
15-424: Foundations of Cyber-Physical Systems

Lecture Notes on
Dynamical Systems & Dynamic Axioms

André Platzer

Carnegie Mellon University
Lecture 5

1 Introduction

Lecture 4 on Safety & Contracts demonstrated how useful and crucial CPS contracts are
for CPS. Their role and understanding goes beyond dynamic testing, though. In CPS,
proven CPS contracts are infinitely more valuable than dynamically tested contracts,
because dynamical tests of contracts at runtime of a CPS generally leave open very
little flexibility for reacting to them in any safe way. After all, the failure of a contract
indicates that some safety condition that was expected to hold is not longer true. Unless
provably sufficient safety margins and fallback plans remain, the system is already in
trouble then.1

Consequently, CPS contracts really shine in relation to how they are proved for CPS.
Understanding how to prove CPS contracts requires us to understand the dynamical
effects of hybrid programs in more detail. This deeper understanding of the effects of
hybrid program statements is not only useful for conducting proofs but also for devel-
oping and sharpening our intuition about hybrid programs for CPS. This phenomenon
illustrates a more general point that proof and effect (and/or meaning) are intimately
linked and that truly understanding effect is ultimately the same as, as well as a prereq-
uisite to, understanding how to prove properties of that effect [Pla12c, Pla12a, Pla10].
You may have seen this point demonstrated already in other courses from the Principles
of Programming Languages group at CMU, but it will shine in today’s lecture.

The route that we choose to get to this level of understanding is one that involves a
closer look at dynamical systems and Kripke models, or rather, the effect that hybrid
programs have on them. This will enable us to devise authoritative proof principles for

1Although, in combination with formal verification, the Simplex architecture exploits the relationship of
dynamic contracts for safety purposes [SKSC98]. ModelPlex, which is based on differential dynamic
logic, lifts this observation to a fully verified link from verified models to CPS executions [MP14].

15-424 LECTURE NOTES September 10, 2014 ANDRÉ PLATZER

http://symbolaris.com/course/fcps14.html
http://www.cs.cmu.edu/~aplatzer/andre.html
http://symbolaris.com/course/fcps14/04-contracts.pdf

L5.2 Dynamical Systems & Dynamic Axioms

differential dynamic logic and hybrid programs [Pla12c, Pla12a, Pla10, Pla08]. While
there are many more interesting things to say about dynamical systems and Kripke
structures, this lecture will limit information to the truly essential parts that are crucial
right now and leave more elaboration for later lectures.

More information can be found in [Pla12b, Pla12c] as well as [Pla10, Chapter 2.3].
The focus of today’s lecture is on a systematic development of the basic reasoning

principles for cyber-physical systems. The goal is to cover all cyber-physical systems
by identifying one fundamental reasoning principle for each of the operators of differ-
ential dynamic logic and, specifically, its hybrid programs. Once we have a (suitably
complete) reasoning principle for each of the operators, the basic idea is that any ar-
bitrary cyber-physical system can be analyzed by just combining the various reason-
ing principles with one another, compositionally, by inspecting one operator at a time.
With enough understanding, this guiding principle will, indeed, ultimately succeed
[Pla12a, Pla14]. It will, however, take significantly more than one lecture to get there.
So, today’s lecture will settle for a systematic development of the reasoning principles
for the more elementary operators in hybrid programs, leaving a detailed development
of the others to later lectures.

This lecture is of central significance for the Foundations of Cyber-Physical Systems.
The most important learning goals of this lecture are:

Modeling and Control: We will understand the core principles behind CPS by under-
standing analytically and semantically how cyber and physical aspects are inte-
grated and interact in CPS. This lecture will also begin to explicitly relate discrete
and continuous systems, which will ultimately lead to a fascinating view on un-
derstanding hybridness [Pla12a].

Computational Thinking: This lecture is devoted to the core aspects of reasoning rig-
orously about CPS models, which is critical to getting CPS right. CPS designs
can be flawed for very subtle reasons. Without sufficient rigor in their analysis
it can be impossible to spot the flaws, and even more challenging to say for sure
whether and why a design is no longer faulty. This lecture systematically devel-
ops one reasoning principle for each of the operators of hybrid programs. This
lecture begins an axiomatization of differential dynamic logic dL [Pla12c, Pla12a]
to lift dL from a specification language to a verification language for CPS.

CPS Skills: We will develop a deep understanding of the semantics of CPS models by
carefully relating their semantics to their reasoning principles and aligning them
in perfect unison. This understanding will also enable us to develop a better
intuition for the operational effects involved in CPS.

15-424 LECTURE NOTES ANDRÉ PLATZER

Dynamical Systems & Dynamic Axioms L5.3

Note 1 (Logical trinity). The concepts developed in this lecture illustrate the more general
relation of syntax (which is notation), semantics (what carries meaning), and axiomat-
ics (which internalizes semantic relations into universal syntactic transformations). These
concepts and their relations jointly form the significant logical trinity of syntax, seman-
tics, and axiomatics.

2 A Proof of Choice (Continued)

Recall the bouncing ball from Lecture 4 on Safety & Contracts, with repetition removed
to simplify the subsequent discussion for illustration purposes:

0 ≤ x ∧ x = H ∧ v = 0 ∧ g > 0 ∧ 1 ≥ c ≥ 0→[
x′ = v, v′ = −g&x ≥ 0; (?x = 0; v :=−cv ∪ ?x 6= 0)

]
(0 ≤ x ∧ x ≤ H) (1)

In order to try to prove the above formula, we have convinced ourselves with a num-
ber of steps of argumentation that we should try to prove the following two formulas
(and many others):

0 ≤ x ∧ x = H ∧ v = 0 ∧ g > 0 ∧ 1 ≥ c ≥ 0→ [x′ = v, v′ = −g&x ≥ 0](2gx = 2gH − v2 ∧ g > 0)

2gx = 2gH − v2 ∧ g > 0→ [?x = 0; v :=−cv ∪ ?x 6= 0] (0 ≤ x ∧ x ≤ H)
(2)

In our attempt of proving the latter formula, we used the following principle:

Note 2 (Proving choices). For a HP that is a nondeterministic choice α ∪ β, we can
prove

A→ [α ∪ β]B (3)

by proving the following dL formulas:

A→ [α]B and A→ [β]B

15-424 LECTURE NOTES ANDRÉ PLATZER

http://symbolaris.com/course/fcps14/04-contracts.pdf

L5.4 Dynamical Systems & Dynamic Axioms

Note 3 (Proving choices: proof-rule style). Note 2 is captured more concisely in the
following proof rule:

(R1)
A→ [α]B A→ [β]B

A→ [α ∪ β]B
If we can prove all premises (above rule bar) of a proof rule, then that proof rule infers the
conclusion (below rule bar).

Alas, the way we have been using proof rules so far is the other way around. We had
been looking at a formula such as the second formula of (2) that has the shape of the con-
clusion of a rule such as R1. And then we went on trying to prove the premises of that
proof rule instead. This conclusion-to-premise style of using our proof rules is perfectly
acceptable and useful as well. Should we ever succeed in proving the premises of R1, then
that proof rule would allow us to infer its conclusion too. In this way, proof rules are even
useful in directing us at which formulas we should try to prove next: the premises of the
instantiation of that rule.

Using these thoughts on the second formula of (2), we could prove that formula using
proof rule R1 if we would manage to prove both of its premises, which, in this instance,
are the following dL formulas:

2gx = 2gH − v2 ∧ g > 0→ [?x = 0; v :=−cv] (0 ≤ x ∧ x ≤ H)

2gx = 2gH − v2 ∧ g > 0→ [?x 6= 0] (0 ≤ x ∧ x ≤ H)
(4)

Before proceeding with proofs of (4), revisit the reasoning that led to the principle in
Note 3. We said that (3) can be justified by proving that, when assuming A, all runs of
α lead to states satisfying B and all runs of β lead to B states. Is that argument reflected
directly in Note 3?

Kind of, but not quite, because there is a minor difference. Our informal argument
assumed A once and concluded both [α]B and [β]B from A. The principle captured in
Note 3 assumes A to prove [α]B and then, separately, assumes A again to prove [β]B.
These two arguments are clearly closely related, but still slightly different. Can we
formalize and follow the original argument directly somehow? Or is Note 3 our only
chance?

Following the original argument, we would argue that (3) holds by proving

A→ ([α]B ∧ [β]B)

or, since the parentheses are superfluous according to the usual precedence rules:

A→ [α]B ∧ [β]B (5)

Is there a direct way how we can justify going from (3) to (5)? Preferably one that
simultaneously justifies going from (3) to the formulas identified in Note 3 as well.

These considerations will take us to a more general and more elegant proof principle
than R1, to a more refined understanding of the behavior of nondeterministic choices,
and to a way of justifying proof rules as being sound, without which we should never
be using them in the first place.

15-424 LECTURE NOTES ANDRÉ PLATZER

Dynamical Systems & Dynamic Axioms L5.5

3 Dynamic Axioms for Nondeterministic Choices

Recall the semantics of nondeterministic choices from Lecture 3 on Choice & Control:

ρ(α ∪ β) = ρ(α) ∪ ρ(β) (6)

Remember that ρ(α) is a reachability relation on states, where (ν, ω) ∈ ρ(α) iff HP α
can run from state ν to state ω. Let us illustrate graphically what (6) means:

ν

ω1

ω2

ρ(α
) φ

ρ(β) φ

ρ(α ∪ β)

[α ∪ β]φ

Figure 1: Illustration of the transition semantics of α ∪ β, which allows α ∪ β to make
any transitions that either α or that β could do on their own.

According to ρ(α), a number of states ωi are reachable by running HP α from some
initial state ν.2 According to ρ(β), a number of (possibly other) states ωi are reachable
by running HP β from the same initial state ν. By the semantic equation (6), running
α ∪ β from ν can give us any of those possible outcomes. And there was nothing special
about the initial state ν. The same principle holds for all other states as well.

Note 4 (∪). The nondeterministic choice α ∪ β can lead to exactly the states to which
either α could take us or to which β could take us or to which both could lead. The dynamic
effect of a nondeterministic choice α ∪ β is that running it at any time either results in a
behavior of α or of β, nondeterministically. So both the behaviors of α and β are possible
when running α ∪ β.

If we want to understand whether and where dL formula [α ∪ β]φ is true, we need to
understand which states the modality [α ∪ β] refers to. In which states does φ have to
be true so that [α ∪ β]φ is true in state ν?

By definition of the semantics, φ needs to be true in all states that α ∪ β can reach
according to ρ(α ∪ β) from ν for [α ∪ β]φ to be true in ν. Referring to semantics (6) or
looking at Fig. 1, shows us that this includes exactly all states that α can reach from ν
according to ρ(α), hence [α]φ has to be true in ν. And that it also includes all states that
β can reach from ν, hence [β]φ has to be true in ν.

Consequently,
ν |= [α]φ and ν |= [β]φ (7)

are necessary conditions for
ν |= [α ∪ β]φ (8)

2Fig. 1 only illustrates one such state ω1 for visual conciseness. But ω1 should be thought of as a generic
representative for any such state that α can reach from the initial state ν in these figures.

15-424 LECTURE NOTES ANDRÉ PLATZER

http://symbolaris.com/course/fcps14/03-choicecontrol.pdf

L5.6 Dynamical Systems & Dynamic Axioms

That is, unless (7) holds, (8) cannot possibly hold. So (7) is necessary for (8). Are there
any states missing? Are there any states that (8) would require to satisfy φ, which (7)
does not already ensure to satisfy φ? No, because, by (6), α ∪ β does not admit any
behavior that neither α nor β can exhibit. Hence (7) is also sufficient for (8), i.e. (7)
implies (8). So (7) and (8) are equivalent.

Thus, when adopting a more logical language again, this justifies:

ν |= [α ∪ β]φ↔ [α]φ ∧ [β]φ

This reasoning did not depend on the particular state ν but holds for all ν. Therefore,

� [α ∪ β]φ↔ [α]φ ∧ [β]φ

Exciting! We have just proved our first axiom to be sound:

Lemma 1 ([∪] soundness). The axiom of choice is sound, i.e. all its instances are valid:

([∪]) [α ∪ β]φ↔ [α]φ ∧ [β]φ

Nondeterministic choices split into their alternatives in axiom [∪]. From right to left:
If all α runs lead to states satisfying φ (i.e., [α]φ holds) and all β runs lead to states
satisfying φ (i.e., [β]φ holds), then all runs of HP α ∪ β, which may choose between
following α and following β, also lead to states satisfying φ (i.e., [α ∪ β]φ holds). The
converse implication from left to right holds, because α ∪ β can run all runs of α and all
runs of β, so all runs of α (and of β) lead to states satisfying φ if that holds for all runs
of [β]φ.

Armed with this axiom [∪] at our disposal, we can now easily do a proof step from
(3) to (5) just by invoking the equivalence that [∪] justifies. Let’s elaborate. We want to
prove:

A→ [α ∪ β]B (3)

By [∪], or rather an instance of [∪] formed by using B for φ, we know:

[α ∪ β]B ↔ [α]B ∧ [β]B (9)

Since (9) is a valid equivalence, replacing the place where the left-hand side of (9) occurs
in (3) by the right-hand side of (9) gives us a formula that is equivalent to (3):

A→ [α]B ∧ [β]B (5)

After all, according to the valid equivalence (9) justified by axiom [∪], (5) can be ob-
tained from (3) just by replacing a formula with one that is equivalent.

Actually, stepping back, the same argument can be made to go from (5) to (3) instead
of from (3) to (5). Both ways of using [∪] are perfectly fine. Although the direction
that gets rid of the ∪ operator tends to be much more useful, because it made progress

15-424 LECTURE NOTES ANDRÉ PLATZER

Dynamical Systems & Dynamic Axioms L5.7

(getting rid of an HP operator). Yet axiom [∪] can also be useful in many more situations
than rule R1. For example, if want to prove a dL formula

[α ∪ β]A→ B

where [α ∪ β] is on the left-hand side of an implication, then axiom [∪] justifies that it is
enough to prove the following dL formula instead:

[α]A ∧ [β]A→ B

This inference cannot be justified with proof rule R1, but would need a separate proof
rule such as

(R3)
[α]A ∧ [β]A→ B

[α ∪ β]A→ B

Yet, axiom [∪] simultaneously justifies both rules R1 and R3 and many other uses of
splitting a boxed choice into a conjunction. Axiom [∪] is, thus, more fundamental.

A general principle behind the dL axioms is most noticeable in axiom [∪]. All equiv-
alence axioms of dL are primarily intended to be used by reducing the formula on
the left to the (structurally simpler) formula on the right. Such a reduction symboli-
cally decomposes a property of a more complicated system into separate properties of
easier fragments α and β. While we might end up with more subproperties (like we
do in the case of axiom [∪]), each of them is structurally simpler, because it involves
less program operators. This decomposition of systems into their fragments makes the
problem tractable and is good for scalability purposes, because it reduces the study
of complex systems successively to a study of many but smaller subsystems of which
there are only finitely many. For these symbolic structural decompositions, it is very
helpful that dL is a full logic that is closed under all logical operators, including dis-
junction and conjunction, for then both sides in [∪] are dL formulas again (unlike in
Hoare logic [Hoa69]). This also turns out to be an advantage for computing invariants
[PC08, PC09, Pla10, GP14], which will be discussed much later in this course.

4 Soundness

The definition of soundness in Lemma 1 was not specific to axiom [∪], but applies to all
dL axioms.

Definition 2 (Soundness). An axiom is sound iff all its instances are valid.

From now on, every time we see a formula of the form [α ∪ β]φ, we can remember
that axiom [∪] knows a formula, namely [α]φ ∧ [β]φ that is equivalent to it. Of course,
whenever we find a formula of the form [γ ∪ δ]ψ, we also remember that axiom [∪]
knows a formula, namely [γ]ψ ∧ [δ]ψ that is equivalent to it, just by instantiation of
axiom [∪]. And the fact that axiom [∪] is sound ensures that we do not need to worry
about whether such reasoning is correct every time we need it. Every instance of [∪] is

15-424 LECTURE NOTES ANDRÉ PLATZER

L5.8 Dynamical Systems & Dynamic Axioms

sound. Once we know that [∪] is sound, we can treat it syntactically and mechanically
and apply it as needed, like a machine would.

But because soundness is such a big deal (a conditio sine qua non in logic, i.e., some-
thing without which logic could not be), we will prove soundness of [∪] carefully, even
if we almost already did in our informal argument above.

Proof of Lemma 1. The fact that axiom [∪] is sound can be proved as follows. Since
ρ(α ∪ β) = ρ(α) ∪ ρ(β), we have that (ν, ω) ∈ ρ(α ∪ β) iff (ν, ω) ∈ ρ(α) or (ν, ω) ∈ ρ(β).
Thus, ν |= [α ∪ β]φ iff ν |= [α]φ and ν |= [β]φ.

Why is soundness so critical? Well, because, without it, we could accidentally de-
clare a system safe that is not in fact safe, which would defeat the whole purpose of
verification and possibly put human lives in jeopardy when they are trusting their lives
on an unsafe CPS. Unfortunately, soundness is actually not granted in all verification
techniques for hybrid systems. But we will make it a point in this course to only ever
use sound reasoning and scrutinizing all verification for soundness right away. Sound-
ness is something that is comparably easy to establish in logic and proof approaches,
because it localizes into the separate study of soundness of each of its axioms.

5 Dynamic Axioms for Assignments

Axiom [∪] allows us to understand and handle [α ∪ β] properties. If we find similar
axioms for all the other operators of hybrid programs, then we have a way of handling
all other hybrid programs, too [Pla12a].

Consider discrete assignments. Recall from Lecture 4 on Safety & Contracts that:

ρ(x := θ) = {(ν, ω) : ω = ν except that [[x]]ω = [[θ]]ν}

ν ω

φθx ρ(x := θ)
φ

Lemma 3 ([:=] soundness). The assignment axiom is sound:

([:=]) [x := θ]φ(x)↔ φ(θ)

Axiom [:=] is Hoare’s assignment rule. It uses substitutions to axiomatize discrete as-
signments. To show that φ(x) is true after a discrete assignment, axiom [:=] shows that
it has been true before, when substituting the affected variable x with its new value θ.
That is, axiom [:=] expresses that φ(x) is true after changing x around to the new value
θ iff φ(θ) was true before such change. Formula φ(θ) is obtained from φ(x) by substitut-
ing θ for x at all occurrences of x (provided x does not occur in the scope of a quantifier
or modality binding x or a variable of θ).

15-424 LECTURE NOTES ANDRÉ PLATZER

http://symbolaris.com/course/fcps14/04-contracts.pdf

Dynamical Systems & Dynamic Axioms L5.9

Note 8 (Bound variables). A modality containing x := or x′ (outside the scope of tests
?H or evolution domain constraints) binds x, because it may change the value of x. A
quantifier ∀x or ∃x also binds variable x.

Substitutions are defined as usual [Pla10, Chapter 2.5.1].

6 Dynamic Axioms for Differential Equations

Recall from Lecture 3 on Choice & Control that

ρ(x′ = θ&H) = {(ϕ(0), ϕ(r)) : ϕ(t) |= x′ = θ and ϕ(t) |= H for all 0 ≤ t ≤ r
for a solution ϕ : [0, r]→ S of any duration r}

ν ω
ρ(x′ = θ)

φ
ρ(x := yx(t))

One possible approach of proving properties of differential equations is to work with
a solution if one is available (and expressible in the logic).

Lemma 4 ([′] soundness). The solution axiom is sound:

([′]) [x′ = θ]φ↔ ∀t≥0 [x := y(t)]φ (y′(t) = θ)

In axiom [′], y(·) is the solution of the symbolic initial-value problem y′(t) = θ, y(0) = x.
Solution y(·) is unique since θ is smooth (Lecture 2). Given such a solution y(·), contin-
uous evolution along differential equation x′ = θ can be replaced by a discrete assign-
ment x := y(t) with an additional quantifier for the evolution time t. It goes without
saying that variables like t are fresh in [′] and other axioms and proof rules. Notice that
conventional initial-value problems are numerical with concrete numbers x ∈ Rn as ini-
tial values, not symbols x [Wal98]. This would not be enough for our purpose, because
we need to consider all states in which the system could start, which may be uncount-
ably many. That is why axiom [′] solves one symbolic initial-value problem, instead,
because we could hardly solve uncountable many numerical initial-value problems.

Note 10 (Discrete vs. continuous dynamics). Notice something rather intriguing and
peculiar about axiom [′]. It relates a property of a continuous system to a property of a
discrete system. The HP on the left-hand side describes a smoothly changing continuous
process, while the right-hand side describes an abruptly, instantaneously changing discrete
process. Still, their respective properties coincide, thanks to the time quantifier. This is the
beginning of an astonishingly intimate relationship of discrete and continuous dynamics
[Pla12a].

15-424 LECTURE NOTES ANDRÉ PLATZER

http://symbolaris.com/course/fcps14/03-choicecontrol.pdf
http://symbolaris.com/course/fcps14/02-diffeq.pdf

L5.10 Dynamical Systems & Dynamic Axioms

What we have so far about the dynamics of differential equations does not yet help
us prove properties of differential equations with evolution domain constraints (a.k.a.
continuous programs) x′ = θ&H . It also does not yet tell us what to do if we can-
not solve the differential equation or if the solution is too complicated. We will get to
those matters in more detail in later lectures. Just briefly note that evolution domain
constraints can be handled as well by adding a condition checking that the evolution
domain was always true until the point in time of interest:

([′]) [x′ = θ&H]φ↔ ∀t≥0
(
(∀0≤s≤t [x := y(s)]H)→ [x := y(t)]φ

)
The effect of the additional constraint on H is to restrict the continuous evolution such
that its solution y(s) remains in the evolution domain H at all intermediate times s ≤ t.
This constraint simplifies to true if the evolution domain H is true , which makes sense,
because there are no special constraints on the evolution (other than the differential
equations) if the evolution domain is described by true , hence the full state space.

7 Dynamic Axioms for Tests

Recall from Lecture 3 on Choice & Control that

ρ(?H) = {(ν, ν) : ν |= H}

ν

ρ(?H)

if ν |= H
ν

ρ(?H)
/

if ν 6|= H

Lemma 5 ([?] soundness). The test axiom is sound:

([?]) [?H]φ↔ (H → φ)

Tests in [?H]φ are proven by assuming that the test succeeds with an implication
in axiom [?], because test ?H can only make a transition when condition H actually
holds true. In states where test H fails, no transition is possible and the failed attempt
to run the system is discarded. If no transition exists for an HP α, there is nothing to
show for [α]φ formulas, because their semantics requires φ to hold in all states reachable
by running α, which is vacuously true if no states are reachable. From left to right,
axiom [?] for dL formula [?H]φ assumes that formula H holds true (otherwise there is
no transition and thus nothing to show) and shows that φ holds after the resulting no-
op. The converse implication from right to left is by case distinction. Either H is false,
then ?H cannot make a transition and there is nothing to show. Or H is true, but then
also φ is true according to the implication.

15-424 LECTURE NOTES ANDRÉ PLATZER

http://symbolaris.com/course/fcps14/04-choicecontrol.pdf

Dynamical Systems & Dynamic Axioms L5.11

8 Dynamic Axioms for Sequential Compositions

For sequential compositions α;β, Lecture 4 on Safety & Contracts proposed the use of
an intermediate condition E characterizing all intermediate states between α and β by
way of the following proof rule:

Note 12 (Intermediate conditions as contracts for sequential compositions: proof-rule
style). Intermediate condition contracts for sequential compositions are captured more
concisely in the following proof rule:

(R8)
A→ [α]E E → [β]B

A→ [α;β]B

This proof rule is useful, but it has one blatant annoyance compared to rule R1 or let
alone the simplicity and elegance of axiom [∪]. When using rule R8 from the desired
conclusion to the premises, it does not say how to choose the intermediate condition E.
Using R8 successfully requires us to find the right intermediate condition E, for if we
don’t, the proof won’t succeed as we have seen in Lecture 4. That is a bit much if we
have to invent a useful intermediate condition E for every single sequential composi-
tion in a CPS.

Fortunately, differential dynamic logic provides a much better way that we also iden-
tify by investigating the dynamical system resulting from α;β and its induced Kripke
structure. Recall from Lecture 3 on Choice & Control that

ρ(α;β) = ρ(β) ◦ ρ(α) def
= {(ν, ω) : (ν, µ) ∈ ρ(α), (µ, ω) ∈ ρ(β)} (10)

By its semantics, the dL formula [α;β]φ is true in a state ν iff φ is true in all states that
α;β can reach according to ρ(α;β) from ν, i.e. all those states for which (ν, ω) ∈ ρ(α;β).
Which states are those? And how do they relate to the states reachable by α or by β
alone? They do not relate to those in a way that is as direct as for axiom [∪]. But they
still relate, and they do so by way of (10).

Postcondition φ has to be true in all states reachable by α;β from ν for [α;β]φ to be
true at ν. By (10), those are exactly the states ω to which we can get by running β from
an intermediate state µ to which we have gotten from ν by running α. Thus, for [α;β]φ
to be true at ν it is necessary that φ holds in all states ω to which we can get by running
β from an intermediate state µ to which we can get by running β from ν. Consequently,
[α;β]φ is only true at ν if [β]φ holds in all those intermediate states µ to which we can
get from ν by running α. How do we characterize those states? And how can we then
express these thoughts in a single logical formula of dL?

Before you read on, see if you can find the answer for yourself.

15-424 LECTURE NOTES ANDRÉ PLATZER

http://symbolaris.com/course/fcps14/04-contracts.pdf
http://symbolaris.com/course/fcps14/04-contracts.pdf
http://symbolaris.com/course/fcps14/03-choicecontrol.pdf

L5.12 Dynamical Systems & Dynamic Axioms

If we want to express that [β]φ holds in all states µ to which we can get to from ν by
running α, then that is exactly what truth of dL formula [α][β]φ at ν means, because this
is the semantics of the modality [β].

ν µ ω

ρ(α;β)
[α;β]φ

[α][β]φ
ρ(α)

[β]φ
ρ(β)

φ

Consequently,
ν |= [α][β]φ→ [α;β]φ

Reexamining our argument backwards, we see that the converse implication also holds

ν |= [α;β]φ→ [α][β]φ

The same argument works for all ν, so both implications are even valid.

Lemma 6 ([;] soundness). The composition axiom is sound:

([;]) [α;β]φ↔ [α][β]φ

Proof. Since ρ(α;β) = ρ(β) ◦ ρ(α), we have that (ν, ω) ∈ ρ(α;β) iff (ν, µ) ∈ ρ(α) and
(µ, ω) ∈ ρ(β) for some intermediate state µ. Hence, ν |= [α;β]φ iff µ |= [β]φ for all µ
with (ν, µ) ∈ ρ(α). That is ν |= [α;β]φ iff ν |= [α][β]φ.

Sequential compositions are proven using nested modalities in axiom [;]. From right
to left: If, after all α-runs, it is the case that all β-runs lead to states satisfying φ (i.e.,
[α][β]φ holds), then all runs of the sequential composition α;β lead to states satisfying
φ (i.e., [α;β]φ holds), because α;β cannot go anywhere but following α through some
intermediate state to running β. The converse implication uses the fact that if after all
α-runs all β-runs lead to φ (i.e., [α][β]φ), then all runs of α;β lead to φ (that is, [α;β]φ),
because the runs of α;β are exactly those that first do any α-run, followed by any β-run.
Again, it is crucial that dL is a full logic that considers reachability statements as modal
operators, which can be nested, for then both sides in axiom [;] are dL formulas.

Axiom [;] directly explains sequential composition α;β in terms of a structurally sim-
pler formula, one with nested modal operators but simpler hybrid programs. Again,
using axiom [;] by reducing occurrences of its left-hand side to its right-hand side de-
composes the formula into structurally simpler pieces, thereby making progress. One
of the many ways of using axiom [;] is, therefore, captured in the following proof rule:

(R10)
A→ [α][β]B

A→ [α;β]B

15-424 LECTURE NOTES ANDRÉ PLATZER

Dynamical Systems & Dynamic Axioms L5.13

Comparing rule R10 to rule R8, the new rule R10 is much easier to apply, because it
does not require us to first identify and provide an intermediate condition E like rule
R8 would. It also does not branch into two premises, which helps keeping the proof
lean. Is there a way of reuniting R10 with R8 by using the expressive power of dL?

Before you read on, see if you can find the answer for yourself.

15-424 LECTURE NOTES ANDRÉ PLATZER

L5.14 Dynamical Systems & Dynamic Axioms

Yes, indeed, there is a very smart choice for the intermediate condition E that makes

R8 behave almost as the more efficient R10 would. The clever choice E
def≡ [β]B:

A→ [α][β]B [β]B → [β]B

A→ [α;β]B

which trivializes the right premise and makes the left premise identical to that of R10.
Consequently, differential dynamic logic internalizes ways of expressing necessary and
possible properties of hybrid programs and makes both first-class citizens in the logic.
That cuts down on the amount of input that is needed when conducting proofs.

9 Unwinding Axioms for Loops

Recall from Lecture 3 on Choice & Control that

ρ(α∗) =
⋃
n∈N

ρ(αn) with αn+1 ≡ αn;α and α0 ≡ ?true

How could we prove properties of loops such as [α∗]φ? Is there a way of reducing
properties of loops to properties of simpler systems in similar ways as the other axioms
of differential dynamic logic?

Before you read on, see if you can find the answer for yourself.

15-424 LECTURE NOTES ANDRÉ PLATZER

http://symbolaris.com/course/fcps14/03-choicecontrol.pdf

Dynamical Systems & Dynamic Axioms L5.15

ν ω

ρ(α∗)

φ ∧ [α][α∗]φ

[α∗]φ

ρ(α)

[α∗]φ

ρ(α) ρ(α)

φ

ρ(α∗)

Lemma 7 ([∗] soundness). The iteration axiom is sound:

([∗]) [α∗]φ↔ φ ∧ [α][α∗]φ

Axiom [∗] is the iteration axiom, which partially unwinds loops. It uses the fact that
φ always holds after repeating α (i.e., [α∗]φ), if φ holds at the beginning (for φ holds
after zero repetitions then), and if, after one run of α, φ holds after every number of
repetitions of α, including zero repetitions (i.e., [α][α∗]φ). So axiom [∗] expresses that
[α∗]φ holds iff φ holds immediately and after one or more repetitions of α.

The same axiom [∗] can be used to unwind loops N ∈ N times, which corresponds
to Bounded Model Checking [CBRZ01]. If the formula is not valid, a bug has been
found, otherwise N increases. An obvious issue with this simple approach is that we
can never stop increasing N if the formula is actually valid, because we can never find
a bug then. A later lecture will discuss proof techniques for repetitions based on loop
invariants that are not subject to this issue. In particular, axiom [∗] is characteristically
different from the other axioms discussed in this lecture. Unlike the other axioms, [∗]
does not exactly get rid of the formula on the left-hand side. It just puts it in a different
syntactic place, which does not sound like much progress.3

3 With a much more subtle and tricky analysis, it is possible to prove that [∗] still makes sufficient progress
[Pla14]. But this is out of scope for our course.

15-424 LECTURE NOTES ANDRÉ PLATZER

L5.16 Dynamical Systems & Dynamic Axioms

10 A Proof of a Short Bouncing Ball

Now that we have understood so many axioms and proof rules, let us use them to prove
the (single-hop) bouncing ball (1):

0 ≤ x ∧ x = H ∧ v = 0 ∧ g > 0 ∧ 1 ≥ c ≥ 0→[
x′ = v, v′ = −g&h ≥ 0; (?x = 0; v :=−cv ∪ ?x 6= 0)

]
(0 ≤ h ∧ h ≤ H) (1)

Before proceeding, let’s modify the hybrid program ever so subtly in two ways so that
there’s no more evolution domains, because we have not (yet) understood how to prove
differential equations with evolution domains:

0 ≤ x ∧ x = H ∧ v = 0 ∧ g > 0 ∧ 1 ≥ c ≥ 0→[
x′ = v, v′ = −g; (?x = 0; v :=−cv ∪ ?x ≥ 0)

]
(0 ≤ x ∧ x ≤ H) (11)

To fit things on the page easily, abbreviate

Ax,v
def≡ 0 ≤ x ∧ x = H ∧ v = 0 ∧ g > 0 ∧ 1 ≥ c ≥ 0

Bx,v
def≡ 0 ≤ x ∧ x ≤ H

(x′′ = −g) def≡ (x′ = v, v′ = −g)

With these abbreviations, (11) turns into

Ax,v→[x′′ = −g; (?x = 0; v :=−cv ∪ ?x ≥ 0)]Bx,v

Let there be proof for bouncing balls:

Ax,v →∀t≥0
(
(H − g

2 t
2 = 0→ BH− g

2
t2,−c(−gt)) ∧ (H − g

2 t
2 ≥ 0→ BH− g

2
t2,−gt)

)
[:=] Ax,v →∀t≥0 [x :=H − g

2 t
2]
(
(x = 0→ Bx,−c(−gt)) ∧ (x ≥ 0→ Bx,−gt)

)
[:=] Ax,v →∀t≥0 [x :=H − g

2 t
2][v :=−gt]

(
(x = 0→ Bx,−cv) ∧ (x ≥ 0→ Bx,v)

)
[;] Ax,v →∀t≥0 [x :=H − g

2 t
2; v :=−gt]

(
(x = 0→ Bx,−cv) ∧ (x ≥ 0→ Bx,v)

)
[′] Ax,v →[x′′ = −g]

(
(x = 0→ Bx,−cv) ∧ (x ≥ 0→ Bx,v)

)
[:=] Ax,v →[x′′ = −g]

(
(x = 0→ [v :=−cv]Bx,v) ∧ (x ≥ 0→ Bx,v)

)
[?],[?]Ax,v →[x′′ = −g]

(
[?x = 0][v :=−cv]Bx,v ∧ [?x ≥ 0]Bx,v

)
[;] Ax,v →[x′′ = −g]

(
[?x = 0; v :=−cv]Bx,v ∧ [?x ≥ 0]Bx,v

)
[∪] Ax,v →[x′′ = −g][?x = 0; v :=−cv ∪ ?x ≥ 0]Bx,v
[;] Ax,v →[x′′ = −g; (?x = 0; v :=−cv ∪ ?x ≥ 0)]Bx,v

The dL axioms indicated on the left justify that the dL formulas in the two adjacent
rows are equivalent. Since each step in this proof is justified by using a dL axiom, the
conclusion at the very bottom of this derivation is proved if the premise at the very top
can be proved, because truth then inherits from the top to the bottom. That premise

Ax,v→∀t≥0
(
(H − g

2
t2 = 0→ BH− g

2
t2,−c(−gt)) ∧ (H − g

2
t2 ≥ 0→ BH− g

2
t2,−gt)

)

15-424 LECTURE NOTES ANDRÉ PLATZER

Dynamical Systems & Dynamic Axioms L5.17

expands out to a formula of first-order real arithmetic by expanding the abbreviations:

0 ≤ x ∧ x = H ∧ v = 0 ∧ g > 0 ∧ 1 ≥ c ≥ 0→

∀t≥0
(
(H − g

2
t2 = 0→ 0 ≤ H − g

2
t2 ∧H − g

2
t2 ≤ H)

∧ (H − g

2
t2 ≥ 0→ 0 ≤ H − g

2
t2 ∧H − g

2
t2 ≤ H)

)
In this case, this remaining premise can be easily seen to be valid. The assumption
H − g

2 t
2 = 0 → . . . in the middle line directly implies the first conjunct that appears in

its respective right-hand side

0 ≤ H − g

2
t2 ∧H − g

2
t2 ≤ H

and reduces the remaining second conjunct to 0 ≤ H , which the assumption in the first
line assumed (0 ≤ x = H). Similarly, the assumptionH− g

2 t
2 ≥ 0 of the last line implies

the first conjunct of its right-hand side

0 ≤ H − g

2
t2 ∧H − g

2
t2 ≤ H

and its second conjunct holds by assumption g > 0 from the first line and the real
arithmetic fact that t2 ≥ 0.

How exactly first-order logic and first-order real arithmetic formulas such as this one
can be proved in general, however, is an interesting topic for a later lecture. For now,
we are happy to report that we have just formally verified our very first CPS. We have
found a proof of (11). Exciting!

Okay, admittedly, the CPS we just verified was only a bouncing ball. And all we
know about it now is that it won’t fall through the cracks in the ground nor jump high
up to the moon. But most big steps for mankind start with a small step by someone.

Yet, before we get too carried away in the excitement, we still need to remember that
(11) is just a single-hop bouncing ball. So there’s still an argument to be made about
what happens if the bouncing ball repeats. And a rather crucial argument too, because
bouncing balls let loose in the air tend not to jump any higher anyhow without hitting
the ground first, which is where the model (11) stops prematurely, because it is missing
a repetition. So let’s put worrying about loops on the agenda for an upcoming lecture.

Yet, there’s one more issue with the proof for the bouncing ball that we derived. It
works in a somewhat undisciplined chaotic way, by using dL axioms all over the place.
This liberal proof style can be useful for manual proofs and creative shortcuts. Albeit,
since the dL axioms are sound, even such a liberal proof is a still proof. And liberal
proofs could even be very creative. But liberal proofs are also somewhat unfocused and
non-systematic, which makes them unreasonable for automation purposes and also
tends to get people lost if the problems at hand are more complex than the single-
hop bouncing ball. That is the reason why we will investigate more focused, more
systematic, and more algorithmic proofs in the next lecture.

The other thing to observe is that the above proof, however liberal it might have
been, already had more structure to it than we made explicit. This structure will be
uncovered in the next lecture.

15-424 LECTURE NOTES ANDRÉ PLATZER

L5.18 Dynamical Systems & Dynamic Axioms

11 Summary

The differential dynamic logic axioms that we have seen in this lecture are summarized
in Note 15. There are further axioms and proof rules of differential dynamic logic that
later lectures will examine [Pla12c, Pla12a], but the reasoning principles and axioms
identified here are fundamental and we will carry them with us throughout the whole
course.

Note 15 (Summary of differential dynamic logic axioms from this lecture). The
following axioms of dL are sound, i.e., all their instances are valid:
[:=] [x := θ]φ(x)↔ φ(θ)

[?] [?H]φ↔ (H → φ)

[′] [x′ = θ]φ↔ ∀t≥0 [x := y(t)]φ (y′(t) = θ)

[∪] [α ∪ β]φ↔ [α]φ ∧ [β]φ

[;] [α;β]φ↔ [α][β]φ

[∗] [α∗]φ↔ φ ∧ [α][α∗]φ

Exercises

Exercise 1. Explain why the subtle transformation from (1) to (11) was okay in this case.

Exercise 2. Identify which of the assumptions of (11) are actually required for the proof
of (11). Which formulas could we have dropped from 0 ≤ x ∧ x = H ∧ v = 0 ∧ g >
0 ∧ 1 ≥ c ≥ 0 and still be able to prove

0 ≤ x ∧ x = H ∧ v = 0 ∧ g > 0 ∧ 1 ≥ c ≥ 0→
[x′′ = −g; (?x = 0; v :=−cv ∪ ?x ≥ 0)](0 ≤ x ∧ x ≤ H)

Exercise 3. Develop possible axioms for differential equations with evolution domains
similar to [′]. That is, develop an axiom for [x′ = θ&H]φ. As in [′], you can assume to
have a unique solution for the corresponding symbolic initial-value problem.

Exercise 4. Would the following be a sound axiom? Proof or disprove.

[x′ = θ&H]φ↔ ∀t≥0∀0≤s≤t
(
[x := y(s)]H → [x := y(t)]φ

)
Exercise 5. All axioms need to be proved to be sound. These lecture notes only did
a proper proof for [∪] and [;]. Turn the informal arguments for the other axioms into
proper soundness proofs using the semantics of dL formulas.

15-424 LECTURE NOTES ANDRÉ PLATZER

Dynamical Systems & Dynamic Axioms L5.19

Exercise 6. Would the following be a useful replacement for the [∗] axiom?

[α∗]φ↔ φ ∧ [α∗]φ

Exercise 7. This lecture identified axioms for all formulas of the form [α]φ but none for
formulas of the form 〈α〉φ. Identify and justify these missing axioms. Explain how they
relate to the ones given in Note 15.

References

[CBRZ01] Edmund M. Clarke, Armin Biere, Richard Raimi, and Yunshan Zhu.
Bounded model checking using satisfiability solving. Form. Methods Syst.
Des., 19(1):7–34, 2001.

[GP14] Khalil Ghorbal and André Platzer. Characterizing algebraic invariants by
differential radical invariants. In Erika Ábrahám and Klaus Havelund, ed-
itors, TACAS, volume 8413 of LNCS, pages 279–294. Springer, 2014. doi:

10.1007/978-3-642-54862-8_19.
[Hoa69] Charles Antony Richard Hoare. An axiomatic basis for computer program-

ming. Commun. ACM, 12(10):576–580, 1969.
[LIC12] Proceedings of the 27th Annual ACM/IEEE Symposium on Logic in Computer

Science, LICS 2012, Dubrovnik, Croatia, June 25–28, 2012. IEEE, 2012.
[MP14] Stefan Mitsch and André Platzer. ModelPlex: Verified runtime validation

of verified cyber-physical system models. In Borzoo Bonakdarpour and
Scott A. Smolka, editors, RV, volume 8734 of LNCS, pages 199–214. Springer,
2014. doi:10.1007/978-3-319-11164-3_17.

[PC08] André Platzer and Edmund M. Clarke. Computing differential invariants
of hybrid systems as fixedpoints. In Aarti Gupta and Sharad Malik, editors,
CAV, volume 5123 of LNCS, pages 176–189. Springer, 2008. doi:10.1007/

978-3-540-70545-1_17.
[PC09] André Platzer and Edmund M. Clarke. Computing differential invari-

ants of hybrid systems as fixedpoints. Form. Methods Syst. Des., 35(1):98–
120, 2009. Special issue for selected papers from CAV’08. doi:10.1007/

s10703-009-0079-8.
[Pla08] André Platzer. Differential dynamic logic for hybrid systems. J. Autom. Reas.,

41(2):143–189, 2008. doi:10.1007/s10817-008-9103-8.
[Pla10] André Platzer. Logical Analysis of Hybrid Systems: Proving Theorems

for Complex Dynamics. Springer, Heidelberg, 2010. doi:10.1007/

978-3-642-14509-4.
[Pla12a] André Platzer. The complete proof theory of hybrid systems. In LICS

[LIC12], pages 541–550. doi:10.1109/LICS.2012.64.
[Pla12b] André Platzer. Dynamic logics of dynamical systems. CoRR, abs/1205.4788,

2012. arXiv:1205.4788.

15-424 LECTURE NOTES ANDRÉ PLATZER

http://dx.doi.org/10.1007/978-3-642-54862-8_19
http://dx.doi.org/10.1007/978-3-642-54862-8_19
http://dx.doi.org/10.1007/978-3-319-11164-3_17
http://dx.doi.org/10.1007/978-3-540-70545-1_17
http://dx.doi.org/10.1007/978-3-540-70545-1_17
http://dx.doi.org/10.1007/s10703-009-0079-8
http://dx.doi.org/10.1007/s10703-009-0079-8
http://dx.doi.org/10.1007/s10817-008-9103-8
http://dx.doi.org/10.1007/978-3-642-14509-4
http://dx.doi.org/10.1007/978-3-642-14509-4
http://dx.doi.org/10.1109/LICS.2012.64
http://arxiv.org/abs/1205.4788

L5.20 Dynamical Systems & Dynamic Axioms

[Pla12c] André Platzer. Logics of dynamical systems. In LICS [LIC12], pages 13–24.
doi:10.1109/LICS.2012.13.

[Pla14] André Platzer. Differential game logic. CoRR, abs/1408.1980, 2014. arXiv:
1408.1980.

[SKSC98] Danbing Seto, Bruce Krogh, Lui Sha, and Alongkrit Chutinan. The Simplex
architecture for safe online control system upgrades. In ACC, volume 6,
pages 3504–3508, 1998.

[Wal98] Wolfgang Walter. Ordinary Differential Equations. Springer, 1998.

15-424 LECTURE NOTES ANDRÉ PLATZER

http://dx.doi.org/10.1109/LICS.2012.13
http://arxiv.org/abs/1408.1980
http://arxiv.org/abs/1408.1980

	Introduction
	A Proof of Choice (Continued)
	Dynamic Axioms for Nondeterministic Choices
	Soundness
	Dynamic Axioms for Assignments
	Dynamic Axioms for Differential Equations
	Dynamic Axioms for Tests
	Dynamic Axioms for Sequential Compositions
	Unwinding Axioms for Loops
	A Proof of a Short Bouncing Ball
	Summary

