15-424: Foundations of Cyber-Physical Systems

Lecture Notes on
Differential Equations
& Differential Invariants

André Platzer

Carnegie Mellon University
Lecture 10

1 Introduction

So far, this course explored only one way to deal with differential equations: the [']
axiom from Lecture 5 on Dynamical Systems & Dynamic Axioms. However, in order to
use the ['] axiom or its sequent calculus counterpart the ['|r rule from Lecture 6 on Truth
& Proof for a differential equation 2’ = 6, we must be able to find a symbolic solution to
the symbolic initial value problem (i.e. a function y(t) such that y/(¢t) = 6 and y(0) = z).
But what if the differential equation does not have such a solution y(¢)? Or if y(¢) cannot
be written down in first-order real arithmetic? Lecture 2 on Differential Equations &
Domains allows many more differential equations to be part of CPS models than just
the ones that happen to have simple solutions. These are the differential equations we
will look at in this lecture.

You may have seen a whole range of methods for solving differential equations in
prior courses. But, in a certain sense, “most” differential equations are impossible to
solve, because they have no explicit closed-form solution with elementary functions,
for instance [Zei03]:

2"(t) = et
And even if they do have solutions, the solution may no longer be in first-order real
arithmetic. A solution of
d=ee =-d

for example is d(t) = sint, e(t) = cost, which is not expressible in real arithmetic (recall
that both are infinite power series) and leads to undecidable arithmetic [Pla08a].
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L10.2 Differential Equations & Differential Invariants

Today’s lecture reinvestigates differential equations from a more fundamental per-
spective, which will lead to a way of proving properties of differential equations with-
out using their solutions.

The lecture seeks unexpected analogies among the seemingly significantly different
dynamical aspects of discrete dynamics and of continuous dynamics. The first and
influential observation is that differential equations and loops have more in common
than one might suspect.! Discrete systems may be complicated, but have a powerful
ally: induction as a way of establishing truth for discrete dynamical systems by generi-
cally analyzing the one step that it performs (repeatedly like the body of a loop). What
if we could use induction for differential equations? What if we could prove proper-
ties of differential equations directly by analyzing how these properties change along
the differential equation rather than having to find a global solution first and inspecting
whether it satisfies that property? What if we could tame the analytic complexity of dif-
ferential equations by analyzing the generic local “step” that a continuous dynamical
system performs (repeatedly). The biggest conceptual challenge will, of course, be in
understanding what exactly the counterpart of a step even is for continuous dynamical
systems, because there is no such thing as a next step for a differential equation.

More details can be found in [Pla10b, Chapter 3.5] and [Pla10a, Pla12d, Plal2a, Pla12b].
Differential invariants were originally conceived in 2008 [Plal0a, Pla08b] and later used
for an automatic proof procedure for hybrid systems [PC08, PC09].

This lecture is of central significance for the Foundations of Cyber-Physical Systems.
The analytic principles begun in this lecture will be a crucial basis for analyzing all
complex CPS. The most important learning goals of this lecture are:

Modeling and Control: This lecture will advance the core principles behind CPS by
developing a deeper understanding of their continuous dynamical behavior. This
lecture will also illuminate another facet of how discrete and continuous systems
relate to one another, which will ultimately lead to a fascinating view on under-
standing hybridness [Plal2a].

Computational Thinking: This lecture exploits computational thinking in its purest
form by seeking and exploiting surprising analogies among discrete dynamics
and continuous dynamics, however different both may appear at first sight. This
lecture is devoted to rigorous reasoning about the differential equations in CPS
models. Such rigorous reasoning is crucial for understanding the continuous be-
havior that CPS exhibit over time. Without sufficient rigor in their analysis it can
be impossible to understand their intricate behavior and spot subtle flaws in their
control or say for sure whether and why a design is no longer faulty. This lecture
systematically develops one reasoning principle for equational properties of dif-
ferential equations that is based on induction for differential equations. Subsequent
lectures expand the same core principles developed in this lecture to the study of
general properties of differential equations. This lecture continues the axiomatiza-

! In fact, discrete and continuous dynamics turn out to be proof-theoretically quite intimately related
[Plal2a].
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Differential Equations & Differential Invariants L10.3

tion of differential dynamic logic dZ [Plal2c, Plal2a] pursued since Lecture 5 on
Dynamical Systems & Dynamic Axioms and lifts dZ’s proof techniques to systems
with more complex differential equations. The concepts developed in this lecture
form the differential facet illustrating the more general relation of syntax (which
is notation), semantics (what carries meaning), and axiomatics (which internalizes
semantic relations into universal syntactic transformations). These concepts and
their relations jointly form the significant logical trinity of syntax, semantics, and
axiomatics. Finally, the verification techniques developed in this lecture are criti-
cal for verifying CPS models of appropriate scale and technical complexity.

CPS Skills: We will develop a deeper understanding of the semantics of the contin-
uous dynamical aspects of CPS models and develop and exploit a significantly
better intuition for the operational effects involved in CPS.

2 Global Descriptive Power of Local Differential Equations

Differential equations let the physics evolve continuously for longer periods of time.
They describe such global behavior locally, however, just by the right-hand side of the
differential equation.

Note 1 (Local descriptions of global behavior by differential equations). The key
principle behind the descriptive power of differential equations is that they describe the
evolution of a continuous system over time using only a local description of the direction
into which the system evolves at any point in space. The solution of a differential equation
is a global description of how the system evolves, while the differential equation itself is a
local characterization. While the global behavior of a continuous system can be subtle and
challenging, its local description as a differential equation is much simpler.

This difference between local description and global behavior can be exploited for proofs.

g J

The semantics of a differential equation was described in Lecture 2 on Differential
Equations & Domains as:

p(' =0& H) = {(p(0),0(r)) : ¢t)E2 =0and p(t) | Hforall0 <t <r
for a solution ¢ : [0,7] — S of any duration r}

The solution ¢ describes the global behavior of the system, which is specified locally by
the right-hand side 6 of the differential equation.

Lecture 2 has shown a number of examples illustrating the descriptive power of dif-
ferential equations. That is, examples in which the solution was very complicated even
though the differential equation was rather simple. This is a strong property of differ-
ential equations: they can describe even complicated processes in simple ways. Yet,
that representational advantage of differential equations does not carry over into the
verification when verification is stuck with proving properties of differential equations
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L10.4 Differential Equations & Differential Invariants

only by way of their solutions, which, by the very nature of differential equations, are
more complicated again.

This lecture, thus, investigates ways of proving properties of differential equations
using the differential equations themselves, not their solutions. This leads to differential
invariants [Plal0a, Pla12d], which can perform induction for differential equations.

3 Differential Equations vs. Loops

A programmatic way of developing an intuition for differential invariants leads through
a comparison of differential equations with loops. This perhaps surprising relation can
be made completely rigorous and is at the heart of a deep connection equating discrete
and continuous dynamics proof-theoretically [Plal2a]. This lecture will stay at the sur-
face of this surprising connection but still leverage the relation of differential equations
to loops for our intuition.

To get started with relating differential equations to loops, compare

=0 VS. (' =0)"

How does the differential equation 2’ = 6 compare to the same differential equation in a
loop (z/ = 6)" instead? Unlike the differential equation 2’ = 6, the repeated differential
equation (2’ = 0)* can run the differential equation 2’ = 6 repeatedly. Albeit, on second
thought, does that get the repetitive differential equation (z' = 6)* to any more states
than where the differential equation 2’ = 6 could evolve to?

Not really, because chaining lots of solutions of differential equations from a repet-
itive differential equation (z' = 6)" together will still result in a single solution for the
same differential equation 2’ = § that we could have followed all the way.?

Note 2 (Looping differential equations). (z’ = 0)* is equivalent to x' = 0, written
(z' = 0)" = (2/ = 0), i.e. both have the same transition semantics:

Differential equations “are their own loop”.

g J

In light of Note 2, differential equations already have some aspects in common with
loops. Like nondeterministic repetitions, differential equations might stop right away.
Like nondeterministic repetitions, differential equations could evolve for longer or shorter
durations and the choice of duration is nondeterministic. Like in nondeterministic rep-
etitions, the outcome of the evolution of the system up to an intermediate state influ-
ences what happens in the future. And, in fact, in a deeper sense, differential equations

2This is related to classical results about the continuation of solutions, e.g., [Pla10b, Proposition B.1].
3Beware not to confuse this with the case for differential equations with evolution domain constraints,
which is subtly different (Exercise 1).
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Differential Equations & Differential Invariants L10.5

actually really do correspond to loops executing their discrete Euler approximations
[Plal2a].

With this rough relation in mind, let’s advance the dictionary translating differential
equation phenomena into loop phenomena and back. The local description of a dif-
ferential equation as a relation 2’ = 6 of the state to its derivative corresponds to the
local description of a loop by a repetition operator * applied to the loop body a. The
global behavior of a global solution of a differential equation ' = 6 corresponds to the
full global execution trace of a repetition o*, but are similarly unwieldy objects to han-
dle. Because the local descriptions are so much more concise than the respective global
behaviors, but still carry all information about how the system will evolve over time,
we also say that the local relation 2’ = 6 is the generator of the global system solution
and that the loop body « is the generator of the global behavior of repetition of the
loop. Proving a property of a differential equation in terms of its solution corresponds
to proving a property of a loop by unwinding it (infinitely long) by axiom [*"*] from
Lecture 5 on Dynamical Systems & Dynamic Axioms.

(" Note 3 (Correspondence map between loops and differential equations). )
loop o* differential equation x’' = 0
could repeat O times could evolve for duration 0
repeat any number n € N of times evolve for any duration 0 < r € R
effect depends on previous loop iteration effect depends on the past solution
local generator o local generator ' = 6
full global execution trace global solution ¢ : [0,r] = S
proof by unwinding iterations with [*" proof by global solution with axiom ['|
proof by induction with loop invariant rule ind’  proofs by differential invariants

N\ J

Now, Lecture 7 on Control Loops & Invariants made the case that unwinding the
iterations of a loop can be a rather tedious way of proving properties about the loop,
because there is no good way of ever stopping to unwind, unless a counterexample can
be found after a finite number of unwindings. This is where working with a global
solution of a differential equation with axiom ['] is actually already more useful, be-
cause the solution can actually be handled completely because of the quantifier V¢>0
over all durations. But Lecture 7 introduced induction with invariants as the preferred
way of proving properties of loops, by, essentially, cutting the loop open and arguing
that the generic state after any run of the loop body has the same characterization as
the generic state before. After all these analogous correspondences between loops and
differential equations, the obvious question is what the differential equation analogue
of a proof concept would be that corresponds to proofs by induction for loops, which
is the premier technique for proving loops.

Induction can be defined for differential equations using what is called differential
invariants [Plal0a, Plal12d]. The have a similar principle as the proof rules for induction
for loops. Differential invariants prove properties of the solution of the differential
equation using only its local generator: the right-hand side of the differential equation.
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L10.6 Differential Equations & Differential Invariants

Recall the loop induction proof rule from Lecture 7 on Loops & Invariants:

pla®) = U p(a™) with "™ = o™ aand o = true

p(a”)
F F — [a]F F
HJF o) 2 o) 2 ) I
(ind) I'FFEA FFlo|F Fra

I'F [o*y, A

4 Intuition of Differential Invariants

Just as inductive invariants are the premier technique for proving properties of loops,
differential invariants [Plal0a, Plal2d, Pla08b, Plal0b] provide the primary inductive
technique we use for proving properties of differential equations (without having to
solve them).

The core principle behind loop induction is that the induction step investigates the
local generator o ands shows that it never changes the truth-value of the invariant F’
(see the middle premise F' - [a]F of proof rule ind' or the only premise of the core
induction proof rule ind from Lecture 7). Let us try to establish the same inductive
principle, just for differential equations. The first and third premise of rule ind’ transfer
easily to differential equations. The challenge is to figure out what the counterpart of
F F [a]F would be since differential equations do not have a notion of “one step”.

What does the local generator of a differential equation 2’ = ¢ tell us about the evo-
lution of a system? And how does it relate to the truth of a formula F' all along the
solution of that differential equation? That is, to the truth of the dC formula [z’ = 0]F
expressing that all runs of 2’ = 6 lead to states satisfying F. Fig. 1 depicts an example of
a vector field for a differential equation (plotting the right-hand side of the differential
equation as a vector at every point in the state space), a global solution (in red), and
an unsafe region —F' (shown in blue). The safe region F' is the complement of the blue
unsafe region —F.

One way of proving that [z’ = 0] F is true in a state v would be to compute a solu-
tion from that state v, check every point in time along the solution to see if it is in the
safe region F' or the unsafe region —F. Unfortunately, these are uncountably infinitely
many points in time to check. Furthermore, that only considers a single initial sate v,
so proving validity of a formula would require considering every of the uncountably
infinitely many possible initial states and computing and following a solution in each
of them. That is why this naive approach would not compute.

A similar idea can still be made to work when the symbolic initial-value problem can
be solved with a symbolic initial value « and a quantifier for time can be used, which
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Figure 1: Vector field and one solution of a differential equation that does not enter the
blue unsafe regions

is what the solution axiom ['] does. Yet, even that only works when a solution to the
symbolic initial-value problem can be computed and the arithmetic resulting from the
quantifier for time can be decided. For polynomial solutions, this works, for example.
But polynomial come from very simple systems only (called nilpotent linear differential
equation systems).

Reexamining the illustration in Fig. 1, we suggest an entirely different way of check-
ing whether the system could ever lead to an unsafe state in -F when following the
differential equation 2/ = #. The intuition is the following. If there were a vector in
Fig.1 that points from a safe state in F' to an unsafe state =F (in the blue region), then
following that vector could get the system into an unsafe —F. If, instead, all vectors
point from safe states to safe states in F', then, intuitively, following such a chain of
vectors will only lead from safe states to safe states. So if the system also started in a
safe state, it would stay safe forever.

Let us make this intuition rigorous to obtain a sound proof principle that is perfectly
reliable in order to be usable in CPS verification. What we need to do is to find a way of
characterizing how the truth of F' changes when moving along the differential equation.

5 Deriving Differential Invariants

How can the intuition about directions of evolution of a logical formula F' with respect
to a differential equation 2’ = 6 be made rigorous? We develop this step by step.

As a guiding example, consider a conjecture about the rotational dynamics where d
and e represent the direction of a vector rotating clockwise in a circle of radius r (Fig. 2):

d2+62:T2_>[d/:€7€/=—d]d2—|—e2:r2 (1)

The conjectured dZ formula (1) is valid, because, indeed, if the vector (d, e) is initially
at distance r from the origin (0,0), then it will always be when rotating around the ori-
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L10.8 Differential Equations & Differential Invariants

Figure 2: One scenario for the rotational dynamics and relationship of vector (d, e) to
radius r and angle ¥

gin, which is what the dynamics does. That is, the point (d, e) will always remain on the
circle of radius . But how can we prove that? In this particular case, we could possibly
investigate solutions, which are trigonometric functions (although the ones shown in
Fig.2 are not at all the only solutions). With those solutions, we could perhaps find an
argument why they stay at distance r from the origin. But the resulting arithmetic will
be unnecessarily difficult and, after all, the argument for why the simple dZ formula (1)
is valid should be easy. And it is, after we have discovered the right proof principle as
this lecture will do.

First, what is the direction into which a continuous dynamical system evolves? The
direction is exactly described by the differential equation, because the whole point of
a differential equation is to describe in which direction the state evolves at every point
in space. So the direction into which a continuous system obeying z’ = 6 follows from
state v is exactly described by the time-derivative, which is exactly the value [6], of
term 0 in state v. Recall that the term 6 can mention x and other variables so its value
[6], depends on the state v.

Note 4 (Differential invariants are “formulas that remain true in the direction of the
dynamics”). Proving dC formula [z’ = 0] F does not really require us to answer where
exactly the system evolves to but just how the evolution of the system relates to the formula
F and the set of states v in which F evaluates to true. It is enough to show that the system
only evolves into directions in which formula F will stay true.

A logical formula F' is ultimately built from atomic formulas that are comparisons of
(polynomial or rational) terms such as, say, n = 5. Let  denote such a (polynomial)
term in the variable (vector) x that occurs in the formula F'. The semantics of a polyno-
mial term 7 in a state v is the real number [1], that it evaluates to. In which direction
does the value of n evolve when following the differential equation 2’ = 6 for some
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Differential Equations & Differential Invariants L10.9

time? That depends both on the term 7 that is being evaluated and on the differential
equation 2’ = 6 that describes how the respective variables x evolve over time.

Note 5. Directions of evolutions are described by derivatives, after all the differential equa-
tion ¥’ = 6 describes that the time-derivative of x is 6.

Let’s derive the term 7 of interest and see what that tells us about how 7 evolves over
time. How can we derive 1? The term 7 could be built from any of the operators dis-
cussed in Lecture 2 on Differential Equations & Domains, to which we now add divi-
sion for rational terms to make it more interesting. Let > denote the set of all variables.
Terms 6 are defined by the grammar (where 6, 7 are terms, = a variable, and r a rational
number constant):

Onu=x|r|0+n[0-—n[6-n|0/n

It is, of course, important to take care that division 6/n only makes sense in a context

where the divisor 7 is guaranteed not to be zero in order to avoid undefinedness. We

only allow division to be used in a context where the divisor is ensured not to be zero.
If n is a sum a + b, its derivative is the derivative of a plus the derivative of b. If nis a

product a - b, its derivative is the derivative of a times b plus a times the derivative of b

by Leibniz’ rule. The derivative of a rational number constant r € Q is zero.* The other

operators are similar, leaving only the case of a single variable z. What is its derivative?
Before you read on, see if you can find the answer for yourself.

*Of course, the derivative of real number constants r € R is also zero, but only rational number constants
are allowed to occur in the formulas of first-order logic of real arithmetic, more precisely, of real-closed
fields.

15-424 LECTURE NOTES ANDRE PLATZER


http://symbolaris.com/course/fcps14/02-diffeq.pdf
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The exact value of the derivative of a variable x certainly depends on the current
state and on the overall continuous evolution of the system. So for now, we define the
derivative of a variable z in a seemingly innocuous way to be the symbol 2’ and con-
sider what to do with it later. This gives rise to the following definition for computing
the derivative of a term syntactically.

Definition 1 (Derivation). The operator (-)’ that is defined as follows on terms is\
called syntactic (total) derivation:
(r) =0 for numbers r € Q (2a)
() =2 for variable z € & (2b)
(a+d)" = (a) + (0 (2¢)
(a—b)" = (a) — () (2d)
(a-b) =(a) - b+a-(®) (2e)
(a/b) = ((a)' -b—a- (b))/b? (2f)
g J

Note that the intuition (and precise semantics) of derivatives of terms will ultimately
be connected with more complicated aspects of how values change over time, the com-
putation of derivatives of terms is a straightforward recursive definition on terms.

Expedition 1 (Differential algebra). Even though the following names are not needed
for his course, let’s take a brief expedition to align Def. 1 with the algebraic struc-
tures from differential algebra [Kol72] in order to illustrate the systematic princi-
ples behind Def.1. Case (2a) defines (rational) number symbols alias literals as
differential constants, which do not change their value during continuous evolution.
Their derivative is zero. The number symbol 5 will always have the value 5 and
never change, no matter what differential equation is considered. Equation (2c)
and the Leibniz or product rule (2e) are the defining conditions for derivation opera-
tors on rings. The derivative of a sum is the sum of the derivatives (additivity or a
homomorphic property with respect to addition, i.e. the operator (-)" applied to a
sum equals the sum of the operator applied to each summand) according to equa-
tion (2c). Furthermore, the derivative of a product is the derivative of one factor
times the other factor plus the one factor times the derivative of the other factor
as in (2e). Equation (2d) is a derived rule for subtraction according to the iden-
tity a —b=a+ (—1) - b and again expresses a homomorphic property, now with
respect to subtraction rather than addition.

The equation (2b) uniquely defines the operator (-)" on the differential polynomial
algebra spanned by the differential indeterminates x € ¥, i.e. the symbols x that have
indeterminate derivatives 2/. It says that we understand the differential symbol
z' as the derivative of the symbol x for all state variables z € X. Equation (2f)
canonically extends the derivation operator (-)’ to the differential field of quotients by
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the usual quotient rule. As the base field R has no zero divisors”, the right-hand side
of (2f) is defined whenever the original division a/b can be carried out, which, as
we assumed for well-definedness, is guarded by b # 0.

“In this setting, R has no zero divisors, because the formula ab =0 — a = 0V b = 0 is valid, i.e. a
product is zero only if a factor is zero.

The derivative of a division a/b uses a division, which is where we need to make sure
not to accidentally divide by zero. Yet, in the definition of (a/b)’, the division is by b?
which has the same roots that b already has, because b = 0 b? = 0 is valid for any
term b. Hence, in any context in which a/b was defined, its derivative (a/b)’ will also
be defined.

Now that we have a precise definition of derivation at hand, the question still is
which of the terms should be derived when trying to prove (1)? Since that is not nec-
essarily clear so far, let’s turn the formula (1) around and consider the following equiv-
alent (Exercise 2) d formula instead, which only has a single nontrivial term to worry
about:

Pt —r?=0=[d=ee =—dd +e*—r*=0 (3)

Derivation of the only relevant term d” + ¢ — 72 in the postcondition of (3) gives
(al2 +e?— 7“2)' = 2dd' + 2ee’ — 2rr’ 4)

Def. 1 makes it possible to derive any polynomial or rational term. Deriving them
with the total derivative operator (-)" does nof result in a term over the signature of
the original variables in ¥, but, instead, a differential term, i.e. a term over the extended

signature ¥ U ¥/, where ¥’ aef {' : z € X} is the set of all differential symbols =’ for
variables x € X. The total derivative ()" of a polynomial term 7 is not a polynomial
term, but may mention differential symbols such as 2’ in addition to the symbols that
where in 7) to begin with. All syntactic elements of those differential terms are easy to
interpret based on the semantics of terms defined in Lecture 2, except for the differential
symbols. What is the meaning of a differential symbol z'?

Before you read on, see if you can find the answer for yourself.
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6 The Meaning of Prime

The meaning [z], of a variable symbol x is defined by the state v as [z], = v(z). Itis
crucial to notice that the meaning of a differential symbol 2’ cannot be defined in a state
v, because derivatives do not even exist in isolated points. It is meaningless to ask for
the change of the value of z over time in a single isolated state v.

Along a (differentiable) continuous evolution ¢ : [0, 7] — S of a system, however, we
can make sense of what 2’ means. Atany pointin time ¢ € [0, r| along such a continuous
evolution ¢, the differential symbol 2’ can be taken to mean the time-derivative of the
value [z], ) of z at ¢ [Plal0a]. That is, at any point in time ( along ¢, it makes sense to
give 2’ the meaning of the rate of change of the value of = over time along ¢.

Definition 2 (Semantics of differential symbols). The value of 2’ at time ¢ € [0, r]
of a differentiable function ¢ : [0,7] — S of some duration r € R is defined as the
analytic time-derivative at (:

, do(t)(z
[[x]Lp(C) = 90((17)5()(0

N\ J

Intuitively, [2] . is determined by considering how the value [z], = ¢(()(z) of z
changes along the function ¢ when we change time ¢ “only a little bit”. Visually, it
corresponds to the slope of the tangent of the value of x at time (; see Fig. 3.

[[JZ’]] p(t)
o) -
0 é t

Figure 3: Semantics of differential symbols

Yet, what exactly do we know about the right-hand side in Def.2, i.e. the time-
derivative of the value of = along ¢ at time (? For differentiable ¢, that analytic time-
derivative is always defined, but that does not mean it would be computable for any
arbitrary ¢. If, however, the continuous evolution ¢ follows a differential equation
2’ =0, ie. ¢ solves 2’ =0, then [2/] ) can be described easily in terms of that differ-
ential equation, because at any time ¢ € [0, r| the time-derivative of the value of z is
[0],(c) simply by definition of what it means for ¢ to be a solution of 2’ = 6 (cf. Lecture
2 on Differential Equations & Domains).

Now Def. 1 defines how to derive a term 7 syntactically to form ()" and Def. 2 defines
how to interpret the differential symbols z’ that occur in the total derivative (). When
interpreting all differential symbols as defined in Def. 2 for an evolution ¢ that follows
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the differential equation 2’ = 6, this defines a value for the derivative (1)’ of any term n
along that function ¢. What does this value mean? How does it relate to how the value
of n changes over time?

Before you read on, see if you can find the answer for yourself.
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When interpreting differential symbols by derivatives along a function ¢, the value
of (n)" at any time ¢ coincides with the analytic time-derivative of the value of 7 at
¢. The key insight behind this is the derivation lemma, a differential analogue of the
substitution lemma.

Expedition 2 (Substitutions in logic). The substitution lemma shows that syntac-
tic substitution has the same effect as changing the value of the variables it re-
places.

Lemma 3 (Substitution Lemma [Plal0b, Lemma 2.2]). Let the substitution of 0 for
z in ¢ to form ¢f be admissible; then

foreachv: [¢9], = [¢],. where e = [6],

That is, semantically evaluating ¢ after modifying the interpretation of the sym-
bol z replaced by its new value [f], is the same as semantically evaluating the
result of syntactically substituting = by 6 in ¢ in the original state.

The substitution lemma is a very powerful tool, because, among other things, it
can be used to replace equals for equals without changing the valuation (substi-
tution property). If we know that = and 6 have the same value in v, then we can
substitute 0 for x in a formula ¢ (if admissible) without changing the truth-value
of ¢, thatis:

Lemma 4 (Substitution property [Plal0b, Lemma 2.3]). Ifv = z = 0, then
v = ¢ < ¢% for any formula ¢ for which the substitution replacing x with 0 is ad-
missible.

The substitution property implies that equals can be substituted for equals, i.e.
left-hand sides of equations can be substituted by right-hand sides of equations
within formulas in which the equations hold. Lemma 4 is the reason why the equal-
ity substitution proof rules =1,=r from Lecture 6 on Truth & Proof are sound.

The following central lemma, which is the differential counterpart of the substitution
lemma, establishes the connection between syntactic derivation of terms and seman-
tic differentiation as an analytic operation to obtain analytic derivatives of valuations
along differential state flows. It will allow us to draw analytic conclusions about the
behaviour of a system along differential equations from the truth of purely algebraic
formulas obtained by syntactic derivation. In a nutshell, the following lemma shows
that, along a flow, analytic derivatives of valuations coincide with valuations of syntac-
tic derivations.
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Lemma 5 (Derivation lemma). Let ¢ : [0,7] — S be a differentiable function of dura-
tion v > 0. Then for all terms n that are defined all along ¢ and all times ¢ € [0,7]:

where differential symbols are interpreted according to Def.2. In particular, [n] o(c) 1
continuously differentiable.

N\ J

Proof. The proof is an inductive consequence of the correspondence of the semantics of
differential symbols and analytic derivatives along a flow (Def. 2). It uses the assump-
tion that ¢ remains within the domain of definition of 7 and is continuously differen-
tiable in all variables of 7. In particular, all denominators are nonzero during .

o If nis a variable z, the conjecture holds immediately by Def. 2:

d[[x]] t do(t)(x /
0 ¢y = S ) - ayq,

The derivative exists, because ¢ is assumed to be differentiable.

o If 7 is of the form a + b, the desired result can be obtained by using the proper-
ties of analytic derivatives, synctactic derivations (Def. 1), and valuation of terms

(Lecture 2):
d
g Lo+ bly)(C)
d .
= &([[a]]@(t) + [6] 1) (€) [-], homomorphic for +
d d d. : o
= a([[a]]so(t))(o + &([[b]]so(t)xo g isa (linear) derivation
= [(a)Tye) + [0) T ey by induction hypothesis
= [(@)" + ()1, [-],, homomorphic for +
= [(a+ b),ﬂv(C) (-)" is a syntactic derivation

e The case where 7 is of the form a — b is similar, using subtractivity (2d) of Def. 1.

e The case where 7 is of the form a - b is similar, using Leibniz product rule (2e) of

15-424 LECTURE NOTES ANDRE PLATZER


http://symbolaris.com/course/fcps14/02-diffeq.pdf

L10.16 Differential Equations & Differential Invariants
Def. 1:
d
gz (Lo 0o (€)
d :
= Sl Blo)©) [1, homomorphic for-
d d d. o N
= —t([[a]]w(t))(g) [ole) + lalye - &([[bﬂw))(f) g; sa (Leibniz) derivation
= [(@) Ty - [Blyoy + [aluey - [0) Ty by induction hypothesis
= [(a) - W)+ la- (b)/]]w(ﬁ) [-], homomorphic for -
=[(a) b+ a- (b),]]so(C) [-], homomorphic for +
= [(a- )], (-)' is a syntactic derivation

e The case where 7 is of the form a/b uses (2f) of Def.1 and further depends on
the assumption that b # 0 along ¢. This holds as the value of 7 is assumed to be

defined all along state flow .

e The values of numbers r € Q do not change during a state flow (in fact, they are

not affected by the state at all); hence their derivative is (r)" = 0.

O

N\

Note 11 (The derivation lemma clou). Lemmab shows that analytic derivatives co-
incide with syntactic derivations. The clou with Lemma is that it equates precise but
sophisticated analytic derivatives with tame and computable syntactic derivations. The
analytic derivatives on the left-hand side of Lemma 5 are mathematically precise and pin-
point exactly what we are interested in: the rate of change of the value of n along . But
they are unwieldy for computers, because analytic derivatives are ultimately defined in
terms of limit processes. The syntactic derivations on the right-hand side of Lemma 5 are
computationally tame, because they can be computed easily by the simple recursive con-
struction in Def.1. But the syntactic derivations need to be aligned with the intended
analytic derivatives, which is what Lemma 5 is good for. And, of course, deriving polyno-
mials and rational functions is much easier syntactically than by unpacking the meaning
of analytic derivatives in terms of limit processes.

J

15

Lemma 5 shows that the value of the total derivative of a term coincides with the ana-
lytic derivative of the term, provided that differential symbols are interpreted according
to Def. 2. Now, along a differential equation z’ = 6, the differential symbols themselves
actually have a simple interpretation, the interpretation determined by the differential
equation. Putting these thoughts together leads to replacing differential symbols with
the corresponding right-hand sides of their respective differential equations. That is,
replacing left-hand sides of differential equations with their right-hand sides.
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Note 12. The direction into which the value of a term 1 evolves as the system follows a dif-
ferential equation x' = 6 depends on the derivation 0’ of the term 1 and on the differential
equation x’' = 6 that locally describes the evolution of x over time.

The substitution property can replace equals for equals (Lemma 4). It can be lifted to
differential equations such that differential equations can be used for equivalent substi-
tutions along continuous flows respecting these differential equations. The following
lemma can be used to substitute right-hand sides of differential equations for the left-
hand side derivatives in flows along which these differential equations hold.

Lemma 6 (Differential substitution property for terms). If ¢ : [0,r] — S solves the
differential equation x' = 0, i.e. o |= o' = 0, then ¢ |= (n)' = (n)’i, for all terms n, i.e.:

() Tg(e) = ()2 ey forall ¢ € [0,7]

Proof. The proof is a simple inductive consequence of Lemma 5 using that [z'] ) = [0] ()
at each time ¢ in the domain of ¢. O

The operation mapping term 7 to (1)’ 2/ is called Lie-derivative of n with respect to 2’ = 6.
Differential substitution of the differential equation d’ = e, e’ = —d from (3) into (4)
results in

(d* +e* —r?)5, % = (2dd + 2ee’ — 2r1")5, o = 2de + 2e(—d) + 27

Oops, that did not make all differential symbols disappear, because 7’ is still around,
since r did not have a differential equation in (3). Stepping back, what we mean by a
differential equation like @’ = e, ¢’ = —d that does not mention r’ is that r is not sup-
posed to change. If r is supposed to change during a continuous evolution, there has to
be a differential equation for 7.

Note 14 (Explicit change). Hybrid programs are explicit change: nothing changes un-
less an assignment or differential equation specifies how (compare the semantics from Lec-
ture 3). In particular, if a differential equation (system) x’ = 0 does not mention z', then
the variable z does not change during x’ = 6, so the differential equation systems x' = 6
and 2’ = 0, 2 = 0 are equivalent.

We will often assume z' = 0 without further notice for variables = that do not change
during a differential equation.

- J
Since (3) does not have a differential equation for r, Note 14 implies that its differential
equation d’' = e, ¢’ = —d is equivalent to d’' = e,e¢’ = —d,r’ = 0. Hence, when adding
zero derivatives for all unchanged variables, differential substitution of the differential
equation d’ = e, ¢’ = —d along with the explicit-change assumption " = 0 into (4) gives

(d® +€* —r2)%, 200 = (2dd’ + 2ee’ — 2r"), 240 = 2de + 2¢(—d) (5)
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This is good news, because the last part of (5) is a standard term of first-order logic of
real arithmetic, because it no longer has any differential symbols. So we can make sense
of 2de+2e(—d) and, by Lemma 6, its value along a solution of d’ = e, ¢’ = —d is the same
as that of the derivative (d? + ¢ — r2)’, which, by Lemma is the same as the value
of the time-derivative of the original term d* + ¢ — r? along such a solution. Simple
arithmetic shows that the term 2de + 2¢(—d) in (5) is 0. Consequently, by Lemma 5 and
Lemma 6, the time-derivative of the term d? + ¢? — 72 in the postcondition of (3) is 0
along any solution ¢ of its differential equation:

d[d? + €2 — r?]
dt

t) /- Lem5
©(t) (C) €m [[(d2 + 62 _ TZ)I]]@(C)
KO (@ + e -2y 40

D [2de + 2e(~d)] ) = 0

]]cp(C)

for all times ¢. That means that the value of d* + ¢ — r? never changes during the
rotation, and, hence (3) is valid, because d? + e — r? stays 0 if it was 0 in the beginning,
which is what (3) assumes.

This is amazing, because we found out that the value of d* + ¢ — 7% does not change
over time (its time-derivative is zero) along the differential equation d' = e, e’ = —d.
And we found that out without ever solving the differential equation, just by a few
lines of simple symbolic computations. We only need to make sure to systematize this
reasoning and make it accessible in the dC proof calculus by reflecting it in a proof
rule, preferably one that is much more general than the special argument we needed to
convince ourselves that (3) was valid.

7 Differential Invariant Terms

In order to be able to use the above reasoning as part of a sequent proof, we need to
capture such arguments in a proof rule, preferably one that is more general than this
particular argument. The argument is not specific to the term d? + e? — r? but works for
any other term 7 and for any differential equation 2’ = 6.

What we set out to find is a general proof rule for concluding properties of differential
equations from properties of derivatives. As a first shot, we stay with equations of the
form 7 = 0, which gives us soundness for the following proof rule.

Lemma 7 (Differential invariant terms). The following special case of the differential
invariants proof rule is sound, i.e. if its premise is valid then so is its conclusion:

9
F ’I’]/z/ =0

(Dl=o) n=0F[z'=0ln=0

Proof. Assume the premise 1'%, = 0 to be valid, i.e. true in all states. In order to prove
that the conclusion n = 0 - [2/ = 6]y = 0 is valid, consider any state v. Assume that

15-424 LECTURE NOTES ANDRE PLATZER



Differential Equations & Differential Invariants L10.19

v |=n =0, as there is otherwise nothing to show (sequent is trivially true since an-
tecedent evaluates to false). If ¢ € [0, ] is any time during any solution ¢ : [0, 7] — S, of
any duration r € R, of the differential equation z’ = § beginning in initial state ¢ (0) = v,
then

d[[n]] t em / em!| /
N O Rl ((01) WSl ()1 WS

By antecedent, v = n = 0, i.e. [], = 0, in the initial state v = ¢(0).

But, hold on a moment, the use of Lemma5 in (6) was only correct if » > 0, other-
wise derivatives make no sense. Fortunately, if the duration of ¢ is r = 0, we have
©(0) = n = 0 immediately, because v = 1 = 0. For duration r > 0, we show thatn = 0
holds all along the flow ¢, i.e., ¢(¢) =n = 0forall ¢ € [0,7].

Suppose there was a ¢ € [0, 7] with ¢(() = n # 0, which will lead to a contradiction.
The function /2 : [0, 7] — R defined as h(t) = [n],, satisfies the relation 2(0) = 0 # h((),
because h(0) = [n] ) = [n], and v |= 7 = 0 by antecedent of the conclusion. By Lemma 5,
h is continuous on [0, 7] and differentiable at every { € (0,7). By the mean-value the-
orem, thereis a £ € (0 () such that ( (&) - (¢ —0) =h(¢) — h(0) #0. In particular,

we can conclude that 248 ( ) # 0. Now Lemma 5 implies that dh(t) (©) =1 T o(e) ()
This, however, is a Contradlctlon because the premise implies that the formula (1) =
is true in all states along ¢, including ¢(&) = (n)’ = 0, which contradicts [(n)’] # 0. D

premise

(6)

This proof rule enables us to prove dC formula (3) easily in d’s sequent calculus:

*
R F 2de + 2e(—d) — 0 =0
F(2dd + 2ee’ — 2r1")y, T,—O
Ploog2 4 o2 20k [d =e,e = —d]d®+e2—r2=0
-t Fd?+e?2—r?=0—[d =e e =—dd*+e>—r>=0

The proof step that comes without a label just performs the substitution, which is a
convention we adopt from now on to make proofs more readable.

See <Rotational differential invariant>>

Taking a step back, this is an exciting development, because, thanks to differential in-
variants, the property (3) of a differential equation with a nontrivial solution has a very
simple proof that we can easily check. The proof did not need to solve the differen-
tial equation, which has infinitely many solutions with combinations of trigonometric
functions.” The proof only required deriving the postcondition and substituting the
differential equation in.

>Granted, the solutions in this case are not quite so terrifying yet. They are all of the form
d(t) = acost + bsint, e(t) = becost — asint

But the special functions sin and cos still fall outside the fragments of arithmetic that are known to be
decidable.
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8 Proof by Generalization

So far, the argument captured in the differential invariant term proof rule DI_; works
for
Pte’—r?=0-[d=cé=-dd+e*—1*=0 (3)

with an equation d? + €? — 72 = 0 normalized to having 0 on the right-hand side but
not for the original formula

P =1 [l = = —dd+ =1 1)

because its postcondition is not of the form = 0. Yet, the postcondition d? + ¢* —
r2 = 0 of (3) is trivially equivalent to the postcondition d? + ¢ = 72 of (1), just by
rewriting the polynomials on one side, which is a minor change. That is an indication,
that differential invariants can perhaps do more than what proof rule DI_ already
knows about.

But before we pursue our discovery of what else differential invariants can do for us
any further, let us first understand a very important proof principle.

Note 16 (Proof by generalization). If you do not find a proof of a formula, it can some-
times be easier to prove a more general property from which the one you were looking for
follows.

This principle, which may at first appear paradoxical, turns out to be very helpful.
In fact, we have made ample use of Note 16 when proving properties of loops by in-
duction. The loop invariant that needs to be proved is usually more general than the
particular postcondition one is interested in. The desirable postcondition follows from
having proved a more general inductive invariant.

In its purest form, generalization is captured in the generalization rule from Lecture 7
on Control Loops & Invariants. One of the forms of the generalization rule is:
I'Flajp,A oF 4

I'F o]y, A

Instead of proving the desirable postcondition ¢ of « (conclusion), proof rule [|gen’
makes it possible to prove the postcondition ¢ instead (left premise) and prove that
¢ is more general than the desired ¢ (right premise). Generalization [Jgen’ can help
us prove the original dZ formula (1) by first turning the postcondition into the form
of the (provable) (3) and adapting the precondition using a corresponding cut with
d? +e* —r?=0:

/

([lgen”)

*

RF2de—|—2@(—d)— =0
R * o F (2dd’ + 2ee’ — 2rr’ = 0)5, 40
e d2+e2=r2kFd?2+e2—-r2=0 70d2+627’l“2:0}—[d’:6,6’27d1d2+6277‘2:0 R *
H d2+e?=r2t[d =ee =—dld?>+e2—-r2=0 d2+e2—r2=0Fd>+e2 =12

gen’

BP+e2=r2Fk[d =ee =—d|d?>+ e? =1r?

—T

Fd24+e2=r2—>[d =ee =—dd?*+e2=1r2
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This is a possible way of proving the original (1), but also unnecessarily complicated.
Differential invariants can prove (1) directly once we generalize proof rule DI_, ap-
propriately. For other purposes, however, it is still important to have the principle of
generalization Note 16 in our repertoire of proof techniques.

9 Example Proofs

Of course, differential invariants are just as helpful for proving properties of other dif-
ferential equations.

Example 8 (Self-crossing). Another example is the following invariant property illus-
trated in Fig. 4:

Py —ec=0—[2'=-2y9y = 22-32%22+ 23—y —c=0

This dC formula proves easily using DI_:

3 PR ] 3l DR o ]
/) ST / N snen /e
1Y/ -/ /,t///?H://“ e

2L /V “,7 // ] 20 I /r, / # )Y/ |
/ [ |y /

10 ] 1 ]

=~ O ] > Of ]
—1r ] ~1f ]
ol 1 —2f 1
30 ] _3f 1
350 ST o0 1 2 3 I3 ST 0 1 23
X X

Figure 4: Two differential invariants of the indicated dynamics (illustrated in thick red)
for different values of ¢

*
- 22(—2y) + 322 (—2y) — 2y(—2x — 32%) =0
—2y —22—3x?
- (222 + 322’ —2yy' — ), T L =0
Dloog2 4 43 —y?—c=0F[2' = 2y,y = 2032?22 + 2 — 9y  —c=0

—T

Faltad -yt —ec=0—=[2' = 2y,y = 203222+ 23 —y? —c=0

See <Self-crossing polynomial invariant>>
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Example 9 (Motzkin). Another nice example is the Motzkin polynomial, which is an
invariant of the following dynamics (see Fig. 5):

aty? + a2’y =3P+ l=c—
[z = 22y + 423 — 622y, v = —423y® — 22y + 62?2ty + 2Pyt — 327+ 1=c

3t , O 3 , |
7 VAN :
y /////%yi\\\\\\ :
2—;//////p3\3\\\\ 2f
7 2l s \\\§§§ :
1/14/@§I’vaggs§s<b i
0 -, ;»;7 e }‘ A\\‘\\\‘WV«J \\:\ ‘;: 0
1f o N v s 1L
ssssw% I
-2 \\ﬂ§55§{7//////§ : SIENN N\
SNNNNNNM RN
-3 NN S -3f NN
S S L (S T R N S T, S
X X

Figure 5: Two differential invariants of the indicated dynamics is the Motzkin polyno-
mial (illustrated in thick red) for different values of ¢

This dC formula proves easily using DI, again after normalizing the equation to
have right-hand side 0:

R ro=o0

2yt 472 ° — 6%y —4230° — 2wyt 2
- ((x4y2+x2y4—3:z:2y2+1—6)’); Yyraxr-y x yy/ac Yy zy +6xy -0

Ploo b 2 = 22ty + 422y® — 622y, y = —423y? — 2ay* + 6ay2]aty® + a2yt — 3222 +1—c=0

Tk o o = 22ty + 422y — 622y, Yy = —dady? — 2zyt + 62y?)aty? + 22yt — 322y +1—c=0
This time, the proof step that comes without a label is simple, but requires some space:

(z9? + 2%y — 3222 + 1 — ¢) = (42®y? + 2yt — 62y°) 2’ + 22ty + 422y3 — 622y)y’
After substituting in the differential equation, this gives

(4239 + 20yt — 629?) 22ty +422y® — 62%y) + 22ty + 422> — 622y) (—423y? — 22y +62y%)
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which simplifies to 0 after expanding the polynomials, and, thus, leads to the equation
0 = 0, which is easy to prove.

See <Motzkin polynomial invariant> Note that the arithmetic complexity reduces
when hiding unnecessary contexts as shown in Lecture 6 on Truth & Proof.

Thanks to Andrew Sogokon for the nice Example 9.

10 Differential Invariant Terms and Invariant Functions

It is not a coincidence that these examples were provable by differential invariant proof
rule DI_y, because that proof rule can handle arbitrary invariant functions.

Expedition 3 (Lie characterization of invariant functions). The proof rule DI
works by deriving the postcondition and substituting the differential equation in:

- =0
n=0F[2z'=0n=0

(DI-o)

There is something quite peculiar about DI_. Its premise is independent of the
constant term in 7. If, for any constant symbol ¢, the formula 1 = 0 is replaced by
n — ¢ = 0 in the conclusion, then the premise of DI stays the same, because ¢ = 0.
Consequently, if DI_y proves

then it also proves
n—c=0F[2'=0n—c=0 (7)

for any constant c. This observation is the basis for a more general result, which
simultaneously proves all formulas (7) for all ¢ from the premise of DI_.

On open domains, equational differential invariants are even a necessary and
sufficient characterization of such invariant functions, i.e. functions that are invari-
ant along the dynamics of a system, because, whatever value c that function had in
the initial state, the value will stay the same forever. The equational case of differ-
ential invariants are intimately related to the seminal work by Sophus Lie on what
are now called Lie groups [Lie93, Lie97].

Theorem 10 (Lie [Plal2b]). Let 2/ = 6 be a differential equation system and H a
domain, i.e., a first-order formula of real arithmetic characterizing an open set. The
following proof rule is a sound global equivalence rule, i.e. the conclusion is valid if
and only if the premise is:

9
HE T]/:D/ =0

ol FVYe(n=c—[2/ =0&Hn=c)
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Despite the power that differential invariant terms offer, challenges lie ahead in prov-
ing properties. Theorem 10 gives an indication where challenges remain.

Example 11 (Generalizing differential invariants). The following d formula is valid
x2+y2:0—>[:C/:4y3,y/:—4x3]x2+y220 (8)

but cannot be proved directly using DI, because z? + y? is no invariant function of
the dynamics. In combination with generalization ([Jgen’ to change the postcondition
to the equivalent 2% + y* = 0) and a cut (to change the antecedent to the equivalent
z* + y* = 0), however, there is a proof using differential invariants DI_:

%
R - 423 (4y®) + 493 (—42®) = 0
F (4232’ + 4y3y’)iz/d ;,4353 =0
4yt =0k [ =43y = 4232t + 941 =0
cutllgen’ ;2 4 2 — [/ =493y = 42322 + 9% =0
-t Fa?+y? =0— [/ =43y = 42322 + 9% =0

DI—o

The use of [|gen’ leads to another branch z* + y* = 0 - 22 4+ y? = 0 that is elided above.
Similarly, cut leads to another branch 22 + y? = 0 - z* + y? = 0 that is also elided. Both
prove easily by real arithmetic (r).

See <« Differential invariant after generalization>>

How could this happen? How could the original formula (8) be provable only after
generalizing its postcondition to z* + y* = 0 and not before?

Note 18 (Strengthening induction hypotheses). An important phenomenon we already
encountered in Lecture 7 on Loops & Invariants and other uses of induction is that, some-
times, the only way to prove a property is to strengthen the induction hypothesis. Differen-
tial invariants are no exception. It is worth noting, however, that the inductive structure
in differential invariants includes their differential structure. And, indeed, the deriva-
tives of * + y* = 0 are different and more conducive for an inductive proof than those of
x? + y* = 0 even if both have the same set of solutions. )

&

Theorem 10 explains why 2% + y? = 0 was doomed to fail as a differential invariant
while 2% 4+ y* = 0 succeeded. All formulas of the form 2% + y* = ¢ for all ¢ are invari-
ants of the dynamics in (8), because the proof succeeded. But z? + y? = c only is an
invariant for the lucky choice ¢ = 0 and only equivalent to z* + y* = 0 for this case.

There also is a way of deciding equational invariants of algebraic differential equa-
tions using a higher-order generalization of differential invariants called differential
radical invariants [GP14].
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11 Summary

This lecture showed one form of differential invariants: the form where the differen-
tial invariants are terms whose value always stays 0 along all solutions of a differential
equation. The next lecture will investigate more general forms of differential invari-
ants and more advanced proof principles for differential equations. They all share the
important discovery in today’s lecture: that properties of differential equations can be
proved using the differential equation rather than its solution.

The most important technical insight of today’s lecture was that even very compli-
cated behavior that is defined by mathematical properties of the semantics can be cap-
tured by purely syntactical proof principles using syntactic derivations. The derivation
lemma proved that the values of the (easily computable) syntactic derivations coincides
with the analytic derivatives of the values. The differential substitution lemma allowed
us the intuitive operation of substituting differential equations into terms. Proving
properties of differential equations using these simple proof principles is much more
civilized and effective than working with solutions of differential equations. The proofs
are also computationally easier, because the proof arguments are local.

The principles begun in this lecture have more potential, though, and are not limited
to proving only properties of the rather limited form n = 0. Subsequent lectures will
make use of the results obtained and build on the derivation lemma and differential
substitution lemma to develop more general proof principles for differential equations.

Exercises

Exercise 1. Note2 explained that (z/ = )" is equivalent to 2’ = . Does the same hold
for differential equations with evolution domain constraints? Are (2’ = 0& H)* and
x’ = 0 & H equivalent or not? Justify or modify the statement and justify the variation.

Exercise 2. We argued that d formulas (1) and (3) are equivalent and have then gone on
to find a proof of (3). Continue this proof of (3) to a proof of (1) using the generalization
rule [Jgen’ and the cut rule.

Exercise 3. Prove the cases of Lemma 5 where 7 is of the form a — b and a/b.

Exercise 4. What happens in the proof of Lemma7 if there is no solution ¢? Show that
this is not a counterexample to proof rule DI, but that the rule is sound in that case.

Exercise 5. Carry out the polynomial computations needed to prove Example 9 using
proof rule DI_.

Exercise 6. Prove the following d formula using differential invariants:
ry=c— [ =—-z,y =y, = —zry=c
Exercise 7. Prove the following dZ formula using differential invariants:

2 tdry -2 —y=1—[2' = -1+4x—6y%y = —20 —dyla® + 4oy — 23 —y =1
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Exercise 8. Prove the following d formula using differential invariants:

$3 $3
x2+§:c—>[a:’:yz,y’:—2x]m2+§:c

Exercise 9 (Hénon-Heiles). Prove a differential invariant of a Hénon-Heiles system:

1 1
§(u2 + v 4+ Az? + By?) + 2%y — §6y3 =0—

1 1
[/ =u,y =v,u = —Ax — 2zy,v' = —By + ey® — 552]5(u2—|—v2—|—A:E2—|—By2)+x2y—§5y3 =0
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