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1 Introduction

Lecture 7 on Control Loops & Invariants explained the central proof principle for loops
based on induction using invariants. Lecture 8 on Events & Responses studied the im-
portant feedback mechanism of event-driven control and made crucial use of invariants
for rigorously reasoning about event-driven control loops. Those invariants uncovered
important subtleties with events that could be easily missed. In Lecture 8 on Events
& Responses, we, in fact, already noticed these subtleties thanks to our “safety first”
approach to CPS design, which guided us to exercise the scrutiny of Cartesian Doubt
on the CPS model before even beginning a proof.

But, even if the final answer for the event-driven controller for ping pong balls was
rather clear and systematic, event-driven control had an unpleasantly large number of
modeling subtleties in store for us. Furthermore, event-driven control has a rather high
level of abstraction, because it assumes that all events would be detected perfectly and
right away in continuous sensing. However, the event-driven model had x ≤ 5 as a
hard limit in the evolution domain constraint to ensure that the event 4 ≤ x ≤ 5 would
never be missed as the ball is rushing upwards.

As soon as we want to implement such an event detection, it becomes clear that
real controller implementations can only perform discrete sensing, i.e. checking sensor
data every once in a while at certain discrete points in time, whenever the measure-
ment comes from the sensor and the controller has a chance to run. Most controller
implementations would, thus, only end up checking for an event every once in a while,
whenever the controller happens to run, rather than permanently as event-driven con-
trollers pretend.

Today’s lecture focuses on the second important paradigm for making cyber interface
with physics to form cyber-physical systems. The paradigm of time-triggered control,

15-424 LECTURE NOTES September 24, 2014 ANDRÉ PLATZER
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L9.2 Reactions & Delays

which uses periodic actions to affect the behavior of the system at certain frequencies.
This is to be contrasted with the paradigm from Lecture 8 on Events & Responses of
event-driven control, where responses to events dominate the behavior of the system
and an action is taken whenever one of the events is observed. Both paradigms play
an equally important role in classical embedded systems and both paradigms fall out
naturally from an understanding of the hybrid program principle for CPS.

These lecture notes are loosely based on [Pla12, Pla10].
Based on the understanding of loops from Lecture 7 on Loops & Invariants, the most

important learning goals of this lecture are:

Modeling and Control: Today’s lecture provides a number of crucial lessons for mod-
eling CPS and designing their controls. We develop an understanding of time-
triggered control, which is an important design paradigm for control loops in
CPS. This lecture studies ways of developing models and controls corresponding
to this feedback mechanism, which will turn out to be surprisingly subtle to con-
trol. Knowing and contrasting both event-driven and time-triggered feedback
mechanisms helps with identifying relevant dynamical aspects in CPS coming
from events and reaction delays. Today’s lecture focuses on CPS models assum-
ing discrete sensing, i.e. sensing at (nondeterministic) discrete points in time.

Computational Thinking: This lecture uses the rigorous reasoning approach from Lec-
ture 5 on Dynamical Systems & Dynamic Axioms and Lecture 7 on Loops & Con-
trol to study CPS models with time-triggered control. As a running example, the
lecture continues to develop the extension from bouncing balls to ping pong balls,
now using time-triggered control. We again add control decisions to the bounc-
ing ball, turning it into a ping pong ball, which retains the intuitive simplicity of
the bouncing ball, while enabling us to develop generalizable lessons about how
to design time-triggered control systems correctly. The lecture will also crucially
study invariants and show a development of the powerful technique of design-
by-invariant in a concrete example. While the lecture could hardly claim showing
how to verify CPS models of appropriate scale, the basics laid in this lecture defi-
nitely carry significance for numerous practical applications.

CPS Skills: This lecture develops an understanding for the semantics of time-triggered
control. This understanding of the semantics will also guide our intuition of the
operational effects of time-triggered control and especially the impact it has on
finding correct control constraints. Finally, the lecture studies some aspects of
higher-level model-predictive control, which will be followed up on later in the
course.

2 Delays in Control

Event-driven control is a useful and intuitive model matching our expectation of hav-
ing controllers react in response to certain critical conditions or events that necessitate
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Reactions & Delays L9.3

intervention by the controller. Yet, one of its difficulties is that event-driven control
with its continuous sensing assumption can be hard or impossible to implement in re-
ality. On a higher level of abstraction, it is very intuitive to design controllers that react
to certain events and change the control actuation in response to what events have hap-
pened. Closer to the implementation, this turns out to be difficult, because actual com-
puter control algorithms do not actually run all the time, only sporadically every once
in a while, albeit sometimes very often. Implementing event-driven control faithfully
would, in principle, requires permanent continuous monitoring of the state to check
whether an event has happened. That is not particularly realistic, because fresh sensor
data will only be available every once in a while, and controller implementations will
only run at certain discrete points in time causing delays in processing, and because
actuators may sometimes take quite some time to get going. Think of the reaction time
it takes you to turn the insight “I want to hit this ping pong ball there” into action so
that your ping pong paddle will actually hit the ping pong ball.

Figure 1: Sample trajectory of a ping pong ball (plotted as position over time) with the
indicated ping pong paddle actuation range, sometimes actuating early, some-
times late

Back to the drawing desk. Let us reconsider the original dL formula (1) for the ping
pong ball (Fig. 1) that we started out from for designing the event-driven version in
Lecture 8 on Events & Responses.

0 ≤ x ∧ x ≤ 5 ∧ v ≤ 0 ∧ g > 0 ∧ 1 ≥ c ≥ 0 ∧ f ≥ 0→[(
x′ = v, v′ = −g&x ≥ 0;

if(x = 0) v :=−cv else if(4 ≤ x ≤ 5) v :=−fv
)∗]

(0 ≤ x ≤ 5)

(1)

This simplistic formula (1) turned out not to be valid, because its differential equa-
tion was not guaranteed to be interrupted when the event 4 ≤ x ≤ 5 happens. Conse-
quently, (1) needs some other evolution domain constraint to make sure all continuous
evolutions are stopped at some point for the control to have a chance to react to situa-
tion changes. Yet, it should not be something like . . .&x ≤ 5 as in Lecture 8 on Events &
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L9.4 Reactions & Delays

Responses, because continuously monitoring for x ≤ 5 requires permanent continuous
sensing of the height, which is difficult to implement.

Note 1 (Physical versus controller events). Observe that the event x = 0 in the (physics)
controller as well as the (physics) evolution domain constraint x ≥ 0 for detecting the event
x = 0 are perfectly justified in bouncing ball and ping pong ball models, because both rep-
resent physics. And physics is very well capable of keeping a ball above the ground, no
matter how much checking for x = 0 it takes to make that happen. It is just in our con-
troller code that we need to exercise care when modeling events and their reactions, because
the controller implementations will not have the privilege that physics possesses of run-
ning all the time. Cyber happens every once in a while (even if may quickly), while physics
happens all the time.

How else could the continuous evolution of physics be interrupted to make sure the
controller actually runs? By bounding the amount of time that physics is allowed to
evolve before running the controller again. Before we can talk about time, the model
needs to be changed to include a variable, say t, that reflects the progress of time with
a differential equation t′ = 1.

0 ≤ x ∧ x ≤ 5 ∧ v ≤ 0 ∧ g > 0 ∧ 1 ≥ c ≥ 0 ∧ f ≥ 0→[(
x′ = v, v′ = −g, t′ = 1&x ≥ 0 ∧ t ≤ 1;

if(x = 0) v :=−cv else if(4 ≤ x ≤ 5) v :=−fv
)∗]

(0 ≤ x ≤ 5)

(2)

In order to bound time by 1, the evolution domain now includes . . .& t ≤ 1 and declares
that the clock variable t evolves with time as t′ = 1. Oops, that does not actually quite
do it, because the HP in (2) restricts the evolution of the system so that it will never ever
evolve beyond time 1, no matter how often the loop repeats. That is not what we meant
to say. Rather we wanted the duration of each individual continuous evolution limited
to at most one second. The trick is to reset the clock t to zero before the continuous
evolution starts:

0 ≤ x ∧ x ≤ 5 ∧ v ≤ 0 ∧ g > 0 ∧ 1 ≥ c ≥ 0 ∧ f ≥ 0→[(
t := 0; (x′ = v, v′ = −g, t′ = 1&x ≥ 0 ∧ t ≤ 1);

if(x = 0) v :=−cv else if(4 ≤ x ≤ 5) v :=−fv
)∗]

(0 ≤ x ≤ 5)

(3)

In order to bound time by 1, the evolution domain now includes . . .& t ≤ 1 and the
variable t is reset to 0 by t := 0 right before the differential equation. Hence, t represents
a local clock measuring how long the evolution of the differential equation was. Its
bound of 1 ensures that physics gives the controller a chance to react at least once per
second. The system could very well stop the continuous evolution more often and
earlier, because there is no lower bound on t in (3). Also see Exercise 1.

Before going any further, let’s take a step back to notice an annoyance in the way
the control in (3) was written. It is written in the style that the original bouncing ball
and the event-driven ping pong ball were phrased: continuous dynamics followed by
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Reactions & Delays L9.5

control. That has the unfortunate effect that (3) lets physics happen before control does
anything, which is not a very safe start. In other words, the initial condition would have
to be modified to assume the initial control was fine. That is a nuisance duplicating
part of the control into the assumptions on the initial state. Instead, let’s switch the
statements around to make sure control always happens before physics does anything.

0 ≤ x ∧ x ≤ 5 ∧ v ≤ 0 ∧ g > 0 ∧ 1 ≥ c ≥ 0 ∧ f ≥ 0→[(
if(x = 0) v :=−cv else if(4 ≤ x ≤ 5) v :=−fv;
t := 0; (x′ = v, v′ = −g, t′ = 1&x ≥ 0 ∧ t ≤ 1)

)∗]
(0 ≤ x ≤ 5)

(4)

Now that dL formula (4) has an upper bound on the time it takes between two sub-
sequent control actions, is it valid? If so, which invariant can be used to prove it? If not,
which counterexample shows its invalidity?

Before you read on, see if you can find the answer for yourself.

15-424 LECTURE NOTES ANDRÉ PLATZER



L9.6 Reactions & Delays

Figure 2: Sample trajectory of a time-triggered ping pong ball (as position over time),
missing the first event

Even though (4) ensures a bound on how long it may take at most until the controller
inspects the state and reacts, there is still a fundamental issue with (4). We can try to
prove (4) and inspect the non-provable cases in the proof to find out what the issue is.
The controller of (4) runs at least after one second (hence at least once per second) and
then checks whether 4 ≤ x ≤ 5. But if 4 ≤ x ≤ 5 was not true when the controller
ran last, there is no guarantee that it will be true when the controller runs next. In fact,
the ball might very well have been at x = 3 at the last controller run, then evolved
continuously to x = 6 within a second and so missed the event 4 ≤ x ≤ 5 that it was
supposed to detect (Exercise 2); see Fig. 2. Worse than that, the ping pong ball has then
already become unsafe.

For illustration, driving a car would be similarly unsafe if you would only open your
eyes once a second and monitor whether there is a car right in front of you. Too many
things could have happened in between that should have prompted you to brake.

Note 2 (Delays may miss events). Delays in controller reactions may cause events to
be missed that they were supposed to monitor. When that happens, there is a discrepancy
between an event-driven understanding of a CPS and the real time-triggered implementa-
tion. That happens especially for slow controllers monitoring small regions of a fast moving
system. This relationship deserves special attention to make sure the impact of delays on a
system controller cannot make it unsafe.

It is often a good idea to first understand and verify an event-driven design of a CPS
controller and then refine it to a time-triggered controller to analyze and verify that CPS
in light of its reaction time. Discrepancies in this analysis hint at problems that event-
driven designs will likely experience at runtime and they indicate a poor event abstraction.

How can this problem of (4) be solved? How can the CPS model make sure the
controller does not miss its time to take action? Waiting until 4 ≤ x ≤ 5 holds true is
not guaranteed to be the right course of action for the controller.

Before you read on, see if you can find the answer for yourself.
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Reactions & Delays L9.7

The problem with (4) is that its controller is unaware of its own delay. It does not take
into account how the ping pong ball could have moved further before it gets a chance
to react next. If the ball is already close to the ping pong paddle’s intended range of
actuation, then the controller had better take action already if it is not sure whether
next time will still be fine.

The controller would be in trouble if x > 5 might already hold in its next control
cycle after the continuous evolution, which will be outside the operating range of the
ping pong paddle (and already unsafe). Due to the evolution domain constraint, the
continuous evolution can take at most 1 time unit, after which the ball will be at position
x + v − g

2 as Lecture 4 already showed by solving the differential equation. Choosing
gravity g = 1 to simplify the math, the controller would be in trouble in the next control
cycle after 1 second which would take the ball to position x + v − 1

2 > 5 if x > 51
2 − v

holds now.
The idea is to make the controller now act based on how it estimates the state might

have evolved until the next control cycle (this is a very simple example of model-
predictive control). Lecture 8 on Events & Responses already discovered for the event-
driven case that the controller only wants to trigger action if the ball is flying up, not if
it is already flying down. Thus, making (4) aware of the future in this way leads to:

0 ≤ x ∧ x ≤ 5 ∧ v ≤ 0 ∧ g = 1 > 0 ∧ 1 ≥ c ≥ 0 ∧ f ≥ 0→[(
if(x = 0) v :=−cv else if((x > 5

1

2
− v) ∧ v ≥ 0) v :=−fv;

t := 0; (x′ = v, v′ = −g, t′ = 1&x ≥ 0 ∧ t ≤ 1)
)∗]

(0 ≤ x ≤ 5)

(5)

Is conjecture (5) about its future-aware controller valid? If so, which invariant can be
used to prove it? If not, which counterexample shows its invalidity?

Before you read on, see if you can find the answer for yourself.
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L9.8 Reactions & Delays

The controller in formula (5) has been designed based on the prediction that the fu-
ture may evolve for 1 time unit. If an action will no longer be possible in 1 time unit,
because the event x ≤ 5 has passed in that future time instant, then the controller in (5)
takes action right now already. The issue with that, however, is that there is no guar-
antee at all that the ping pong ball will fly for exactly 1 time unit before the controller
is asked to act again (and the postcondition is checked). The controller in (5) checks
whether the ping pong ball could be too far up after one time unit and does not inter-
vene unless that is the case. Yet, what if the ball only flies for 1

2 time units? Clearly, if
the ball will be safe after 1 time unit, which is what the controller in (5) checks, it will
also be safe after just 1

2 time unit, right?
Before you read on, see if you can find the answer for yourself.
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Reactions & Delays L9.9

Wrong! The ball may well be below 5 after 1 time unit but still could have been above
5 in between the current point of time and the time that is 1 time unit from now. Then
the safety of the controller will be a mere rope of sand, because controller will have a
false sense of safety after having checked what happens 1 time unit from now, ignoring
whether it was safe until then. Such trajectories are shown in Fig. 3 from the same
initial state and the same controller with different sampling periods. Such a bouncing
ball would not be safe if it has been above 5 in between two sampling points.

Figure 3: Sample trajectory of a time-triggered ping pong ball (as position over time),
missing different events with different sampling periods

In order to get to the bottom of this, recall the invariant for the bouncing ball identi-
fied in Lecture 4 on Safety & Contracts and then used in Lecture 7 on Loops & Invariants
to prove safety of the bouncing ball:

2gx = 2gH − v2 ∧ x ≥ 0 ∧ c = 1 ∧ g > 0 (6)

This formula was proved to be an invariant of the bouncing ball, which means it holds
true always while the bouncing ball is bouncing around. Invariants are the most crucial
information about the behavior of a system that we can rely on all the time. Since (6) is
only an invariant of the bouncing dynamics not the ping pong ball, it, of course, only
holds until the ping pong paddle hits, which changes the control. But until the ping
pong paddle is used, (6) summarizes concisely what we know about the state of the
bouncing ball at all times. Of course, (6) is an invariant of the bouncing ball, but it
still needs to be true initially. The easiest way to make that happen is to assume (6)
in the beginning of the ping pong ball’s life.1 Because Lecture 7 only conducted the
proof of the bouncing ball invariant (6) for the case c = 1 to simplify the arithmetic,
the ping pong ball now adopts this assumption as well. To simplify the arithmetic and
arguments, also adopt the assumption f = 1 in addition to c = 1 ∧ g = 1 for the proofs.

1Note that H is a variable that does not need to coincide with the upper height limit 5 like it did in the
case of the bouncing ball, because the ping pong ball has more control at its fingertips. In fact, the most
interesting case is if H > 5 in which case the ping pong ball will only stay safe because of its control.
One way to think of H is as an indicator for the energy of the ball showing how high it might jump up
if it would not be for all its interaction with the ground and the ping pong paddle.
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L9.10 Reactions & Delays

Substituting the safety-critical height 5 for H in the invariant (6) for this instance of
parameter choices leads to the following condition

2x > 2 · 5− v2 (7)

as an indicator for the fact that the ball might end up climbing too high, because its
energy would allow it to. Adding this condition (7) to the controller (5) leads to:

2x = 2H − v2 ∧ 0 ≤ x ∧ x ≤ 5 ∧ v ≤ 0 ∧ g = 1 > 0 ∧ 1 = c ≥ 0 ∧ 1 = f ≥ 0→[(
if(x = 0) v :=−cv else if((x > 5

1

2
− v ∨ 2x > 2 · 5 − v2) ∧ v ≥ 0) v :=−fv;

t := 0; (x′ = v, v′ = −g, t′ = 1&x ≥ 0 ∧ t ≤ 1)
)∗]

(0 ≤ x ≤ 5)

(8)

Recall that the bouncing ball invariant (6) is now assumed to hold in the initial state.
Is dL formula (8) about its time-triggered controller valid? As usual, use an invariant

or a counterexample for justification.
Before you read on, see if you can find the answer for yourself.
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Reactions & Delays L9.11

Formula (8) is “almost valid”. But it is still not valid for a very subtle reason. It is
great to have proof to catch those subtle issues. The controller in (8) takes action for
two different conditions on the height x. However, the ping pong paddle controller
actually only runs in (8) if the ball is not at height x = 0, for otherwise ground control
takes action of reversing the direction of the ball. Now, if the ball is flat on the floor
already (x = 0) yet its velocity so incredibly high that it will rush past height 5 in less
than 1 time unit, then the ping pong paddle controller will not even have had a chance
to react before it is too late, because it does not execute on the ground according to (8);
see Fig. 4.

Figure 4: Sample trajectory of a time-triggered ping pong ball (as position over time),
failing to control on the ground

Fortunately, these thoughts already indicate how that problem can be fixed. By turn-
ing the nested if-then-else cascade into a sequential composition of two separate
if-then that will ensure the ping pong paddle controller to run for sure even if the
bouncing ball is still on the ground (Exercise 3).

2x = 2H − v2 ∧ 0 ≤ x ∧ x ≤ 5 ∧ v ≤ 0 ∧ g = 1 > 0 ∧ 1 = c ≥ 0 ∧ 1 = f ≥ 0→[(
if(x = 0) v :=−cv ; if((x > 5

1

2
− v ∨ 2x > 2 · 5− v2) ∧ v ≥ 0) v :=−fv;

t := 0; (x′ = v, v′ = −g, t′ = 1&x ≥ 0 ∧ t ≤ 1)
)∗]

(0 ≤ x ≤ 5)

(9)

Now, is formula (9) finally valid, please? If so, using which invariant? Otherwise,
show a counterexample.

Before you read on, see if you can find the answer for yourself.

15-424 LECTURE NOTES ANDRÉ PLATZER



L9.12 Reactions & Delays

Yes, formula (9) is valid. What invariant can be used to prove formula (9)?
Formula (9) is valid, which, for the case g = c = f = 1, can be proved with the

following invariant:
2x = 2H − v2 ∧ x ≥ 0 ∧ x ≤ 5 (10)

This invariant instantiates (6) for the present case of parameter choices and augments
it with the desired safety constraint x ≤ 5.

Yet, is the controller in (9) useful? That is where the problem lies now. The condition
(7) that is the second disjunct in the controller of (9) checks whether the ping pong ball
could possibly ever fly up to height 5. If this is ever true, it might very well be true long
before the bouncing ball even approaches the critical control cycle where a ping pong
paddle action needs to be taken. In fact, if (7) is ever true, it will also be true in the very
beginning. After all, the formula (6), from which condition (7) derived, is an invariant,
so always true for the bouncing ball. What would that mean?

That would cause the controller in (9) to take action right away at the mere prospects
of the ball ever being able to climb way up high, even if the ping pong ball is still
close to the ground and pretty far away from the last triggering height 5. That would
make the ping pong ball safe, after all (9) is a valid formula. But it would also make it
rather conservative and would not allow the ping pong ball to bounce around nearly as
much as it would have loved to. It would basically make the bouncing ball lie flat on the
ground, because of an overly anxious ping pong paddle. That would be a horrendously
acrophobic bouncing ball if it never even started bouncing around in the first place.
And the model would even require the (model) world to end, because there can be no
progress beyond the point in time where the ball gets stuck on the ground. How can
the controller in (9) be modified to resolve this problem?

Figure 5: Sample trajectory of a time-triggered ping pong ball (as position over time),
stuck on the ground

Before you read on, see if you can find the answer for yourself.
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Reactions & Delays L9.13

Note 3 (Zeno paradox). There is something quite surprising about how (9) may cause
the time to freeze. But, come to think of it, time did already freeze in mere bouncing balls.

The duration between two hops on the ground in a bouncing ball keeps on decreasing
rapidly. If, for simplicity, the respective durations are 1, 12 ,

1
4 ,

1
8 , . . ., then these durations

sum to
∞∑
i=0

1

2i
=

1

1− 1
2

= 2

which shows that the bouncing ball model will make the (model) world stop to never reach
time 2 nor any time after. Hence, the bouncing ball model disobeys what is called divergence
of time, i.e. that the real time keeps diverges to ∞. The reason this happens is that the
bouncing ball keeps on switching directions on the ground more and more frequently. This
is very natural for bouncing balls, but can cause subtleties and issues in other systems if
they switch infinitely often in finite time.

The name Zeno paradox comes from the Greek philosopher Zeno (ca. 490–430 BC) who
found a paradox when fast runner Achilles gives the slow Tortoise a head start of 100 meters
in a race: In a race, the quickest runner can never overtake the slowest, since the pursuer
must first reach the point whence the pursued started, so that the slower must always hold
a lead. – recounted by Aristotle, Physics VI:9, 239b15

Pragmatic solutions for the Zeno paradox in bouncing balls add a statement that make
the ball stop when the remaining velocity on the ground is too small. For example:

if(x = 0 ∧ −0.1 < v < −0.1) v := 0;x′ = 0

The idea is to restrict the use of the second if-then disjunct (7) in (9) to slow velocities
in order to make sure it only applies to the occasions that the first controller disjunct
x > 51

2 − v misses, because the ball will have been above height 5 in between. Only
with slow velocities will the ball ever move so slowly that it is near its turning point to
begin its descent and start falling down again before 1 time unit. And only then could
the first condition miss out on the ball being able to evolve above 5 before 1 time unit.
When is a velocity slow in this respect?
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L9.14 Reactions & Delays

For the ball to turn around and descend, it first needs to reach velocity v = 0 by conti-
nuity (during the flying phase) on account of the mean-value theorem. In gravity g = 1
the ball can reach velocity 0 within 1 time unit exactly when its velocity was v < 1 be-
fore the differential equation, because the velocity changes according to v(t) = v − gt.
Consequently, adding a conjunct v < 1 to the second disjunct in the controller makes
sure that the controller only checks for turnaround when it might actually happen dur-
ing the next control cycle.

2x = 2H − v2 ∧ 0 ≤ x ∧ x ≤ 5 ∧ v ≤ 0 ∧ g = 1 > 0 ∧ 1 = c ≥ 0 ∧ 1 = f ≥ 0→[(
if(x = 0) v :=−cv; if((x > 5

1

2
− v ∨ 2x > 2 · 5− v2 ∧ v < 1) ∧ v ≥ 0) v :=−fv;

t := 0; (x′ = v, v′ = −g, t′ = 1&x ≥ 0 ∧ t ≤ 1)
)∗]

(0 ≤ x ≤ 5)
(11)

This dL formula is valid and provable with the same invariant (10) that was already
used to prove (9). It has a much more aggressive controller than (9), though, so it is
more fun for the ping pong ball to bounce around with it.

The easiest way of proving that dL formula (11) is valid using invariant (10) is to show
that the invariant (10) holds after every line of code. Formally, this reasoning by lines
corresponds to a number of uses of the generalization proof rule []gen′ to show that
the invariant (11) remains true after each line if it was true before. The first statement
if(x = 0) v :=−cv does not change the truth-value of (10), i.e.

2x = 2H − v2 ∧ x ≥ 0 ∧ x ≤ 5→ [if(x = 0) v :=−cv](2x = 2H − v2 ∧ x ≥ 0 ∧ x ≤ 5)

is valid, because, when c = 1, the statement can only change the sign of v and (10) is
independent of signs, because the only occurrence of v satisfies (−v)2 = v2. Likewise,
the second statement if((x > 51

2 − v ∨ 2x > 2 · 5− v2 ∧ v < 1) ∧ v ≥ 0) v :=−fv does
not change the truth-value of (10), i.e.

2x = 2H − v2 ∧ x ≥ 0 ∧ x ≤ 5→

[if((x > 5
1

2
− v ∨ 2x > 2 · 5− v2 ∧ v < 1) ∧ v ≥ 0) v :=−fv](2x = 2H−v2∧x ≥ 0∧x ≤ 5)

is valid, because, for f = 1, the second statement can also only change the sign of v,
which is irrelevant for the truth-value of (10). Finally, the relevant parts of (10) are a
special case of (6), which has already been shown to be an invariant for the bouncing
ball differential equation in Lecture 7 on Loops & Invariants and, thus, continues to
be an invariant when adding a clock t′ = 1& t ≤ 1, which does not occur in (10). The
additional invariant x ≤ 5 that (10) has compared to (6) is easily taken care off using the
corresponding knowledge about H .

Recall that (global) invariants need to be augmented with the usual trivial assump-
tions about the unchanged variables: g = 1 ∧ 1 = c ∧ 1 = f .

See�Time-triggered ping pong ball KeYmaera model�
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Note 4 (Time-triggered control). One common paradigm for designing controllers is
time-triggered control, in which controllers run periodically or pseudo-periodically with
certain frequencies to inspect the state of the system. Time-triggered systems are closer to
implementation than event-driven control. They can be harder to build, however, because
they invariably require the designer to understand the impact of delay on control decisions.
That impact is important in reality, however, and, thus, effort invested in understanding
the impact of time delays usually pays off in designing a safer system that is robust to
bounded time delays.

Partitioning the hybrid program in (11) into the parts that come from physics (typo-
graphically marked like physics) and the parts that come from control (typographically
marked like control) leads to:

2x = 2H − v2 ∧ 0 ≤ x ∧ x ≤ 5 ∧ v ≤ 0 ∧ g = 1 > 0 ∧ 1 = c ≥ 0 ∧ 1 = f ≥ 0→[(
if(x = 0) v :=−cv; if((x > 5

1

2
− v ∨ 2x > 2 · 5− v2 ∧ v < 1) ∧ v ≥ 0) v :=−fv;

t := 0; (x′ = v, v′ = −g, t′ = 1&x ≥ 0 ∧ t ≤ 1)
)∗]

(0 ≤ x ≤ 5)
(11)

Note how part of the differential equation, namely t′ = 1, comes from the controller,
because it corresponds to putting a clock or on the controller and running it with at
least the sampling frequency 1 (coming from the evolution domain constraint t ≤ 1).

3 Summary

This lecture studied time-triggered control, which, together with event-driven control
from Lecture 8 on Events & Responses, is an important principle for designing feedback
mechanisms in CPS and embedded systems. The lecture illustrated the most important
aspects for a running example of a ping pong ball. Despite or maybe even because
of its simplicity, the ping pong ball was an instructive source for the most important
subtleties involved with time-triggered control decisions. Getting time-triggered con-
trollers correct requires predictions about how the system state might evolve over short
periods of time (one control cycle). The effects and subtleties of time-triggered actions
in control were sufficiently subtle to merit focusing on a simple intuitive case.

Unlike event-drive control, which assumes continuous sensing, time-triggered con-
trol is more realistic by only assuming the availability and processing of sensor data
at discrete instants of time (discrete sensing). Time-triggered system models avoid the
modeling subtleties that events tend to cause for the detection of events. It is, thus,
often much easier to get the models right for time-triggered systems than it is for event-
driven control. The price is that the burden of event-detection is then brought to the
attention of the CPS programmer, whose time-triggered controller will now have to en-
sure it predicts and detects events early enough before it is too late to react to them.
That is what makes time-triggered controllers more difficult to get correct, but is also
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http://symbolaris.com/course/fcps14/08-events.pdf


L9.16 Reactions & Delays

crucial because important aspects of reliable event detection may otherwise be brushed
under the rug, which does not exactly help the final CPS become any safer either.

CPS design often begin by pretending the idealized world of event-driven control
(if the controller is not even safe when events are checked and responded to continu-
ously, it is broken already) and then subsequently morphing the event-driven controller
into a time-triggered controller. This second step then often indicates additional sub-
tleties that were missed in the event-driven designs. The additional insights gained in
time-triggered controllers are crucial whenever the system reacts slowly or whenever it
reacts fast but needs a high precision to remain safe. For example, the reaction time for
ground control decisions to reach a rover on Mars are so prohibitively large that they
could hardly be ignored. Reaction times in a surgical robotics system that is running at,
say, 55Hz, are still crucial even if the system is moving slow and reacting fast, because
the required precision of the system is in the sub-millimeter range [KRPK13].

Overall, the biggest issues with event-driven control, besides sometimes being hard
to implement, is the subtleties involved in properly modeling event detection without
accidentally defying the laws of physics in pursuit of an event. But controlling event-
driven systems is reasonably straight-forward as long as the events are chosen well.
Finding a model is comparably canonical in time-triggered control, but identifying the
controller constraints takes a lot more thought, leading, however, to important insights
about the system at hand.

Exercises

Exercise 1. The HP in (4) imposes an upper bound on the duration of a continuous
evolution. How can you impose an upper bound 1 and a lower bound 0.5?

Exercise 2. Give an initial state for which the controller in (4) would skip over the event
without noticing it.

Exercise 3. What would happen if the controller in (9) uses the ping pong paddle while
the ball is still on the ground? To what physical phenomenon does that correspond?

Exercise 4. The formula (11) with the time-triggered controller of reaction time at most
1 time unit is valid. Yet, if a ball is let loose a wee bit above ground with a very fast
negative velocity, couldn’t it possibly bounce back and exceed the safe height 5 faster
than the reaction time of 1 time unit? Does that mean the formula ought to have been
falsifiable? No! Identify why and give a physical interpretation.

Exercise 5. The controller in (11) ran at least once a second. How can you change the
model and controller so that it runs at least twice a second? What changes can you do
in the controller to reflect that increased frequency? How do you need to change (11) if
the controller only runs at least once every two seconds?

Exercise 6. The event-driven controller we designed in Lecture 8 on Events & Responses
monitored the event 4 ≤ x ≤ 5. The time-triggered controller in Sect. 2, however, ulti-
mately only took the upper bound 5 into account. How and under which circumstances
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can you modify the controller so that it really only reacts for the event 4 ≤ x ≤ 5 rather
than under all circumstances where the ball is in danger of exceeding 5?

Exercise 7. Devise a controller that reacts if the height changes by 1 when comparing
the height before the continuous evolution to the height after. Can you make it safe?
Can you implement it? Is it an event-driven or a time-triggered controller? How does
it compare to the controllers developed in this lecture?

Exercise 8. The ping pong ball proof relied on the parameter assumptions g = c = f =
1 for mere convenience of the resulting arithmetic. Develop a time-triggered model,
controller, and proof for the general ping pong ball.

Exercise 9 (*). Design a variation of the time-triggered controller for the ping pong ball
that is allowed to use the ping pong paddle within height 4 ≤ x ≤ 5 but has a relaxed
safety condition that accepts 0 ≤ x ≤ 2 · 5. Make sure to only force the use of the ping
pong paddle when necessary. Find an invariant and conduct a proof.
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