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1 Introduction

In the Lecture 2 on Differential Equations & Domains, we have seen the beginning of
cyber-physical systems, yet emphasized their continuous part in the form of differen-
tial equations x′ = θ. The sole interface between continuous physical capabilities and
cyber capabilities was by way of their evolution domain. The evolution domain H in a
continuous program x′ = θ&H imposes restrictions on how far or how long the system
can evolve along that differential equation. Suppose a continuous evolution has suc-
ceeded and the system stops following its differential equation, e.g., because the state
would otherwise leave the evolution domain if it had kept going. Then what happens
now? How does the cyber take control? How do we describe what the cyber elements
compute and how they interact with physics?

This lecture extends the model of continuous programs for continuous dynamics to
the model of hybrid programs for hybrid dynamics.

This lecture is based on material on cyber-physical systems and hybrid programs
[Pla12b, Pla10, Pla08, Pla07].

Continuous programs x′ = θ&H are very powerful for modeling continuous pro-
cesses. They cannot—on their own—model discrete changes of variables, however.1

During the evolution along a differential equation, all variables change continuously
in time, because the solution of a differential equation is (sufficiently) smooth. Discon-
tinuous change of variables, instead, needs a way for a discrete change of state. What
could be a model for describing discrete changes in a system?

1There is a much deeper sense [Pla12a] in which continuous dynamics and discrete dynamics are quite
surprisingly close together. That understanding requires a lot more logic than we have at our disposal
at this stage of the course. It also leads to a full understanding of what constitutes the hybridness of
hybrid systems. Yet, its understanding does rest on the foundations of hybrid systems, which we need
to understand first.
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L3.2 Choice & Control

There are many models for describing discrete change. You will have seen a number
of them already. CPSs combine cyber and physics. In CPS, we do not program comput-
ers, but program CPSs instead. As part of that, we program the computers that control
the physics. And programming computers amounts to using a programming language.
So a programming language would give us a model of discrete computation. Of course,
for programming an actual CPS, our programming language will ultimately have to in-
volve physics. So, none of the conventional programming languages alone will work
for CPS. But we have already seen continuous programs in the previous lecture for that
very purpose. What’s missing in continuous programs is a way to program the discrete
and cyber aspects, which is exactly what the features of conventional programming
languages provide.

Does it matter which discrete programming language we choose as a basis? It could
be argued that the discrete programming language does not matter as much as the
hybrid aspects do. After all, there are many programming languages that are Turing-
equivalent, i.e. that compute the same functions (also see Church-Turing thesis). Yet
even among all those conventional programming languages there are numerous differ-
ences for various purposes in the discrete case, which are studied in the area of Pro-
gramming Languages.

For the particular purposes of CPS, however, we will find further desiderata, i.e.
things that we expect from a programming language to be adequate for CPS. We will
develop what we need as we go, culminating in the programming language of hybrid
programs (HP).

More information about choice and control can be found in [Pla10, Chapter 2.2,2.3].
The most important learning goals of this lecture are:

Modeling and Control: We develop an understanding of the core principles behind
CPS in the case of how discrete and continuous dynamics are combined and in-
teract to model cyber and physics, respectively. We see the first example of how
to develop models and controls for a (simplistic) CPS.

Computational Thinking: We introduce and study the important phenomenon of non-
determinism, which is crucial for developing faithful models of a CPS’s environ-
ment and helpful for developing efficient models of the CPS itself. We emphasize
the importance of abstraction, which is an essential modular organization prin-
ciple in CPS as well as all other parts of computer science. We capture the core
aspects of CPS in a programming language, the language of hybrid programs.

CPS Skills: We develop an intuition for the operational effects of CPS. And we will
develop an understanding for the semantics of the programming language of hy-
brid programs, which is the CPS model that this course is based on.

2 Discrete Programs and Sequential Composition

Discrete change happens in computer programs when they assign a new value to a
variable. The statement x := θ assigns the value of term θ to variable x. It leads to
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Choice & Control L3.3

a discrete, discontinuous change, because the value of x does not vary smoothly but
radically when suddenly assigning θ to x, which causes a discrete jump in the value of
x.

This gives us a discrete model of change, x := θ, in addition to the continuous model
of change, x′ = θ&H from the Lecture 2 on Differential Equations & Domains. Now,
we can model systems that are either discrete or continuous. Yet, how can we model
proper CPS that combine cyber and physics with one another and that, thus, simulta-
neously combine discrete and continuous dynamics? We need such hybrid behavior
every time a system has both continuous dynamics (such as the continuous motion of
a car down the street) and discrete dynamics (such as shifting gears).

One way how cyber and physics can interact is if a computer provides input to
physics. Physics may mention a variable like a for acceleration and a computer pro-
gram sets its value depending on whether the computer program wants to accelerate
or brake. That is, cyber could set the values of actuators that affect physics.

In this case, cyber and physics interact in such a way that the cyber part first does
something and physics then follows. Such a behavior corresponds to a sequential com-
position (α;β) in which first the HP α on the left of the sequential composition operator
; runs and, when it’s done, the HP β on the right of ; runs. For example, the following
HP2

a := a+ 1; (x′ = v, v′ = a) (1)

will first let cyber perform a discrete change of setting a to a + 1 and then let physics
follow the differential equation x′′ = a,3 which describes accelerated motion of point
x along a straight line. The overall effect is that cyber increases the value of variable a
and physics then lets x evolve with acceleration a (and increases velocity v continuously
with derivative a). Thus, HP (1) models a situation where the desired acceleration is
commanded once to increase and the robot then moves with that fixed acceleration.
Note that the sequential composition operator (;) has basically the same effect that it
has in programming languages like Java or C0. It separates statements that are to be
executed sequentially one after the other. If you look closely, however, you will find a
subtle minor difference in that programming languages like Java and C0 expect more ;
than hybrid programs, for example at the end of the last statement. This difference is
inconsequential, and a common treat of mathematical programming languages.

The HP in (1) executes control (it sets the acceleration for physics), but it has very
little choice. Actually no choice on what happes at all. So only if the CPS is very lucky
will an increase in acceleration be the right action to remain safe forever. Quite likely,
the robot will have to change its mind ultimately, which is what we will investigate
next.

2Note that the parentheses around the differential equation are redundant and will often be left out in the
lecture notes or in scientific papers. HP (1), for example, would be written a := a + 1; x′ = v, v′ = a.
KeYmaera insists on more brackets, however.

3We will frequently use x′′ = a as an abbreviation for x′ = v, v′ = a, even if x′′ is not officially permitted
in KeYmaera.
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L3.4 Choice & Control

3 Decisions in Hybrid Programs

In general, a CPS will have to check conditions on the state to see which action to take.
One way of doing that is the use of an if-then-else, as in classical discrete programs.

if(v < 4) a := a+ 1 else a :=−b;
x′ = v, v′ = a

(2)

This HP will check the condition v < 4 to see if the current velocity is still less than 4.
If it is, then a will be increased by 1. Otherwise, a will be set to −b for some braking
deceleration constant b > 0. Afterwards, i.e. when the if-then-else statement has run to
completion, the HP will again evolve xwith acceleration a along a differential equation.

The HP (2) takes only the current velocity into account to reach a decision on whether
to accelerate or brake. That is usually not enough information to guarantee safety, be-
cause a robot doing that would be so fixated on achieving its desired speed that it
would happily speed into any walls or other obstacles along the way. Consequently,
programs that control robots also take other state information into account, for exam-
ple the distance x − o to an obstacle o from the robot’s position x, not just its velocity
v:

if(x− o > 5) a := a+ 1 else a :=−b;
x′ = v, v′ = a

(3)

They could also take both distance and velocity into account for the decision:

if(x− o > 5 ∧ v < 4) a := a+ 1 else a :=−b;
x′ = v, v′ = a

(4)

Note 1 (Iterative design). As part of the labs of this course, you will develop increasingly
more intelligent controllers for robots that face increasingly challenging environments.
Designing controllers for robots or other CPS is a serious challenge. You will want to
start with simple controllers for simple circumstances and only move on to more advanced
challenges when you have fully understood and mastered the previous controllers, what
behavior they guarantee and what functionality they are still missing.

4 Choices in Hybrid Programs

What we learn from the above discussion is a common feature of CPS models: they
often include only some but not all detail about the system. And for good reasons,
because full detail about everything can be overwhelming and is often a distraction
from the important aspects of a system. A (somewhat) more complete model of (4)
might look as follows, with some further formula S as an extra condition for checking
whether to actually accelerate:

if(x− o > 5 ∧ v < 4 ∧ S) a := a+ 1 else a :=−b;
x′ = v, v′ = a

(5)
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Choice & Control L3.5

The extra condition S may be very complicated and often depends on many factors. It
could check to smooth the ride, optimize battery efficiency, or pursue secondary goals.
Consequently, (4) is not actually a faithful model for (5), because (4) insists that the
acceleration would always be increased just because x − o > 5 ∧ v < 4 holds, unlike
(5), which also checks the additional condition S. Likewise, (3) certainly is no faithful
model of (5). But it looks simpler.

How can we describe a model that is simpler than (5) by ignoring the details of S yet
that is still faithful to the original system? What we want this model to do is characterize
that the controller may either increase acceleration by 1 or brake. And we want that all
acceleration certainly only happens when x − o > 5. But the model should make less
commitment than (3) about the precise circumstances under which braking is chosen.
So we want a model that allows braking under more circumstances than (3) without
having to model precisely under which circumstances that is. In order to simplify the
system faithfully, we want a model that allows more behavior than (3). The rationale is
ultimately that if a system with more behavior is safe, the actual implementation will
be safe as well, because it will only ever exercise some of the verified behavior.

Note 2 (Abstraction). Successful CPS models often include only the relevant aspects
of the system and simplify irrelevant detail. The benefit of doing so is that the model
and its analysis becomes simpler, enabling us to focus on the critical parts without being
bogged down in tangentials. This is the power of abstraction, arguably the primary secret
weapon of computer science. It does take considerable skill, however, to find the best level
of abstraction for a system. A skill that you will continue to sharpen through your entire
career.

Let us take the development of this model step by step. The first feature that the
controller of the model has is a choice. The controller can choose to increase acceleration
or to brake, instead. Such a choice between two actions is denoted by the operator ∪ :

(a := a+ 1 ∪ a :=−b);
x′ = v, v′ = a

(6)

When running this hybrid program, the first thing that happens is that the first state-
ment (before the ;) runs, which is a choice ( ∪ ) between whether to run a := a+ 1 or
whether to run a :=−b. That is, the choice is whether to increase a by 1 or whether to
reset a to −b for braking. After this choice (i.e. after the ; sequential composition oper-
ator), the system follows the usual differential equation x′′ = a describing accelerated
motion along a line.

Now, wait. There was a choice. Who choses? How is the choice resolved?

Note 3 (Nondeterministic ∪ ). The choice (∪ ) is nondeterministic. That is, every time
a choice α ∪ β runs, exactly one of the two choices, α or β, is chosen to run and the choice
is nondeterministic, i.e. there is no prior way of telling which of the two choices is going
to be chosen. Both outcomes are perfectly possible.
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L3.6 Choice & Control

The HP (6) is a faithful abstraction of (5), because every way how (5) can run can be
mimicked by (6) so that the outcome of (6) corresponds to that of (5). Whenever (5)
runs a := a+ 1, which happens exactly if x− o > 5 ∧ v < 4 ∧ S is true , (6) only needs to
choose to run the left choice a := a+ 1. Whenever (5) runs a :=−b, which happens ex-
actly if x− o > 5 ∧ v < 4 ∧ S is false , (6) needs to choose to run the right choice a :=−b.
So all runs of (5) are possible runs of (6). Furthermore, (6) is much simpler than (5),
because it contains less detail. It does not mention v < 4 nor the complicated extra
condition S. Yet, (6) is a little too permissive, because it suddenly allows the controller
to choose a := a+ 1 even at close distance to the obstacle, i.e. even if x − o > 5 is false .
That way, even if (5) was a safe controller, (6) is still an unsafe one, and, thus, not a very
suitable abstraction.

5 Tests in Hybrid Programs

In order to build a faithful and not too permissive model of (5), we need to restrict the
permitted choices in (6) so that there’s flexibility but only so much that the acceleration
choice a := a+ 1 can only be chosen at sufficient distance x− o > 5. The way to do that
is to use tests on the current state of the system.

A test ?H is a statement that checks the value of a first-order formula H of real arith-
metic in the current state. If H holds in the current state, then the test passes, nothing
happens, yet the HP continues to run normally. If, instead, H does not hold in the cur-
rent state, then the test fails, and the system execution is aborted and discarded. That
is, when ν is the current state, then ?H runs successfully without changing the state
when ν |= H . Otherwise, i.e. if ν 6|= H , the run of ?H is aborted and not considered any
further, because it did not play by the rules of the system.

The test statement can be used to change (6) around so that it allows acceleration only
at large distances while braking is still allowed always:(

(?x− o > 5; a := a+ 1) ∪ a :=−b
)
;

x′ = v, v′ = a
(7)

The first statement of (7) is a choice (∪ ) between (?x−o > 5; a := a+1) and a :=−b. All
choices in hybrid programs are nondeterministic so any outcome is always possible. In
(7), this means that the left choice can always be chosen, just as well as the right one.
The first statement that happens in the left choice, however, is the test ?x− o > 5, which
the system run has to pass in order to be able to continue successfully. In particular, if
x− o > 5 is indeed true in the current state, then the system passes that test ?x− o > 5
and the execution proceeds to after the sequential composition (;) to run a := a+ 1. If
x− o > 5 is false in the current state, however, the system fails the test ?x− o > 5 and
that run is aborted and discarded. The right option to brake is always available, because
it does not involve any tests to pass.
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Note 4 (Discarding failed runs). System runs that fail tests are discarded and not con-
sidered any further, because that run did not play by the rules of the system. It is as if those
failed system execution attempts had never happened. Yet, even if one execution attempt
fails, other execution paths may still be successful. Operationally, you can imagine find-
ing them by backtracking through all the choices in the system run and taking alternative
choices instead.

There are always two choices when running (7). Yet, which ones run successfully
depends on the current state. If the current state is at a far distance from the obstacle
(x − o > 5), then both options of accelerating and braking will indeed be possible
and can be run successfully. Otherwise, only the braking choice runs without being
discarded because of a failing test.

Comparing (7) with (5), we see that (7) is a faithful abstraction of the more compli-
cated (5), because all runs of (5) can be mimicked by (7). Yet, unlike the intermediate
guess (6), the improved HP (7) still retains the critical information that acceleration is
only allowed by (5) at sufficient distance x − o > 5. Unlike (5), (7) does not restrict the
cases where acceleration can be chosen to those that also satisfy v < 4∧ S. Hence, (7) is
more permissive than (5). But (7) is also simpler and only contains crucial information
about the controller. Hence, (7) is a more abstract faithful model of (5) that retains the
relevant detail. Studying the abstract (7) instead of the more concrete (5) has the ad-
vantage that only relevant details need to be understood while irrelevant aspects can
be ignored. It also has the additional advantage that a safety analysis of the more ab-
stract (7), which allows lots of behavior, will imply safety of the special concrete case
(5) but also implies safety of other implementations of (7). For example, replacing S
by a different condition in (5) still gives a special case of (7). So if all behavior of (7) is
safe, all behavior of that different replacement will also already be safe. With a single
verification result about a more general, more abstract system, we can obtain verifica-
tion for a whole class of systems rather than just one particular system. This important
phenomenon will be investigated in more detail in later parts of the course.

Of course, which details are relevant and which ones can be simplified depends on
the analysis question at hand, a question that we will be better equipped to answer in
a later lecture. For now, suffice it to say that (7) has the relevant level of abstraction for
our purposes.

Note 5 (Broader significance of nondeterminism). Nondeterminism comes up in the
above cases for reasons of abstraction and for focusing the system model on the most critical
aspects of the system while suppressing irrelevant detail. This is an important reason for
introducing nondeterminism in system models, but there are other important reasons as
well. Whenever a system includes models of its environment, nondeterministic models
are often a crucial idea, because there is often just a partial understanding of what the
environment will do. A car controller for example, will not always know for sure what
other cars in its environment will do, exactly.
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L3.8 Choice & Control

6 Repetitions in Hybrid Programs

The hybrid programs above were interesting, but only allowed the controller to choose
what action to take at most once. All controllers so far inspected the state in a test or in
an if-then-else condition and then chose what to do once, just to let physics take control
subsequently by following a differential equation. That makes for rather short-lived
controllers. They have a job only once in their lives. And most decisions they reach
may end up being bad ones. Say, one of those controllers, e.g. (7), inspects the state
and finds it still okay to accelerate. If it chooses a := a+ 1 and then lets physics move in
the differential equation x′′ = a, there will probably come a time at which acceleration
is no longer such a great idea. But the controller of (7) has no way to change its mind,
because he has no more choices and so no control anymore.

If the controller of (7) is supposed to be able to make a second control choice later
after physics has followed the differential equation for a while, then (7) can simply be
sequentially composed with itself:(

(?x− o > 5; a := a+ 1) ∪ a :=−b
)
;

x′ = v, v′ = a;(
(?x− o > 5; a := a+ 1) ∪ a :=−b

)
;

x′ = v, v′ = a

(8)

In (8), the cyber controller can first choose to accelerate or brake (depending on whether
x− o > 5), then physics evolves along differential equation x′′ = a for some while, then
the controller can again choose whether to accelerate or brake (depending on whether
x− o > 5 holds in the state reached then), and finally physics again evolves along
x′′ = a.

For a controller that is supposed to be allowed to have a third control choice, copy&paste
replication would again help:(

(?x− o > 5; a := a+ 1) ∪ a :=−b
)
;

x′ = v, v′ = a;(
(?x− o > 5; a := a+ 1) ∪ a :=−b

)
;

x′ = v, v′ = a;(
(?x− o > 5; a := a+ 1) ∪ a :=−b

)
;

x′ = v, v′ = a

(9)

But this is neither a particularly concise nor a particularly useful modeling style. What
if a controller could need 10 control decisions or 100? Or what if there is no way of
telling ahead of time how many control decisions the cyber part will have to take to
reach its goal? Think of how many control decisions you might need when driving in a
car from the East Coast to the West Coast. Do you know that ahead of time? Even if you
do, do you want to model a system by explicitly replicating its controller that often?
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Choice & Control L3.9

Note 6 (Repetition). As a more concise and more general way of describing repeated
control choices, hybrid programs allow for the repetition operator ∗, which works like the
star operator in regular expressions, except that it applies to a hybrid program α as in α∗.
It repeats α any number n ∈ N of times, by a nondeterministic choice.

Thus, a way of summarizing (7), (8), (9) and the infinitely many more n-fold replica-
tions of (7) for any n ∈ N, is by using a repetition operator instead:((

(?x− o > 5; a := a+ 1) ∪ a :=−b
)
;

x′ = v, v′ = a
)∗ (10)

This HP can repeat (7) any number of times (0,1,2,3,. . . ).
But how often does a nondeterministic repetition like (10) repeat then? That choice is

again nondeterministic.

Note 7 (Nondeterministic ∗). Repetition (∗) is nondeterministic. That is, α∗ can repeat
α any number (n ∈ N) of times and the choice how often to run α is nondeterministic,
i.e. there is no prior way of telling how often α will be repeated.

Yet, every time the loop in (10) is run, how long does its continuous evolution take?
Or, actually, even in the loop-free (8), how long does the first x′′ = a take before the
controller has its second choice? How long did the continuous evolution take in (7) in
the first place?

There is a choice even in following a differential equation. Even if the solution of the
differential equation is unique (cf. Lecture 2), it is still a matter of choice how long to
follow that solution. The choice is, as always in hybrid programs, nondeterministic.

Note 8 (Nondeterministic x′ = θ). The duration of evolution of a differential equation
(x′ = θ&H) is nondeterministic (except that the evolution can never be so long that the
state leaves H). That is, x′ = θ&H can follow the solution of x′ = θ any amount of time
(0 ≤ r ∈ R) of times and the choice how long to follow x′ = θ is nondeterministic, i.e.
there is no prior way of telling how often x′ = θ will be repeated (except that it can never
leave H).

7 Syntax of Hybrid Programs

With the motivation above, we formally define hybrid programs [Pla12a, Pla10], in
which all of the above operators are allowed.
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L3.10 Choice & Control

Definition 1 (Hybrid program). HPs are defined by the following grammar (α, β
are HPs, x a variable, θ a term possibly containing x, andH a formula of first-order
logic of real arithmetic):

α, β ::= x := θ | ?H | x′ = θ&H | α ∪ β | α;β | α∗

The first three cases are called atomic HPs, the last three compound. The test action ?H
is used to define conditions. Its effect is that of a no-op if the formula H is true in the
current state; otherwise, like abort, it allows no transitions. That is, if the test succeeds
because formula H holds in the current state, then the state does not change, and the
system execution continues normally. If the test fails because formula H does not hold
in the current state, then the system execution cannot continue, is cut off, and not con-
sidered any further.

Nondeterministic choice α ∪ β, sequential composition α;β, and nondeterministic
repetition α∗ of programs are as in regular expressions but generalized to a semantics
in hybrid systems. Nondeterministic choice α ∪ β expresses behavioral alternatives be-
tween the runs of α and β. That is, the HP α ∪ β can choose nondeterministically to
follow the runs of HP α, or, instead, to follow the runs of HP β. The sequential composi-
tion α;β models that the HP β starts running after HP α has finished (β never starts if α
does not terminate). In α;β, the runs of α take effect first, until α terminates (if it does),
and then β continues. Observe that, like repetitions, continuous evolutions within α
can take more or less time, which causes uncountable nondeterminism. This nondeter-
minism occurs in hybrid systems, because they can operate in so many different ways,
which is as such reflected in HPs. Nondeterministic repetition α∗ is used to express that
the HP α repeats any number of times, including zero times. When following α∗, the
runs of HP α can be repeated over and over again, any nondeterministic number of
times (≥0).

Unary operators (including ∗) bind stronger than binary operators and ; binds stronger
than ∪ , so α;β ∪ γ ≡ (α;β) ∪ γ and α ∪ β; γ ≡ α ∪ (β; γ). Further, α;β∗ ≡ α; (β∗).

8 Semantics of Hybrid Programs

There is more than one way to define the meaning of a program, including defining
a denotational semantics, an operational semantics, a structural operational semantics,
an axiomatic semantics. For our purposes, what is most relevant is how a hybrid pro-
gram changes the state of the system. Consequently, the semantics of HPs is based on
which final states are reachable from which initial state. It considers which (final) state
ω is reachable by running a HP α from an (initial) state ν. Semantical models that ex-
pose more detail, e.g., about the internal states during the run of an HP are possible
[Pla10, Chapter 4] but not needed for our usual purposes.

Recall that a state ν is a mapping from variables to R. The set of states is denoted
S. The meaning of an HP α is given by a reachability relation ρ(α) ⊆ S × S on states.
That is, (ν, ω) ∈ ρ(α) means that final state ω is reachable from initial state ν by running
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HP α. From any initial state ν, there might be many states ω that are reachable because
the HP α may involve nondeterministic choices, repetitions or differential equations,
so there may be many different ω for which (ν, ω) ∈ ρ(α). Form other initial states ν,
there might be no reachable states ω at all for which (ν, ω) ∈ ρ(α). So ρ(α) is a proper
relation, not a function.

HPs have a compositional semantics [Pla12b, Pla10, Pla08]. Their semantics is de-
fined by a reachability relation. Recall that the value of term θ in ν is denoted by [[θ]]ν .
Recall that ν |= H denotes that first-order formula H is true in state ν (Lecture 2 on
Differential Equations & Domains).

Definition 2 (Transition semantics of HPs). Each HP α is interpreted semantically
as a binary reachability relation ρ(α) ⊆ S × S over states, defined inductively by

1. ρ(x := θ) = {(ν, ω) : ω = ν except that [[x]]ω = [[θ]]ν}
That is, final state ω differs from initial state ν only in its interpretation of the
variable x, which ω changes to the value that the right-hand side θ has in the
initial state ω.

2. ρ(?H) = {(ν, ν) : ν |= H}
That is, the final state ν is the same as the initial state ν (no change) but there
only is such a self-loop transition if test formula H holds in ν, otherwise no
transition is possible at all and the system is stuck because of a failed test.

3. ρ(x′ = θ&H) = {(ϕ(0), ϕ(r)) : ϕ(t) |= x′ = θ andϕ(t) |= H for all 0 ≤ t ≤ r
for a solution ϕ : [0, r]→ S of any duration r}
That is, the final state ϕ(r) is connected to the initial state ϕ(0) by a contin-
uous function of some duration r ≥ 0 that solves the differential equation

and satisfies H at all times, when interpreting ϕ(t)(x′)
def
= dϕ(ζ)(x)

dζ (t) as the
derivative of the value of x over time, see Lecture 2.

4. ρ(α ∪ β) = ρ(α) ∪ ρ(β)
That is, α ∪ β can do any of the transitions that α can do as well as any of the
transitions that β is capable of.

5. ρ(α;β) = ρ(β) ◦ ρ(α) = {(ν, ω) : (ν, µ) ∈ ρ(α), (µ, ω) ∈ ρ(β)}
That is, α;β can do any transitions that go through any intermediate state µ
to which α can make a transition from the initial state ν and from which β
can make a transition to the final state ω.

6. ρ(α∗) =
⋃
n∈N

ρ(αn) with αn+1 ≡ αn;α and α0 ≡ ?true .

That is, α∗ can repeat α any number of times, i.e., for any n ∈ N, α∗ can act
like the n-fold sequential composition αn would.

To keep things simple, the above definition uses simplifying abbreviations for differ-
ential equations. Lecture 2 provides full detail also of the definition for differential
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equation systems rather than single differential equations.
For graphical illustrations of the transition semantics of hybrid programs and exam-

ple dynamics, see Fig. 1. The left of Fig. 1 illustrates the generic shape of the transition
structure ρ(α) for transitions along various cases of hybrid programs α from state ν to
state ω. The right of Fig. 1 shows examples of how the value of a variable x may evolve
over time t when following the dynamics of the respective hybrid program α.

Now when α denotes the HP in (8), its semantics ρ(α) is a relation on states connect-
ing the initial to the final state along the differential equation with two control decisions
according to the nondeterministic choice, one at the beginning and one after following
the first differential equation. How long that is, exactly? Well, that’s nondeterminis-
tic, because the semantics of differential equations is such that any final state after any
permitted duration is reachable from a given initial state. So the duration for the first
differential equation in (8) could have been one second or two or 424 or half a second
or zero or any other nonnegative real number.

If we change the HP around and consider the following modification instead:

?x− o > 5; a := a+ 1;

x′ = v, v′ = a;

?x− o > 5; a := a+ 1;

x′ = v, v′ = a

(11)

Then some behavior that was still possible in (8) is no longer possible for (11). Let β
denote the HP in (11), then the semantics ρ(β) of β now only includes relations between
initial and final states which can be reached by acceleration choices (because there are
no more braking choices in β). In particular, however, note that the duration of the first
differential equation in (11) may suddenly be bounded, because if x keeps on acceler-
ating for too long during the first differential equation, the intermediate state reached
then will violate the test ?x− o > 5, which, according to the semantics of tests, will fail
and be discarded. Of course, if x accelerates for too long, it will surely ultimately violate
the condition that its position will be at least 5 in front of the obstacle o.
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ν ω
x := θ
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Figure 1: Transition semantics (left) and example dynamics (right) of hybrid programs
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9 Summary

This lecture introduced hybrid programs as a model for cyber-physical systems, sum-
marized in Note 11. Hybrid programs combine differential equations with conven-
tional program constructs and discrete assignments. The programming language of
hybrid programs embraces nondeterminism as a first-class citizen and features differ-
ential equations that can be combined to form hybrid systems using the compositional
operators of hybrid programs.

Note 11 (Statements and effects of hybrid programs (HPs)).

HP Notation Operation Effect
x := θ discrete assignment assigns term θ to variable x
x′ = θ&H continuous evolution differential equations for x with term θ with-

in first-order constraint H (evolution domain)
?H state test / check test first-order formula H at current state
α; β seq. composition HP β starts after HP α finishes
α ∪ β nondet. choice choice between alternatives HP α or HP β
α∗ nondet. repetition repeats HP α n-times for any n ∈ N

Exercises

Exercise 1. The semantics of hybrid programs (Def. 2) requires evolution domain con-
straints H to hold always throughout a continuous evolution. What exactly happens if
the system starts in a state where H does not hold to begin with?
Exercise 2. Consider your favorite programming language and discuss in what ways
it introduces discrete change and discrete dynamics. Can it model all behavior that
hybrid programs can describe? Can your programming language model all behavior
that hybrid programs without differential equations can describe? How about the other
way around?
Exercise 3. Consider the grammar of hybrid programs. The ; in hybrid programs is
similar to the ; in Java and C0. If you look closely you will find a subtle difference.
Identify the difference and explain why there is such a difference.
Exercise 4. Sect. 3 considered if-then-else statements for hybrid programs. But they no
longer showed up in the grammar of hybrid programs. Is this a mistake?
Exercise 5. The semantics of hybrid programs (Def. 2) is defined as a transition relation
ρ(α) ⊆ S × S on states. Define an equivalent semantics based on functionsR(α) : S → 2S

from the initial state to the set of all final states, where 2S denotes the powerset of S, i.e.
the set of all subsets of S. Define this set-valued semantics R(α) without referring to
the transition relation semantics ρ(α). Likewise, define an equivalent semantics based
on functions ς(α) : 2S → 2S from the set of all initial states to the set of all final states.
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[Pla12a] André Platzer. The complete proof theory of hybrid systems. In LICS [LIC12],
pages 541–550. doi:10.1109/LICS.2012.64.
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