H that yields false. In particular, A can only
occur at the end of an aborted system run and marks that no further extension of that
trace is possible because of a failed test. The set of all states is denoted by S.

Hybrid systems evolve along piecewise continuous traces in multi-dimensional space
as time passes. Continuous phases are governed by differential equations, whereas dis-
continuities are caused by discrete jumps in state space. Unlike in discrete cases [Pra79,
BS01], traces are not just sequences of states, since hybrid systems pass through un-
countably many states even in bounded time. Beyond that, continuous changes are
more involved than in pure real time [ACD90, HNSY92], because all variables can
evolve along differential equations with different slopes. Generalizing the real-time
traces of [HNSY92], the following definition captures hybrid behaviour by splitting the
uncountable succession of states into periods o; that are regulated by the same control
law. For discrete jumps, some of those periods are point flows of duration 0.

The (trace) semantics of hybrid programs is compositional, that is, the semantics of
a complex program is defined as a simple function of the trace semantics of its parts.
What a hybrid trace captures is the full temporal evolution of a hybrid system. Hybrid
systems can behave in different ways, so their trace semantics will be a set of hybrid

15-424 LECTURE NOTES ANDRE PLATZER


http://symbolaris.com/course/fcps14/04-contracts.pdf

Differential & Temporal Logics L16.9

traces, each of which describes one particular temporal evolution over time. Time,
however, is hybridized to a pair (i,() of a discrete time index ¢ € N and a real time
point ¢ € R. A single time component ( € R itself would an inadequate model of
time for hybrid systems, because hybrid systems can make progress by a discrete tran-
sition without continuous time passing. That happens whenever discrete controls take
action. Continuous time only passes during continuous evolutions along differential
equations. Discrete actions only make discrete time index ¢ pass.

~

Definition 2 (Hybrid trace). A trace is a (nonempty) finite sequence
o= (00,01,02,...,0n)

of functions o; : [0, r;] — S with their respective durations ; € R (for i € N). A
position of o is a pair (i,¢) with ¢ € N,7 < n and ( in the interval [0, r;]; the state
of o at (4, () is 0;(¢). Positions of o are ordered lexicographically by (,¢) < (4, &)
iff either i < j, or i = j and ¢ < . Further, for astatev € S, v:[0,0] — S;0 +— v is
the point flow at v with duration 0, which is only defined at the time 0 as 7(0) = v.

A trace terminates if it is a finite sequence (o, 01, ...,0,) with o,(r,) # A. In
that case, the last state o, (r,,) is denoted by last o, otherwise last ¢ is undefined.
The first state 0o(0) is denoted by firsto. A trace is an error trace if it is a finite
sequence (0g, 01, . .., 0p) With 0, (r,) = A. Error traces of hybrid programs cannot
be continued any further, so if a trace has the error state A anywhere, then only as
the last state o, (7).

g J

Unlike in [ACD90, HNSY92], the definition of traces also admits finite traces of bounded
duration, which is necessary for compositionality of traces in o; 8. The semantics of
hybrid programs « as the set 7(«) of its possible traces depends on valuations [-],, of
formulas and terms at intermediate states v. The valuation of terms and interpretations
of function and predicate symbols are as for real arithmetic (Lecture 4). The valuation
of formulas will be defined in Def.6. Again, we use v¢ to denote the modification that
agrees with state v on all variables except for the symbol z, which is changed to d € R.
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~
Definition 3 (Trace semantics of hybrid programs). The trace semantics, (), of a
hybrid program o, is the set of all its possible hybrid traces and is defined induc-
tively as follows:

1. 7(x:=0) ={(V,w) : w=rexceptthat [z] 6 = [¢], forv € S}
2. 7(a" =0&H)={(p) : ¢(t) Fa’=0and p(t) = H forall 0 < ¢ < rforaso-
lution ¢ : [0,r] — S of any duration r} U {(?,A) : v = H};

i.e., with ¢(t)(z') & %C)(x)(t), ¢ solves the differential equation and satis-
fies H at all times, see Lecture 2. If even the initial state v does not satisfy H,
there can be no evolution except from the current state v to an error state A.

3. 1?H) = {(9) : vl= HYU{(s,A) : v}~ H}
4. T(aUB) = 1(a) UT(B)

5. 1(a; ) ={oog : 0 €71(a),se7(f) when o o is defined};
the composition of o = (09, 01,02, ...,0,) and ¢ = (<p,$1,$2, .- ., Sm) s

(00y--+y0n,505S15---,Sm) if o terminates and last o = first ¢
go0G:=<K0 if o does not terminate
not defined otherwise

def def
6. (o) = U, ey 7(@™), where o1 = (o) forn > 1,aswellas ol =

def
o E (?true).

« and

g J

Time passes differently during discrete and continuous change. During continuous
evolutions, the discrete step index i of positions (i, () remains constant, whereas the
continuous duration ¢ remains 0 during discrete point flows. This permits multiple
discrete state changes to happen at the same (super-dense) continuous time, unlike in
other approaches [ACD90].

Example 4. For comparing the transition semantics of hybrid programs for dC from
Lecture 3 and the trace semantics of hybrid programs for dTL from Def. 3, consider the
following simple hybrid program o:

a:=—2a; a:=a’.
The transition semantics is just the relation between initial and final states:

pla) = {(v,w) : wislike v except that w(a) = 4v(a)?}.

In particular, the dC formula [a]a > 0 is valid, because all final states have a square as

15-424 LECTURE NOTES ANDRE PLATZER


http://symbolaris.com/course/fcps14/02-diffeq.pdf
http://symbolaris.com/course/fcps14/03-choicecontrol.pdf

Differential & Temporal Logics L16.11

the value of a. In contrast, the trace semantics of « retains all intermediate states:

(o) = {(V,5,w) : sislike v except s(a) = —2v(a)

and w is like s except w(a) = s(a)? = 4v(a)?}.

During these traces, a > 0 does not hold at all states. If the trace starts with a positive
value (v = a > 0), then it will become negative at the point flow s (where s = a < 0),
yet recover to a positive value (w = a > 0) at the end.

Example 5. The previous example only had discrete jumps, and, thus, the traces only
involved point flows. Now consider the hybrid program 3 from the train context:

/ / / /
a:==b; 2 =v,v =a; 7v>0;a:=4; 2 =v,v =a.

The transition semantics of this program only considers successful runs to completion.
In particular, if A > 0, the velocity v will always be nonnegative at the end (otherwise
the test 7v > 0 in the middle fails and the program aborts), because the last differential
equation will accelerate and increase the velocity again. Thus, the position z at the end
of the program run will never be smaller than at the beginning.

If, instead, we consider the trace semantics of 3, all intermediate states are in the set
of traces:

T(B) = {(/j07/j1a(p17/j2a/j37(102) B 41 :luo[a"_> —/.L()(b)] and
(1 is a state flow of some duration 7, > Owithp; = 2 =v AV =a
starting in ¢;(0) = p1 and ending in a state with ¢;(r)(v) > 0

and piz = p1(r1), s = p1(r1)[a — ¢1(r1)(A)] and
(9 is a state flow of some duration 7o > O with o = 2 =v AV =a
starting in ¢(0) = p3 and ending in state o (r2) }

U {(Ho, i1, p1, Hi2, A) + 1 = pola — —po(b)] and
1 is a state flow of some duration r > O with o1 = 2 =v AV =a
starting in ¢;(0) = p; and ending in a state with ¢y (r)(v) <0
further ps = p1(r)}.

The first set is the set of traces where the test 7v > 0 in the middle succeeds and the
system continues. The second set (after the union) is the set of traces that are aborted
with A during their execution, because the middle test fails. Note that the traces in the
first set have two continuous flows ¢1, 92 and four point flows jio, fi1, fi2, iz in each
trace. The traces in the second set have only one continuous flow ¢; and three point
flows fig, /i1, /2, because the subsequent aborting point flow A does not terminate and
aborts all further execution. In the trace semantics, v < 0 is possible in the middle of
some traces, which is a fact that the transition semantics does not notice. Combining
traces for o U 3, that is, for

(a:=-2a; a:=a*)U(a:=—b; 2 =v,0' =a; 7v>0; a:=A; 2/ =v,v =a)
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is just the union 7(«) U 7(3) of the traces 7(a)) and 7(5) from Examples 4 and 5. Note
that a < 0 will hold at least once during every trace of o U 3, either in the beginning, or
after setting a := —2a or a := —b, respectively, when we assume b > 0.

6 Semantics of State and Trace Formulas

In the semantics of dTL formulas, the dynamic modalities determine the set of traces
according to the trace semantics of hybrid programs, and, independently, the tempo-
ral modalities determine at which points in time the respective postcondition needs
to hold. The semantics of formulas is compositional and denotational, that is, the se-
mantics of a complex formula is defined as a simple function of the semantics of its
subformulas.
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~
Definition 6 (dTL semantics). The satisfaction relation v |= ¢ for a dTL (state) for-
mula ¢ in state v is defined inductively:

o v (01 = 0) iff [01], = [0a],.

v = (61 = 62) iff [61], > [62],.

v = —¢iff v [ ¢, ie. if it is not the case that v = ¢.

v ¢ AYiffy = ¢and v = 2.

v Viffy = ¢orv E 4.

= 5 it [ danw = i

v ¢ o piff (v | pand v = ) or (v b ¢and v £ o).
v = Vziff e = ¢ foralld € R.

v = 3z ¢iff vd = ¢ for some d € R.

v |= o] iff for each trace o € 7(«) that starts in first 0 = v, if [7], is defined,
then [r], = true.

v = (o) iff there is a trace o € 7(«) starting in first 0 = v such that [7], is
defined and 7], = true.

For trace formulas, the valuation [-], with respect to trace o is defined inductively
as:

1. If ¢ is a state formula, then [¢] , = [¢]
defined if o does not terminate.

last o if 0 terminates, whereas [¢] . is not

2. [@¢], = trueiff 0;(¢) = ¢ holds for all positions (i, ¢) of o with o;(¢) # A.

L 3. [0¢], = trueiff 05(¢) = ¢ holds for some position (i, () of o with o;(¢) # A. )

As usual, a (state) formula is valid if it is true in all states. If v |= ¢, then we say that
dTL state formula ¢ is true at v or that v is a model of ¢. A (state) formula ¢ is valid,
written F ¢, iff v = ¢ for all states v. A formula ¢ is a consequence of a set of formulas
T, written I' E ¢, iff, for each v: (v |= ¢ for all ¢ € T') implies that v |= ¢. Likewise, for
trace formula 7 and trace o we write o |= 7 iff [7], = true and o (£ wiff [7]_ = false. In
particular, we only write o |= 7 or ¢ [~ 7 if 7], is defined, which it is not the case if =
is a state formula and o does not terminate. The points where a dTL property ¢ has to
hold for the various combinations of temporal and dynamic modalities are illustrated
in Fig. 4.
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Figure 4: Trace semantics of dTL formulas
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7 Conservative Temporal Extension

The following result shows that the extension by temporal operators that dTL provides
does not change the meaning of nontemporal dC formulas. The trace semantics given
in Def. 6 is equivalent to the final state reachability relation semantics given in Lecture
4 for the sublogic dC of dTL.

Proposition 7 (Conservative temporal extension [Plal0, Proposition 4.1]). The logic dTL
is a conservative extension of nontemporal dC, i.e., the set of valid dC formulas is the same
with respect to transition reachability semantics of dC (Lecture 4) as with respect to the trace
semantics of dTL (Def. 6).

The proof is by induction using that the reachability relation fits to the trace seman-
tics. That is, the reachability relation semantics of hybrid programs agrees with the first
and last states of the traces in the trace semantics.

Lemma 8 (Trace relation [Plal0, Lemma 4.1]). For hybrid programs o
pla) = {(first o,last o) : o € 7(a) terminates}.

In particular, the trace semantics from today’s lecture fits seamlessly to the original
reachability semantics that was the basis for the previous lectures. The trace seman-
tics exactly satisfies the objective of characterizing the same reachability relation be-
tween initial and final states, while, in addition, keeping a trace of all intermediate
states around. For nontemporal dTL formulas and for dZ formulas, this full trace with
intermediate states is not needed, because the reachability relation between initial and
final states is sufficient to define the meaning For temporal dTL formulas, instead, the
trace is crucial to give a meaning to [J and ¢.

8 Summary

This lecture introduced a temporal extension of the logic d and a trace semantics of
hybrid programs. This extends the syntax and semantics to the presence of temporal
modalities. The next lecture investigates how to prove temporal properties of hybrid
systems. Part of the value of today’s lecture was to learn about how to state temporal
properties of hybrid systems in differential temporal dynamic logic. An indirect aspect
is, however, that it gave us a deeper understanding of the temporal behavior of hybrid
systems even in cases where we continue to operate in differential dynamic logic.

Exercises

Exercise 1. Can you give a formula of the following form that is valid?

[@]0¢ A =[e]e
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Exercise 2. Plot the counterpart of the sample trajectory from Fig.3 for the alternative
hybrid time domain in Fig. 2(left).

Exercise 3. In which case does the temporal [«|0¢ differ from the nontemporal [a]¢.

Exercise 4. Def.3 defined the trace semantics of tests as
T(?H) ={(») : vI= H}U{(?,A) : v}~ H}

What would change if this definition would be modified to include an extra state 7 in
the case of successful tests to record the fact that a test has happened:

T(?H) = {(0,0) : vi= HYU{(#,A) : v~ H}

Is there a dTL formula that is true in one semantics but not in the other? Would the
semantics be the same when, instead, modifying the semantics of tests to elide the initial
state:

T(?H) ={(?) : vi= H} U{(A) : v £ H}
Is there a dTL formula that is true in one semantics but not in the other?

Exercise 5. No traces ever start in error states. Is the semantics of sequential composi-
tion the same when dropping the requirement of termination and using the following
definition instead:

(00, -y 0nyS05S1,---56m) if lasto = first¢
cog: =< o if lasto = A
not defined otherwise

This exercise assumes that last o is defined as o,,(r,,) whether it terminates without
error or with error.

Exercise 6. Is the formula (1) equivalent to the following dTL formula?

0<zAz=HAv=0Ag>0A1>c>0—
(' =v,0' = —g&z>0; if(:p:0)v::—cv)*]D(0§x/\az§H)

What if the differential equation is replaced by
¥ =vv=—-g;7x>0

Are the corresponding temporal and nontemporal formulas equivalent in that case?
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