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1. Introduction

Lecture 10 on Differential Equations & Differential Invariants and Lecture 11 on Differ-
ential Equations & Proofs equipped us with powerful tools for proving properties of
differential equations without having to solve them. Differential invariants (DI) [Pla10a,
Pla12] prove properties of differential equations by induction based on the right-hand
side of the differential equation, rather than its much more complicated global solution.
Differential cuts (DC) [Pla10a, Pla12] made it possible to simply prove another property
C of a differential equation and then change the dynamics of the system around so that
it is restricted to never leave region C. It can be shown that differential cuts are a funda-
mental proof principle for differential equations [Pla12], because some properties can
only be proved with differential cuts. That is the No Differential Cut Elimination theorem,
because, unlike cuts in first-order logic, differential cuts cannot generally be eliminated
but are sometimes necessary [Pla12].

Yet, it can also be shown that there are properties for which even differential cuts
are not enough, but differential ghosts become necessary [Pla12]. Differential ghosts
[Pla12], spooky as they may sound, turn out to be a useful proof technique for differ-
ential equations. Differential ghosts or differential auxiliaries are extra variables that
are introduced into the system solely for the purpose of the proof. Differential ghosts
are the differential analogue of ghost variables or auxiliary variables, which sometimes
have to be added into systems for the purpose of the proof. Both ghosts and differ-
ential ghosts serve a similar intuitive purpose: remember intermediate state values so
that the relation of the values at intermediate states to values at final states can be an-
alyzed. And that is also where the somewhat surprising name comes from. Auxiliary
variables are often called ghosts, because they are not really present in the actual sys-
tem, but just invented to make the story more interesting or, rather, the proof more
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L12.2 Ghosts & Differential Ghosts

conclusive. Ghosts give the proof a way of referring to how the state used to be that is
no more. There are many reasons for introducing ghost state into a system, which will
be investigated subsequently.

This lecture is based on [Pla12, Pla10b].
The most important learning goals of this lecture are:

Modeling and Control: This lecture does not have much impact on modeling and con-
trol of CPS, because, after all, the whole point of ghosts and differential ghosts is
that they are only added for the purposes of the proof. However, it can still some-
times be more efficient to add such ghost and differential ghost variables into the
original model right away. It is good style to mark such additional variables in
the model and controller as ghost variables in order to retain the information that
they do not need to be included in the final system executable.

Computational Thinking: This lecture leverages computational thinking principles for
the purposes of rigorous reasoning about CPS models by analyzing how extra
dimensions can simplify or enable reasoning about lower-dimensional systems.
From a state space perspective, extra dimensions are a bad idea, because, e.g.,
the number of points on a gridded space grows exponentially in the number of
dimensions. From a reasoning perspective, the important insight of this lecture
is that extra state variables sometimes help and may even make reasoning pos-
sible that is otherwise impossible. One intuition why extra ghost state may help
reasoning is that it can be used to consume the energy that a given dissipative sys-
tem is leaking (a similar purpose that dark matter had been speculated to exist)
or produce the energy that a given system consumes. The addition of such ex-
tra ghost state then enables invariants of generalized energy constants involving
both original and ghost state that was not possible using only the original state.
That is, ghost state may new cause energy invariants. This lecture continues the
trend of generalizing important logical phenomena from discrete systems to con-
tinuous systems. The verification techniques developed in this lecture are critical
for verifying some CPS models of appropriate scale and technical complexity but
are not necessary for all CPS models. A secondary goal of today’s lecture is to
develop more intuition and deeper understandings of differential invariants and
differential cuts.

CPS Skills: The focus in this lecture is on reasoning about CPS models, but there is an
indirect impact on developing better intuitions for operational effects in CPS by
introducing the concept of relations of state to extra ghost state. A good grasp on
such relations can help with the understanding of CPS dynamics quite substan-
tially. The reason is that ghosts and differential ghosts enable extra invariants,
which enable stronger statements about what we can rely on as a CPS evolves.
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Ghosts & Differential Ghosts L12.3

2. Recap

Recall the following proof rules of differential invariants (DI), differential weakening
(DW) and differential cuts (DC) for differential equations from Lecture 11 on Differen-
tial Equations & Proofs:

Note 1 (Proof rules for differential equations).

(DI)
H ` F ′θx′

F ` [x′ = θ&H]F
(DW)

H ` F
Γ ` [x′ = θ&H]F,∆

(DC)
Γ ` [x′ = θ&H]C,∆ Γ ` [x′ = θ& (H ∧ C)]F ,∆

Γ ` [x′ = θ&H]F,∆

With cuts and generalizations, earlier lectures have also shown that the following can
be proved:

A ` F F ` [x′ = θ&H]F F ` B
A ` [x′ = θ&H]B

(1)

This is useful for replacing a precondition A and postcondition B by another invariant
F that implies postcondition B and is implied by precondition A.

3. Arithmetic Ghosts

The easiest way to see why it sometimes makes sense to add variables into a system
model is to take a look at divisions. Divisions are not officially part of real arithmetic,
because divisions can be defined. For example, when a division b/c is ever mentioned
in a term such as q = b/c, then we can characterize q to remember the value of b/c by
indirectly characterizing q in terms of b and c without / and then subsequently use q
wherever b/c first occurred:

q :=
b

c
 q := ∗; ?qc = b  q := ∗; ?qc = b ∧ c 6= 0

where q := ∗ is the nondeterministic assignment that assigns an arbitrary real number
to q. The first transformation (simply written  ) characterizes q = b/s indirectly by
multiplying up as qc = b. The second transformation then conscientiously remembers
that divisions only make all the sense in the world when we avoid dividing by zero.
Because divisions by zero only cause a lot of trouble. This transformation can be used
when b/c occurs in the middle of a term too:

x := 2+
b

c
+e  q := ∗; ?qc = b; x := 2+q+e  q := ∗; ?qc = b∧c 6= 0; x := 2+q+e

Here q is called an arithmetic ghost, because q is an auxiliary variable that is only added
to the hybrid program for the sake of defining the arithmetic quotient bc .
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L12.4 Ghosts & Differential Ghosts

4. Nondeterministic Assignments & Ghosts of Choice

The HP statement x := ∗ that has been used in Sect. 3 is a nondeterministic assignment
that assigns an arbitrary real number to x. Comparing with the syntax of hybrid pro-
grams from Lecture 3 on Choice & Control, however, it turns out that such a statement
is not in the official language of hybrid programs.

α, β ::= x := θ | ?H | x′ = θ&H | α ∪ β | α;β | α∗ (2)

What now?
One possible solution, which is the one taken in the implementation of KeYmaera

[PQ08], is to simply add the nondeterministic assignment x := ∗ as a statement to the
syntax of hybrid programs.

α, β ::= x := θ | ?H | x′ = θ&H | α ∪ β | α;β | α∗ | x := ∗

Consequently, nondeterministic assignments need a semantics to become meaningful:

7. ρ(x := ∗) = {(ν, ω) : ω = ν except for the value of x, which can be any real number}

And nondeterministic assignments need proof rules so that they can be handled in
proofs:

Note 2. (〈:∗〉)
∃xφ
〈x := ∗〉φ

([:∗])
∀xφ

[x := ∗]φ

Proof rule 〈:∗〉 says that there is one way of assigning an arbitrary value to x so that φ
holds afterwards (i.e. 〈x := ∗〉φ holds) if (and only if) φ holds for some value of x (i.e.
∃xφ holds). And proof rule [:∗] says that φ holds for all ways of assigning an arbitrary
value to x (i.e. [x := ∗]φ holds) if (and only if) φ holds for all values of x (i.e. ∀xφ holds)
because x might have any such value after running x := ∗.

An alternative approach for adding nondeterministic assignments x := ∗ to hybrid
programs is to reconsider whether we even have to do add a new construct for x := ∗
or whether it can already be expressed in other ways. That is, to understand whether
x := ∗ is truly a new program construct or whether it can be defined in terms of the
other hybrid program statements from (2). Is x := ∗ definable by a hybrid program?

Before you read on, see if you can find the answer for yourself.
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Ghosts & Differential Ghosts L12.5

According to the proof rules [:∗] and 〈:∗〉, nondeterministic assignments x := ∗ can
be expressed equivalently by suitable quantifiers. But that does not help at all in the
middle of a program, where we can hardly write down a quantifier to express that the
value of x now changes.

There is another way, though. Nondeterministic assignment x := ∗ assigns any real
number to x. One hybrid program that has the same effect of giving x any arbitrary
real value [Pla10b, Chapter 3] is:

x := ∗ def≡ x′ = 1 ∪ x′ = −1 (3)

That is not the only definition of x := ∗, though. An equivalent definition is [Pla14]:

x := ∗ def≡ x′ = 1;x′ = −1

When working through the intended semantics of the left-hand side x := ∗ shown in
case 7 above and the actual semantics of the right-hand side of (3) according to Lecture
3 on Choice & Control, it becomes clear that both sides of (3) mean the same, because
they have the same reachability relation. Hence, the above definition (3) captures the
intended concept of giving x any arbitrary real value, nondeterministically. And, in
particular, just like if-then-else, nondeterministic assignments do not really have to be
added to the language of hybrid programs, because they can already be defined. Like-
wise, no proof rules would have to be added for nondeterministic assignments, because
there are already proof rules for the constructs used in the right-hand side of the defini-
tion of x := ∗ in (3). Since the above proof rules 〈:∗〉,[:∗] for x := ∗ are particularly easy,
though, it is usually more efficient to include them directly, which is what KeYmaera
does.

What may, at first sight, appear slightly spooky about (3), however, is that the left-
hand side x := ∗ is clearly an instant change in time where x changes its value instanta-
neously to some arbitrary new real number. That is not quite the case for the right-hand
side of (3), which involves two differential equations, which take time to follow.

The clue is that this passage of time is not observable in the state of the system. Con-
sequently, the left-hand side of (3) really means the same as the right-hand side of (3).
Remember from earlier lectures that time is not special. If a CPS wants to refer to time,
it would have a clock variable twith the differential equation t′ = 1. With such an addi-
tion, however, the passage of time t becomes observable in the value of variable t and,
hence, a corresponding variation of the right-hand side of (3) would not be equivalent
to x := ∗ at all (indicated by 6≡):

x := ∗ 6≡ x′ = 1, t′ = 1 ∪ x′ = −1, t′ = 1

Both sides differ, because the right side exposes the amount of time t it took to get the
value of x to where it should be, which, secretly, records information about the absolute
value of the change that x underwent from its old to its new value. That change is
something that the left-hand side x := ∗ knows nothing about.
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L12.6 Ghosts & Differential Ghosts

5. Differential-algebraic Ghosts

The transformation in Sect. 3 can eliminate all divisions, not just in assignments, but
also in tests and all other hybrid programs, with the notable exception of differential
equations. Eliminating divisions in differential equations turns out to be a little more
involved.

The following elimination using a (discrete) arithmetic ghost q is correct:

x′ =
2x

c
& c 6= 0 ∧ x+ 1

c
> 0  q := ∗; ?qc = 1;x′ = 2xq& c 6= 0 ∧ (x+ 1)q > 0

where the extra ghost variable q is supposed to remember the value of 1
c .

The following attempt with a (discrete) arithmetic ghost q, however, would change
the semantics rather radically:

x′ =
c

2x
& 2x 6= 0 ∧ c

2x
> 0  q := ∗; ?q2x = 1;x′ = cq& 2x 6= 0 ∧ cq > 0

because q then only remembers the inverse of the initial value of 2x, not the inverse
of the value of 2x as x evolves along the differential equation x′ = c

2x . That is q has a
constant value during the differential equation but, of course, the quotient c

2x changes
over time since x does.

One way to proceed is to figure out how the value of the quotient q = 1
2x changes

over time as x changes by x′ = c
2x . By deriving what q stands for, that results in

q′ =

(
1

2x

)′
=
−2x′

4x2
=
−2 c

2x

4x2
= − c

4x3

Alas, we go unlucky here, because that gives yet another division to keep track of.
The other and entirely systematic way to proceed is to lift nondeterministic assign-

ments q to differential equations q′ = ∗ with the intended semantics that q changes ar-
bitrarily over time while following that nondeterministic differential equation:1

q′ =
b

c
 q′ = ∗& qc = b  q′ = ∗& qc = b ∧ c 6= 0

While it is slightly more complicated to give a semantics to q′ = ∗, the idea behind the
transformation is completely analogous to the case of discrete arithmetic ghosts:

x′ = 2 +
b

c
+ e  x′ = 2 + q + e, q′ = ∗& qc = b  x′ = 2 + q + e, q′ = ∗& qc = b∧c 6= 0

Variable q is a differential-algebraic ghost in the sense of being an auxiliary variable in the
differential-algebraic equation for the sake of defining the quotient bc .

1See [Pla10b, Chapter 3] for the precise meaning of the nondeterministic differential equation q′ = ∗. It
is the same as the differential-algebraic constraint ∃d q′ = d, but differential-algebraic constraints have
not been introduced in this course so far, either. The intuition of allowing arbitrary changes of the
value of q over time is fine, though, for our purposes.
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Ghosts & Differential Ghosts L12.7

Together with the reduction of divisions in discrete assignments from Sect. 3, plus the
insight that divisions in tests and evolution domain constraints can always be rewrit-
ten to division-free form, this gives a (rather sketchy) proof showing that hybrid pro-
grams and differential dynamic logic do not need divisions [Pla10b]. The advantage of
eliminating divisions this way is that differential dynamic logic does not need special
precautions for divisions and that the handling of zero divisors is made explicit in the
way the divisions are eliminated from the formulas. In practice, however, it is still use-
ful to use divisions, yet great care has to be exercised to make sure that no inadvertent
divisions by zero could ever cause troublesome singularities.

Note 3 (Divisions).

divide by zero
1

0

Whenever dividing, exercise great care not to accidentally
divide by zero, for that will cause quite some trouble. More
often than not, this trouble corresponds to missing require-
ments in the system. For example v2

2b may be a good stop-
ping distance when braking to a stop from initial velocity v,
except when b = 0, which corresponds to having no brakes
at all.

6. Discrete Ghosts

All the ghost variables so far were introduced to define operators such as divisions or
nondeterministic assignments x := ∗. There are other reasons for using auxiliary alias
ghost variables, though.

The discrete way of adding ghost variables is to introduce a new ghost variable y into
a proof that remembers the value of a term θ. This can be useful in a proof in order to
have a name, y, that recalls the value of θ later on in the proof, especially when the value
of θ changes subsequently during the execution of hybrid programs α in the remaining
modalities, which makes it possible to relate the value of θ before and after the run of
that hybrid program α.

Lemma 1 (Discrete ghosts). The following is a sound proof rule for introducing an aux-
iliary variable or (discrete) ghost y:

(IA)
Γ ` [y := θ]φ,∆

Γ ` φ,∆
where y is a new program variable.

The fact that proof rule IA is sound can be explained easily based on the soundness of
the substitution axiom [:=] from Lecture 5 on Dynamical Systems & Dynamic Axioms.
The assignment axiom [:=] proves validity of

φ↔ [y := θ]φ
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L12.8 Ghosts & Differential Ghosts

because the fresh variable y does not occur in φ. Hence, discrete ghost rule IA just
applies the substitution axiom backwards to introduce a ghost variable y that was not
there before.

Discrete ghosts can be interesting when φ contains modalities that change variables
in θ for y can then remember the value that θ had before that change. For example:

xy − 1 = 0 ` [c := xy][x′ = x, y′ = −y]xy = 1
IAxy − 1 = 0 ` [x′ = x, y′ = −y]xy = 1
→r ` xy − 1 = 0→ [x′ = x, y′ = −y]xy = 1

This sequent derivation memorizes the value that the interesting term xy had before the
differential equation started in the ghost variable c. It is a bit hard to complete the proof,
because substituting c away using the assignment rule [:=]r would undo the pleasant
effect that the IA rule had, because the whole point of the fresh variable c is that it does
not occur elsewhere.2 So the only way the proof can make progress is by applying a
proof rule to the differential equation. Unfortunately, the sequent calculus from Lecture
6 on Truth & Proof focuses the application of proof rules to the top-level of sequents.
That is usually an advantage but now a disadvantage. For that reason, KeYmaera uses a
concept called updates that postpone the application of the substitution rule [:=]r until
all modalities are gone.

2 This potentially surprising phenomenon happens in some form or other for other ghosts as well, be-
cause, the whole point of ghosts is to compute something that the original model and property do
not depend on. So, sufficiently sophisticated forms of dead-code elimination would get rid of ghosts,
which would be counterproductive for the proof.
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Ghosts & Differential Ghosts L12.9

Note 5 (Excursion: Updates). KeYmaera postpones the substitution resulting from an
assignment according to rule [:=]r,[:=]l,〈:=〉r,〈:=〉l if the postcondition is not a first-order
formula but involves modalities with HPs. What this corresponds to is, essentially to leave
the assignment as is and apply proof rules to the postcondition, but only in this particular
case of a prefix of assignments! Because that would be a bit confusing without further
notice, KeYmaera changes the notation slightly and turns an assignment into what it calls
an update.

(R7)
{x := θ}φ
[x := θ]φ

(R8)
φθx

{x := θ}φ
The meaning of the formula {x := θ}φ in the premise of R7 is exactly the same as the
formula [x := θ]φ in the conclusion of R7. The notation {x := θ}φ is only meant as a
reminder for the user that KeYmaera decided to put the handling of the assignment by
substitution on hold until the postcondition φ looks more civilized (meaning: first-order).
KeYmaera collects all the state changes in such an update (or a list of updates). KeYmaera
will then, essentially, just carry the update prefix {x := θ} around with it and apply the
sequent proof rules directly to the respective postcondition φ after the update {x := θ}
until the substitution that {x := θ} is waiting for can ultimately be applied (R8) which
will make the update disappear again. Thus, KeYmaera splits the assignment rule [:=]
into two parts: the conversion of assignments to updates R7 followed by the application of
updates as substitutions R8:

Γ ` φθx,∆
R8Γ ` {x := θ}φ,∆
R7Γ ` [x := θ]φ,∆

Similarly for 〈x := θ〉φ.
Observe that postponing the substitution of assignments in [x := θ]φ may be necessary

when the postcondition φ contains further modalities with loops assigning to x or differ-
ential equations binding x′. We also need to be careful to not leave updates lurking around
for premises that need the sequent context Γ,∆ removed for soundness reasons, because
both Γ,∆ and an update {x := θ} represent knowledge about the symbolic current state.

More information on updates can be found in [Pla08, Pla10b, Chapter 2.2,2.3,2.5].

Continuing the sequent proof above with updates to postpone the handling of the
first assignment leads to the following proof:

∗
R ` 0 = xy + x(−y)

` (0 = x′y + xy′)xx′
−y
y′

DI xy − 1 = 0 ` {c := xy}[x′ = x, y′ = −y]c = xy .
[]gen′xy − 1 = 0 ` {c := xy}[x′ = x, y′ = −y]xy = 1

R7 xy − 1 = 0 ` [c := xy][x′ = x, y′ = −y]xy = 1
IA xy − 1 = 0 ` [x′ = x, y′ = −y]xy = 1
→r ` xy − 1 = 0→ [x′ = x, y′ = −y]xy = 1
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L12.10 Ghosts & Differential Ghosts

The generalization step []gen′ leads to a second premise that has been elided (marked
by .) and proves, because c = 1 is an easily provable additional differential invariant,
because the discrete ghost c starts out as 1 initially by the antecedent and never changes
its value. This particular property also proves directly quite easily, but the proof tech-
nique of discrete ghosts is of more general interest.

See�Proof using discrete ghosts�

7. Proving Bouncing Balls with Sneaky Solutions

Recall a dL formula for the falling ball part of the bouncing ball proof from Lecture 7
on Control Loops & Invariants, which was based on an argument in Lecture 4:

2gx = 2gH − v2 ∧ x ≥ 0→ [x′ = v, v′ = −g&x ≥ 0](2gx = 2gH − v2 ∧ x ≥ 0) (4)

Recall the abbreviation

(x′′ = −g&x ≥ 0) ≡ (x′ = v, v′ = −g&x ≥ 0)

Lecture 7 proved dL formula (4) using the solutions of the differential equation with
the solution proof rule [′]. Yet, dL formula (4) can also be proved with a mix of differen-
tial invariants, differential cuts and differential weakening, instead:

DC

DI

R
∗

x ≥ 0 ` 2gv = −2v(−g)
x ≥ 0 ` (2gx′ = −2vv′)vx′

−g
v′

2gx = 2gH − v2 ` [x′′ = −g&x ≥ 0]2gx = 2gH − v2
DW

ax
∗

x ≥ 0 ∧ 2gx = 2gH − v2 ` 2gx = 2gH − v2 ∧ x ≥ 0

2gx = 2gH − v2 ` [x′′ = −g&x ≥ 0 ∧ 2gx = 2gH − v2](2gx = 2gH − v2 ∧ x ≥ 0)

2gx = 2gH − v2 ` [x′′ = −g&x ≥ 0](2gx = 2gH − v2 ∧ x ≥ 0)

Note that differential weakening (DW) works for proving the postcondition x ≥ 0, but
DI would not work for proving x ≥ 0, because its derivative is (x ≥ 0)′ ≡ v ≥ 0, which
is not an invariant of the bouncing ball since its velocity ultimately becomes negative
when it is falling again according to gravity.

The above proof is very elegant and has notably easier arithmetic than the arithmetic
requires when working with solutions of the bouncing ball in earlier lectures.

Note 6 (Differential invariants lower degrees). Differential invariants DI work by
differentiation, which lowers polynomial degrees. The solution proof rule [′] works with
solutions, which ultimately integrate the differential equation and, thus, increase the de-
grees. The computational complexity of the resulting arithmetic is, thus, often in favor of
differential invariants even in cases where the differential equations can be solved so that
the solution rule [′] would be applicable.

Besides the favorably simple arithmetic coming from differential invariants, the other
reason why the proof worked so elegantly is that the invariant 2gx = 2gH − v2 ∧ x ≥ 0
was a clever choice that we came up with in a creative way in Lecture 4. There is
nothing wrong with being creative. On the contrary!
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Ghosts & Differential Ghosts L12.11

But it also pays off to be systematic and develop a rich toolbox of techniques for
proving properties of differential equations. Is there a way to prove (4) without such a
distinctively clever invariant that works as a differential invariant right away? Yes, of
course, because (4) can even be proved using solutions [′]. But it turns out that interest-
ing things happen when we systematically try to understand how to make a proof hap-
pen that does not use the solution rule [′] and, yet, still uses solution-based arguments.
Can you conceive a way to use solutions for differential equations without invoking
the actual solution rule [′]?

Before you read on, see if you can find the answer for yourself.
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L12.12 Ghosts & Differential Ghosts

8. Exploiting Differential Ghosts for Falling Balls

Note 7 (Ghost solutions). Whenever there is a solution of a differential equation that we
would like to make available to a proof without using the solution rule [′]r, a differential
cut and subsequent differential invariant can be used to cut the solution as an invariant
into the system. The tricky part is that solutions depend on time, and time may not be part
of the differential equation system. If there is no time variable, however, a differential ghost
first needs to be added that pretends to be time.

Consider dL formula (4) again, which turns into

Ax,v ` [x′′ = −g&x ≥ 0]Bx,v (4)

using the abbreviations:

Ax,v
def≡ 2gx = 2gH − v2 ∧ x ≥ 0

Bx,v
def≡ 2gx = 2gH − v2 ∧ x ≥ 0

(x′′ = −g)
def≡ (x′ = v, v′ = −g)

The proof begins by introducing a discrete ghost v0 remembering the initial velocity
of the bouncing ball and proceeds by adding a differential ghost t for the time variable
with derivative t′ = 1 so that the solution v = v0 − tg can be differentially cut into the
system and proved to be differentially invariant:

∗
Rx ≥ 0 ` −g = −1g

x ≥ 0 ` (v′ = −t′g)−gv′
1
t′

DI Ax,v ` {v0 := v}[x′′ = −g, t′ = 1 &x ≥ 0]v = v0 − tg Ax,v ` {v0 := v}[x′′ = −g, t′ = 1 &x ≥ 0 ∧ v = v0 − tg]Bx,v
DC Ax,v ` {v0 := v}[x′′ = −g, t′ = 1 &x ≥ 0]Bx,v
DA Ax,v ` {v0 := v}[x′′ = −g&x ≥ 0]Bx,v
R7 Ax,v ` [v0 := v][x′′ = −g&x ≥ 0]Bx,v
IA Ax,v ` [x′′ = −g&x ≥ 0]Bx,v

where the proof step marked DA (for differential auxiliaries or differential ghosts) intro-
duces new variable t with derivative 1 as a differential ghost into the system.3 Observe
how the differential invariant step DI made the sequent context as well as the update
{v0 := v} disappear, which is generally important for soundness.

The left premise in the above proof has been closed by arithmetic. The right premise
in the above proof proves as follows by first introducing yet another discrete ghost x0

3 When discussing the differential ghost proof rule DA in a more general form later on, we will see that
DA introduces an extra left premise, which is omitted in this proof (marked by /). That additional
premise, however, proves easily because Bx,v ↔ ∃tBx,v is rather trivially valid in first-order logic, as
the fresh variable t does not even occur in Bx,v at all here (vacuous quantification).
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with DA that remembers the initial position so that it can be referred to in the solution.
The solution x = x0 + v0t− g

2 t
2 can then be differentially cut into the system by DC and

proved to be differentially invariant by DI:

∗
axx ≥ 0 ∧ v = v0 − tg ` v = v0 − 2g2 t
x ≥ 0 ∧ v = v0 − tg ` (x′ = v0t

′ − 2g2 tt
′)v
x′

1
t′

DI Ax,v ` {x0 := x; v0 := v}[x′′ = −g, t′ = 1 &x ≥ 0 ∧ v = v0 − tg]x = x0 + v0t− g
2 t

2.
DC Ax,v ` {x0 := x; v0 := v}[x′′ = −g, t′ = 1 &x ≥ 0 ∧ v = v0 − tg]Bx,v
IA Ax,v ` {v0 := v}[x′′ = −g, t′ = 1 &x ≥ 0 ∧ v = v0 − tg]Bx,v

The differential cut proof step marked DC has a second premise using the cut which is
elided above (marked by .) and proves as follows:

DW
x ≥ 0 ∧ v = v0 − tg ∧ x = x0 + v0t− g

2 t
2 ` Bx,v

Ax,v ` {x0 := x; v0 := v}[x′′ = −g, t′ = 1 &x ≥ 0 ∧ v = v0 − tg ∧ x = x0 + v0t− g
2 t

2]Bx,v

The resulting arithmetic can be proved by real arithmetic with enough care, but it has
a twist! First of all, the arithmetic can be simplified substantially using the equality
substitution rule =r from Lecture 6 to replace v by v0 − tg and replace x by x0 + v0t −
g
2 t

2 and use subsequent weakening (Wl) to get rid of both equations after use. This
simplification reduces the computational complexity of real arithmetic a lot:

` 2g(x0 + v0t− g
2 t

2) = 2gH − (v0 − tg)2

Wlx ≥ 0 ` 2g(x0 + v0t− g
2 t

2) = 2gH − (v0 − tg)2
∗

axx ≥ 0 ` x ≥ 0
∧r x ≥ 0 ` 2g(x0 + v0t− g

2 t
2) = 2gH − (v0 − tg)2 ∧ x ≥ 0

Wl x ≥ 0, v = v0 − tg, x = x0 + v0t− g
2 t

2 ` 2g(x0 + v0t− g
2 t

2) = 2gH − (v0 − tg)2 ∧ x ≥ 0
=r x ≥ 0, v = v0 − tg, x = x0 + v0t− g

2 t
2 ` 2gx = 2gH − (v0 − tg)2 ∧ x ≥ 0

=r x ≥ 0, v = v0 − tg, x = x0 + v0t− g
2 t

2 ` 2gx = 2gH − v2 ∧ x ≥ 0
∧l x ≥ 0 ∧ v = v0 − tg ∧ x = x0 + v0t− g

2 t
2 ` 2gx = 2gH − v2 ∧ x ≥ 0

Observe how this use of equality substitution and weakening helped simplify the arith-
metic complexity of the formula substantially and even helped to eliminate a variable
(v) right away. This can be useful to simplify arithmetic in many other cases as well.
Both eliminating variables as well as applying and hiding equations right away can of-
ten simplify the complexity of handling real arithmetic. The arithmetic in the remaining
left branch

2g
(
x0 + v0t−

g

2
t2
)

= 2gH − (v0 − tg)2

expands by polynomial arithmetic and cancels as follows:

2g
(
x0 + v0t − g

2 t
2
)

= 2gH − v20 + 2v0tg + t2g2

Those cancellations simplify the arithmetic, leaving the remaining condition:

2gx0 = 2gH − v20 (5)
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L12.14 Ghosts & Differential Ghosts

Indeed, this relation characterizes exactly how H , which turns out to have been the
maximal height, relates to the initial height x0 and initial velocity v0. In the case of
initial velocity v0 = 0, for example, the equation (5) collapses to x0 = H , i.e. that H is
the initial height in that case. Consequently, the computationally easiest way of proving
the resulting arithmetic is to first prove by a differential cut DC that (5) is a trivial
differential invariant, resulting in a proof of (4); see Exercise 2.

Yet, as we go through all proof branches again to check that we really have a proof,
however, we notice a subtle but blatant oversight. Can you spot it, too?

The very first left-most branch with the initial condition for the differential invariant
v = v0 = tg does not, actually, prove. The catch is that we silently assumed t = 0 to be
the initial value for the new clock t, but that our proof did not actually say so. Oh my,
what could be done about that now?

Before you read on, see if you can find the answer for yourself.
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Ghosts & Differential Ghosts L12.15

Discrete ghosts to the rescue! Even though we do not know the initial value of the
differential ghost t, we can simply use a discrete ghost again to call it t0 and get on with
it. Will that work? Can you find it out? Or should we start a revision of the proof to
find out?

Ax,v ` {v0 := v}{t0 := t}[x′′ = −g, t′ = 1&x ≥ 0]v = v0 − (t− t0)g Ax,v ` {v0 := v}{t0 := t}[x′′ = −g, t′ = 1&x ≥ 0 ∧ v = v0 − (t− t0)g]Bx,v
DC Ax,v ` {v0 := v}{t0 := t}[x′′ = −g, t′ = 1&x ≥ 0]Bx,v
R7 Ax,v ` {v0 := v}[t0 := t][x′′ = −g, t′ = 1&x ≥ 0]Bx,v
IA Ax,v ` {v0 := v}[x′′ = −g, t′ = 1&x ≥ 0]Bx,v

As this proof shows, everything works as expected as long as we realize that this re-
quires a change of the invariants used for the differential cuts. The solution of the
velocity to differentially cut in will be v = v0 − (t− t0)g and the solution of the position
to differentially cut in subsequently will be x = x0 + v0(t− t0)− g

2(t− t0)2.
See�Proof of falling balls�
For the case of the bouncing ball, this proof was unnecessarily complicated, because

the solution rule [′] could have been used instead right away, instead. Yet, even if this
particular proof was more involved, the arithmetic ended up being nearly trivial in
the end (which Note 6 already observed to hold in general for differential invariant
proofs). But the same proof technique of adding differential ghosts and discrete ghosts
as needed can be pretty useful in more complicated systems.

Note 8 (On the utility of ghosts). Adding differential ghosts and discrete ghosts as
needed can be useful in more complicated systems that do not have computable solutions,
but in which other relations between initial (or intermediate) and final state can be proved.
The same technique can also be useful for cutting in solutions when only part of a differen-
tial equation system admits a polynomial solution.

For example, the differential equation system d′ = ωe, e′ = −ωd, v′ = a is difficult,
because it has non-polynomial solutions. Still, one part of this differential equation, the
velocity v′ = a, is easily solved. Yet, the solution rule [′]r is not applicable, because no
real arithmetic solution of the whole differential equation system exists (except when
ω = 0). Regardless, after suitable discrete ghosts and differential ghosts for adding a
clock t′ = 1, a differential cut with the solution v = v0 + at of v′ = a adds this precise
knowledge about the time-dependent change of the variable v to the evolution domain
for subsequent use in the proof.

9. Differential Ghosts

The proof technique of differential ghosts is not limited to adding the differential equa-
tion t′ = 1 for time, but can add other differential equations y′ = η into the differential
equation system as well. Besides, the invariant to prove can very well be modified to
make use of the additional ghost variable y by referring to it, which did not happen in
the above proof, in which the postconditionBx,v remained unchanged (see 3).
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L12.16 Ghosts & Differential Ghosts

Lemma 2 (Differential ghosts). The following is a sound proof rule differential auxil-
iaries (DA) for introducing auxiliary differential variables or differential ghosts [Pla12]:

(DA)
Γ ` F ↔ ∃y G,∆ Γ, G ` [x′ = θ, y′ = η&H]G,∆

Γ, F ` [x′ = θ&H]F,∆

where y new and y′ = η, y(0) = y0 has a global solution y on H for each y0.

Rule DA is applicable if y is a new variable and the new differential equation y′ = η
has global solutions on H (e.g., because term η satisfies a Lipschitz condition [Wal98,
Proposition 10.VII], which is definable in first-order real arithmetic and thus decidable).
Without that condition, adding y′ = η could limit the duration of system evolutions
incorrectly. In fact, it would be sufficient for the domains of definition of the solutions
of y′ = η to be no shorter than those of x. Soundness is easy to see, because precondition
F implies G for some choice of y (left premise). Yet, for any y, G is an invariant of the
extended dynamics (right premise). Thus, G always holds after the evolution for some
y (its value can be different than in the initial state), which still implies F (left premise).
Since y is fresh and its differential equation does not limit the duration of solutions
of x on H , this implies the conclusion. Since y is fresh, y does not occur in H , and,
thus, its solution does not leave H , which would incorrectly restrict the duration of the
evolution as well.

Intuitively, rule DA can help proving properties, because it may be easier to char-
acterize how x changes in relation to an auxiliary differential ghost variable y with a
suitable differential equation (y′ = η) compared to understanding the change of x in
isolation.

10. Spooky Ghosts

In fact, differential ghosts even give us a, shockingly spooky, way of generating differ-
ential equations for differential ghosts on the fly as needed for proofs to work out. That
might sound scary but is amazingly useful. To see how it works, invent your own dif-
ferential ghost y′ = with a still-unspecified right-hand side , which is nothing
but a common spooky cloud, and just keep “proving” as if nothing had happened:

∗
R ` x > 0↔ ∃y xy2 = 1

could prove if = y
2

` −xy2 + 2xy = 0

` (x′y2 + x2yy′ = 0)
−x
x′ y′

DIxy2 = 1 ` [x′ = −x, y′ = ]xy2 = 1

DA x > 0 ` [x′ = −x]x > 0

The right premise could prove if only were chosen to be y
2 , in which case the

premise −xy2 + 2xy = 0 is quite easily proved. That, of course, was a bit too
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spooky for the soundness-loving truth-connoisseur. So let’s instantiate the spooky
cloud with its concrete choice y

2 and start all over with a proper proof:

∗
R ` x > 0↔ ∃y xy2 = 1

∗
R ` −xy2 + 2xy y2 = 0

` (x′y2 + x2yy′ = 0)
−x
x′

y
2
y′

DIxy2 = 1 ` [x′ = −x, y′ = y
2 ]xy2 = 1

DA x > 0 ` [x′ = −x]x > 0

Fortunately, this proper sequent proof confirms the suspicion of a proof that we de-
veloped above. In that sense, all is fair in how we come up with a proof, even if we
use spooky ghost arguments involving .4 But in the end, it is crucial to conduct a
proper proof with sound proof rules to ensure the conclusion is valid.

It can be shown [Pla12] that there are properties such as this one that crucially need
differential ghosts (or differential auxiliaries) to prove.

11. Summary

The major lesson from today’s lecture is that it can sometimes be easier to relate a vari-
able to its initial value or to other quantities than to understand its value in isolation.
Ghosts, in their various forms, let us achieve that by adding auxiliary variables into the
system dynamics, so that the values of the original variables of interest can be related to
the values of the ghosts. Sometimes such ghosts are even necessary to prove properties.
As a workaround, it might help to rewrite the original model so that it already includes
the ghost variables, preferably marked as ghosts in the model. The phenomenon that
relations between state and ghost variables are sometimes easier to prove than just stan-
dalone properties of state variables applies in either case. This lecture shines a light on
the power of relativity theory in the sense of relating variables to one another.

This lecture also showed how properties of differential equations can be proved using
solution-like arguments if only part of the differential equation system can be solved.

A. Axiomatic Ghosts

This section is devoted to yet another kind of ghosts: axiomatic ghosts. While less im-
portant for simple systems, axiomatic ghosts are the way to go for systems that involve
special functions such as sin, cos etc.

When neglecting wind, gravitation, and so on, which is appropriate for analysing
cooperation in air traffic control [TPS98], the in-flight dynamics of an aircraft at x can

4Of course, is not quite as spooky as one might suspect. It can be made rigorous with term variables.
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L12.18 Ghosts & Differential Ghosts

be described by the following differential equation system; see [TPS98] for details:

x′1 = v cosϑ x′2 = v sinϑ ϑ′ = ω. (6)

That is, the linear velocity v of the aircraft changes both positions x1 and x2 in the
(planar) direction corresponding to the orientation ϑ the aircraft is currently heading
toward. Further, the angular velocity ω of the aircraft changes the orientation ϑ of the
aircraft.

x1

x2

y1

y2

d

ω e

ϑ̄

̟

Figure 1: Aircraft dynamics

Unlike for straight-line flight (ω = 0), the nonlinear dynamics in (6) is difficult to anal-
yse [TPS98] for curved flight (ω 6= 0), especially due to the trigonometric expressions
which are generally undecidable. Solving (6) requires the Floquet theory of differential
equations with periodic coefficients [Wal98, Theorem 18.X] and yields mixed polyno-
mial expressions with multiple trigonometric functions. A true challenge, however,
is the need to verify properties of the states that the aircraft reach by following these
solutions, which requires proving that complicated formulas with mixed polynomial
arithmetic and trigonometric functions hold true for all values of state variables and
all possible evolution durations. However, quantified arithmetic with trigonometric
functions is undecidable by Gödel’s incompleteness theorem [Göd31].

To obtain polynomial dynamics, we axiomatize the trigonometric functions in the
dynamics differentially and reparametrize the state correspondingly. Instead of angular
orientation ϑ and linear velocity v, we use the linear speed vector

d = (d1, d2) := (v cosϑ, v sinϑ) ∈ R2

which describes both the linear speed ‖d‖ :=
√
d21 + d22 = v and the orientation of the

aircraft in space; see Figs. 1 and 2. Substituting this coordinate change into differential
equations (6), we immediately have x′1 = d1 and x′2 = d2. With the coordinate change,
we further obtain differential equations for d1, d2 from differential equation system (6)
by simple symbolic differentiation:

d′1= (v cosϑ)′ = v′ cosϑ+ v(− sinϑ)ϑ′ = −(v sinϑ)ω = −ωd2,
d′2= (v sinϑ)′ = v′ sinϑ+ v(cosϑ)ϑ′ = (v cosϑ)ω = ωd1.

The middle equality holds for constant linear velocity (v′ = 0), which we assume, be-
cause only limited variations in linear speed are possible and cost-effective during the

15-424 LECTURE NOTES ANDRÉ PLATZER
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x1

x2

v sinϑ = d2

d1 = v cosϑ

d

Figure 2: Reparametrize for differential axiomatization

flight [TPS98, LLL00] so that angular velocity ω is the primary control parameter in air
traffic control. Hence, equations (6) can be restated as the following differential equa-
tion F(ω):

x′1 = d1 , x
′
2 = d2 , d

′
1 = −ωd2 , d′2 = ωd1 (F(ω))

y′1 = e1 , y
′
2 = e2 , e

′
1 = −%e2 , e′2 = %e1 (G(%))

Differential equation F(ω) expresses that position x = (x1, x2) changes according to
the linear speed vector d = (d1, d2), which in turn rotates according to ω. Simultaneous
movement together with a second aircraft at y ∈ R2 having linear speed e ∈ R2 (also
indicated with angle ϑ̄ in Fig. 1) and angular velocity % corresponds to the differential
equation F(ω),G(%). Differential equations capture simultaneous dynamics of multiple
traffic agents succinctly using conjunction.

By this differential axiomatization, we thus obtain polynomial differential equations.
Note, however, that their solutions still involve the same complicated nonlinear trigono-
metric expressions so that solutions still give undecidable arithmetic [Pla10b, Appendix
B]. Note that differential invariant type arguments work with the differential equations
themselves and not with their solutions, so that differential axiomatization actually
helps proving properties, because the solutions are still as complicated as they have
always been, but the differential equations become easier

The same technique helps when handling other special functions in other cases by
differential axiomatization.

Exercises

Exercise 1. Augment the discrete ghost proofs in Sect. 6 to a full sequent proof of

xy − 1 = 0→ [x′ = x, y′ = −y]xy = 1

Exercise 2. Augment the proofs in this lecture as described to obtain a full sequent proof
of (4). Your advised to find a big sheet of paper, first.
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