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1 Introduction

Reasoning about cyber-physical systems and hybrid systems requires understanding
and handling their real arithmetic, which can be challenging, because cyber-physical
systems can have complex behavior. Differential dynamic logic and its proof calculus
[Pla08, Pla10, Pla12] reduce the verification of hybrid systems to real arithmetic. How
arithmetic interfaces with proofs has already been discussed in Lecture 9 on Proofs &
Arithmetic. How real arithmetic with linear and quadratic equations can be handled
by virtual substitution has been shown in Lecture 18 on Virtual Substitution & Real
Equations. Today’s lecture shows how virtual substitution for quantifier elimination in
real arithmetic extends to the case of linear and quadratic inequalities.

These lecture notes are loosely based on [Wei97, Pla10, Appendix D]. They add sub-
stantial intuition and motivation that is helpful for following the technical develop-
ment. More information about virtual substitution can be found in the literature [Wei97].
See, e.g., [PQR09, Pas11] for an overview of other techniques for real arithmetic.

2 Recall: Square Root
√
· Substitutions for Quadratics

Recall the way to handle quantifier elimination for linear or quadratic equations from
Lecture 18 on Virtual Substitution & Real Equations:
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L19.2 Virtual Substitution & Real Arithmetic

Theorem 1 (Virtual substitution of quadratic equations). For a quantifier-free formula
F , the following equivalence is valid over R:

a 6= 0 ∨ b 6= 0 ∨ c 6= 0→(
∃x (ax2 + bx+ c = 0 ∧ F )↔

a = 0 ∧ b 6= 0 ∧ F−c/bx

∨ a 6= 0 ∧ b2 − 4ac ≥ 0 ∧
(
F (−b+

√
b2−4ac)/(2a)

x ∨ F (−b−
√
b2−4ac)/(2a)

x

))
(1)

When using virtual substitutions of square roots from Lecture 18, the resulting for-
mula on the right-hand side of the biimplication is quantifier-free and can be chosen
for QE(∃x (ax2 + bx+ c = 0 ∧ F )) as long as it is not the case that a = b = c = 0. In
case a = b = c = 0, another formula in F needs to be considered for directing quantifier
elimination, because the equation ax2 + bx+ c = 0 is noninformative if a = b = c = 0,
e.g. when a, b, c are the zero polynomials or even if they just have a common root.

The formula on the right-hand side of the biimplication in (1) is a formula in the
first-order logic of real arithmetic when using the virtual substitution of square root
expressions defined in Lecture 18.

3 Infinity∞ Substitution

Theorem 1 address the case where the quantified variable occurs in a linear or quadratic
equation. It might only occur in inequalities, however. Consider a formula of the form

∃x (ax2 + bx+ c ≤ 0 ∧ F ) (2)

Under the respective conditions on a, b, c from (1), the possible solutions −c/b, (−b +√
d)/(2a), (−b −

√
d)/(2a) from (1) continue to be options for solutions of (2), because

one way of satisfying the weak inequality ax2 + bx+ c ≤ 0 is by satisfying the equation
ax2 + bx+ c = 0. So if F is true for any of those solutions of the quadratic equation
(under the auspices of the additional constraints on a, b, c), then (2) holds as well.

Yet, if those points do not work out, the weak inequality in (2) allows for more pos-
sible solutions. For example, if a = 0, b > 0, then sufficiently small values of x would
satisfy 0x2 + bx+ c ≤ 0. Also, if a < 0, then sufficiently small values of x would satisfy
ax2 + bx+ c ≤ 0, because x2 grows faster than x and, thus the negative ax2 ultimately
overcomes any contribution of bx and c to the value of ax2 + bx+ c. But that would
quickly diverge into the principle full substitution principle for the uninsightful case of

T
def
= R from Lecture 18.
Now, one possibility of pursuing this line of thought may be to substitute smaller and

smaller values for x into (2) and see if that happens to work. There is a much better way
though. The only really small value that would have to be substituted into (2) to see if it
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Virtual Substitution & Real Arithmetic L19.3

happens to work is one that is so negative that it is smaller than all others: −∞, which
is the lower limit of all negative real numbers. Alternatively, −∞ can be understood as
being “always as negative as needed, i.e. more negative than anything else”. Think of
−∞ as being built out of elastic rubber so that it always ends up being smaller when
being compared to any actual real number.

Let ∞,−∞ be positive and negative infinities, respectively, i.e. choose extra elements
∞,−∞ 6∈ R with −∞ < r <∞ for all r ∈ R. Formulas of real arithmetic can be substi-
tuted with±∞ for a variable x if the compactified reals R ∪ {∞,−∞}. Yet, just like with
square root expressions,±∞ do not actually need to ever occur in the resulting formula,
because substitution of infinities can be defined differently. For example, (x+ 5 > 0)∞x
simplifies to false , while (x+ 5 < 0)∞x simplifies to true .

Note 2. Substitution of the infinity −∞ for x into an atomic formula for a polynomial

p
def
=
∑n

i=0 aix
i with polynomials ai that do not contain x is defined by the following

equivalences (accordingly for substituting∞ for x).

(p = 0)−∞x ≡
n∧

i=0

ai = 0 (3)

(p ≤ 0)−∞x ≡ (p < 0)−∞x ∨ (p = 0)−∞x (4)

(p < 0)−∞x ≡ @−∞(p) < 0 (5)

(p 6= 0)−∞x ≡
n∨

i=0

ai 6= 0 (6)

Lines (3) and (6) use that the only equation of real arithmetic that infinities±∞ satisfy is
the trivial equation 0 = 0. Line (4) uses the equivalence p ≤ 0 ≡ p < 0 ∨ p = 0. Line (5)
uses a simple inductive definition based on the degree, deg(p), in the variable x of the
polynomial p to characterize whether p is ultimately negative at −∞ (or for sufficiently
negative numbers):

Note 3. Let p
def
=
∑n

i=0 aix
i with polynomials ai that do not contain x. Whether p is

ultimately negative (written @−∞(p) < 0) at −∞ is easy to characterize:

@−∞(p) < 0
def
≡

{
p < 0 if deg(p) = 0

(−1)nan < 0 ∨ (an = 0 ∧@−∞(
∑n−1

i=0 aix
i) < 0) if deg(p) > 0

Substitution of∞ for x into an atomic formula is defined similarly, except that the sign
factor (−1)n disappears. Substitution of ∞ or of −∞ for x into first-order formulas is
then defined as in Lecture 18.

Example 2. Using this principle to check under which circumstance the quadratic in-
equality from (2) evaluates to true yields the answer from our earlier ad-hoc analysis of
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L19.4 Virtual Substitution & Real Arithmetic

what happens for sufficiently small values of x:

(ax2 + bx+ c ≤ 0)
−∞
x ≡ (−1)2a < 0 ∨ a = 0 ∧ ((−1)b < 0 ∨ b = 0 ∧ c < 0)

In the same way, the virtual substitution can be used to see under which circumstance F
would also evaluate to true for sufficiently small values of x, exactly when F−∞x holds.
Note that (at least if a 6= 0), the virtual substitution of ∞ for x would not make sense
to check (2) at, because in that case, the inequality ax2 + bx+ c ≤ 0 is violated. That
would be different for an inequality such as ax2 + bx+ c ≥ 0.

The crucial thing to note is again that the virtual substitution of infinities ±∞ for x
in F giving F±∞x is semantically equivalent to the result F±∞x of the literal substitution
replacing xwith±∞, but operationally different, because the virtual substitution never
introduces actual infinities. Because of their semantical equivalence, we use the same
notation by abuse of notation.

4 Infinitesimal ε Substitutions

Theorem 1 address the case where the quantified variable occurs in a linear or quadratic
equation and the virtual substitution in Sect. 3 adds the case of sufficiently small values
for x. Consider a formula of the form

∃x (ax2 + bx+ c < 0 ∧ F ) (7)

In this case, the roots from Theorem 1 will not help, because they satisfy the equation
ax2 + bx+ c = 0 but not the strict inequality ax2 + bx+ c < 0. The virtual substitution
of −∞ for x from Sect. 3 still makes sense to consider, because that one might satisfy F
and ax2 + bx+ c < 0. If −∞ does not work, however, the solution of (7) could be near
one of the roots of ax2 + bx+ c = 0, just slightly off so that ax2 + bx+ c < 0 is satisfied.
How far off? Well, saying that exactly by any real number is again difficult, because any
particular real number might already have been too large in absolute value, depending
on the constraints in the remainder of F . Again, this calls for quantities that are always
as small as we need them to be.

Sect. 3 used a negative quantity that is so small that it is smaller than all negative
numbers and hence infinitely small (but infinitely large in absolute value). Analyzing
(7) needs positive quantities that are infinitely small and hence also infinitely small in
absolute value. Infinitesimals are positive quantities that are always smaller than all
positive real numbers, i.e. “always as small as needed”. Think of them as built out of
elastic rubber so that they always shrink as needed when compared with any actual
positive real number so that the infinitesimals end up being smaller than positive reals.
Another way of looking at infinitesimals is that they are the multiplicative inverses of
±∞.

A positive infinitesimal∞ > ε > 0 is positive and an extended real that is infinites-
imal, i.e. positive but smaller than all positive real numbers (ε < r for all r ∈ R with
r > 0). For all polynomials p ∈ R[x] \ {0}, ζ ∈ R, the Taylor expansion of p around ζ
evaluated at ζ + ε can be used to show:
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Virtual Substitution & Real Arithmetic L19.5

1. p(ζ + ε) 6= 0
that is, infinitesimal are positive and always so small that they never yield roots

of any equation, except the trivial zero polynomial. Whenever it looks like there
might be a root, the infinitesimal just became a bit smaller. And nonzero univari-
ate polynomials only have finitely many roots, so the infinitesimals will take care
to avoid them.

2. p(ζ) 6= 0 ⇒ p(ζ)p(ζ + ε) > 0,
that is, p has constant sign on infinitesimal neighborhoods of nonroots ζ. If the

neighborhood around ζ is small enough (and for an infinitesimal it will be), then
the polynomial will not yet have changed sign then.

3. 0 = p(ζ) = p′(ζ) = p′′(ζ) = · · · = p(k−1)(ζ) 6= p(k)(ζ) ⇒ p(k)(ζ)p(ζ + ε) > 0,
that is the first nonzero derivative of p at ζ determines the sign of p in an infinites-
imal neighborhood of ζ.

Note 4. Substitution of an infinitesimal expression e + ε with a square root expression e
and a positive infinitesimal ε for x into a polynomial p =

∑n
i=0 aix

i with polynomials ai
that do not contain x is defined by the following equivalences.

(p = 0)e+ε
x ≡

n∧
i=0

ai = 0 (8)

(p ≤ 0)e+ε
x ≡ (p < 0)e+ε

x ∨ (p = 0)e+ε
x (9)

(p < 0)e+ε
x ≡ (@−(p) < 0)ex (10)

(p 6= 0)e+ε
x ≡

n∨
i=0

ai 6= 0 (11)

Lines (8) and (11) use that infinitesimals offsets satisfy no equation except the trivial
equation 0=0 (case 1). Line (9) again uses the equivalence p ≤ 0 ≡ p < 0 ∨ p = 0. Line
(10) checks that the sign of p at e is negative (which will make p inherit the same neg-
ative sign at e + ε by case 2) or will immediately become negative right away using a
recursive formulation of immediately becoming negative that uses higher derivatives
(which determine the sign by case 3). The lifting to arbitrary quantifier-free formulas
of real arithmetic is again by substitution into all atomic subformulas and equivalences
such as (p > q) ≡ (p− q > 0) as defined in Lecture 18. Note that, for the case (p < 0)e+ε

x ,
the (non-infinitesimal) square root expression e gets virtually substituted in for x into
a formula @−(p) < 0, which characterizes whether p becomes negative immediately at
or after x (which will be substituted by e).
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L19.6 Virtual Substitution & Real Arithmetic

Note 5. Whether p is immediately negative, i.e. negative itself or with a derivative p′ that
makes it negative on an infinitesimal interval, can be characterized recursively:

@−(p) < 0
def
≡

{
p < 0 if deg(p) = 0

p < 0 ∨ (p = 0 ∧@−(p
′)) if deg(p) > 0

Example 3. Using this principle to check under which circumstance the quadratic strict
inequality from (7) evaluates to true at (−b+

√
b2 − 4ac)/(2a) + ε, i.e. right after its root

(−b+
√
b2 − 4ac)/(2a), leads to the following computation.

@−(ax
2+bx+c) ≡ ax2+bx+c < 0∨ax2+bc+c = 0∧(2ax+b < 0∨2ax+b = 0∧2a < 0)

Hence,

(ax2 + bx+ c < 0)
(−b+

√
b2−4ac)/(2a)+ε

x ≡ (@−(ax
2 + bx+ c))

(−b+
√
b2−4ac)/(2a)+ε

x ≡

(ax2 + bx+ c < 0 ∨ ax2 + bc+ c = 0 ∧ (2ax+ b < 0 ∨ 2ax+ b = 0 ∧ 2a < 0))
(−b+

√
b2−4ac)/(2a)

x

≡ 0·1 < 0∨0 = 0∧((0 < 0 ∨ 4a2 ≤ 0 ∧ (0 < 0 ∨ −4a2(b2 − 4ac) < 0)︸ ︷︷ ︸
2ax+b<0

(−b+
√

b2−4ac)/(2a)
x

)∨ 0 = 0︸ ︷︷ ︸
2ax+b=0...x

∧ 2a1 < 0︸ ︷︷ ︸
2a<0

)

≡ 4a2 ≤ 0 ∧ −4a2(b2 − 4ac) < 0 ∨ 2a < 0

because the square root virtual substitution gives (ax2 + bx+ c)
(−b+

√
b2−4ac)/(2a)

x = 0 by
construction (compare example from Lecture 18). The virtual substitution into the poly-
nomial 2ax+ b computes as follows:

(2ax+ b)(−b±
√
b2−4ac)/(2a)

x ≡ 2a · (−b±
√
b2 − 4ac)/(2a) + b

≡ (−2ab+±2a
√
b2 − 4ac)/(2a) + b

≡ (−2ab + 2ab +±2a
√
b2 − 4ac)/(2a)

The resulting formula can be further simplified internally to

(ax2 + bx+ c < 0)
(−b+

√
b2−4ac)/(2a)+ε

x ≡ 4a2 ≤ 0∧−4a2(b2 − 4ac) < 0∨ 2a < 0 ≡ 2a < 0

because the first conjunct 4a2 ≤ 0 ≡ a = 0 and, with a = 0, the second conjunct sim-
plifies to −4a2(b2 − 4ac)

0
a = −0(b2) < 0, which is impossible in the reals. This answer

makes sense. Because, indeed, exactly if 2a < 0 will a quadratic polynomial still evalu-
ate to ax2 + bx+ c < 0 right after its second root (−b+

√
b2 − 4ac)/(2a).

Formulas such as this one (2a > 0) are the result of a quantifier elimination procedure.
If the formula after quantifier elimination is either true or false , then you know for sure
that the formula is valid (true) or unsatisfiable (false), respectively. If the result of quan-
tifier elimination is true , for example, KeYmaera can close proof branches (marked by
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Virtual Substitution & Real Arithmetic L19.7

proof rule R in our sequent proofs). Yet, quantifier elimination can also return other
formulas, such as 2a > 0, which are equivalent to the formula where quantifier elimi-
nation has been applied. In particular, they identify exactly under which circumstance
that respective quantified formula is true. This can be very useful for identifying the
missing assumptions to make a proof work and the corresponding statement true.

The crucial thing to note is again that the virtual substitution of infinitesimal expres-
sions e + ε for x in F giving F e+ε

x is semantically equivalent to the result F e+ε
x of the

literal substitution replacing x with e+ ε, but operationally different, because the vir-
tual substitution never introduces actual infinitesimals. Because of their semantical
equivalence, we use the same notation by abuse of notation.

Computationally more efficient substitutions of infinitesimals have been reported
elsewhere [BD07].

5 Quantifier Elimination by Virtual Substitution

The following quantifier elimination technique works for formulas with a quantified
variable that occurs at most quadratically.

Theorem 4 (Virtual substitution of quadratic constraints [Wei97]). LetF be a quantifier-
free formula in which all atomic formulas are of the form ax2 + bx+ c ∼ 0 for x-free poly-

nomials a, b, c and ∼ ∈ {=,≤, <, 6=}, with corresponding discriminant d
def
= b2 − 4ac.

Then ∃xF is equivalent over R to the following quantifier-free formula:

F−∞x

∨
∨

(
ax2+bx+c

{
=
≤

}
0
)
∈F

(
a = 0 ∧ b 6= 0 ∧ F−c/bx ∨ a 6= 0 ∧ d ≥ 0 ∧ (F (−b+

√
d)/(2a)

x ∨ F (−b−
√
d)/(2a)

x )
)

∨
∨

(ax2+bx+c{ 6=<}0)∈F

(
a = 0 ∧ b 6= 0 ∧ F−c/b+ε

x ∨ a 6= 0 ∧ d ≥ 0 ∧ (F (−b+
√
d)/(2a)+ε

x ∨ F (−b−
√
d)/(2a)+ε

x )
)

Proof. The proof first considers the literal substitution of square root expressions, in-
finities, and infinitesimals and then, as a second step, uses that the virtual substitutions
that avoid square root expressions, infinities, and infinitesimals are equivalent.

The implication from the quantifier-free formula on the right-hand side (denoted G)
to ∃xF is obvious, because each disjunct of the quantifier-free formula has a conjunct
of the form F t

x for some (extended) term t even if it may be a square root expression or
infinity or term involving infinitesimals.

The converse implication from ∃xF to the quantifier-free formula depends on show-
ing that the quantifier-free formula covers all possible representative cases and that the
accompanying constraints on a, b, c, d are actually necessary.
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L19.8 Virtual Substitution & Real Arithmetic

It is enough to prove this for the case where all variables in F except x have con-
crete numeric real values, because the equivalence holds iff it holds in all states ν. By a
fundamental property of real arithmetic called o-minimality, the set S(F ) of all real val-
ues for x that satisfy F forms a finite union of (pairwise disjoint) intervals, because the
polynomials in F only change signs at their roots, of which there only are finitely many
now that the polynomials have become univariate, i.e. with the only variable x, since
all free variables are evaluated to concrete real numbers in ν. Without loss of general-
ity (by merging overlapping or adjacent intervals), we assume all those intervals to be
maximal, i.e. no bigger interval would satisfy F . So F actually changes its truth-value
at the lower and upper endpoints of these intervals (unless the interval is unbounded).

The endpoints of these intervals can be seen to be of the form−c/b, (−b+
√
d)/(2a), (−b−√

d)/(2a),∞,−∞ for any of the polynomials in F , because those polynomials are at
most quadratic and all roots of those polynomials are contained in that set. Hence, as
usual, −c/b ∈ S(F ) implies a = 0, b 6= 0, because that is the only case where −c/b sat-
isfies F , which has only at most quadratic polynomials, while (−b +

√
d)/(2a) ∈ S(F )

as well as (−b−
√
d)/(2a) ∈ S(F ) both imply that a 6= 0 and discriminant d ≥ 0. So the

side conditions for the roots considered in the quantifier-free formula are necessary for
quadratic polynomials.

Now consider one interval I ⊆ S(F ) (if there is none, ∃xF is false). If I has no lower
bound, then F−∞x is true by construction (by Sect. 3, the virtual substitution F−∞x is
equivalent to the literal substitution F−∞x in ±∞-extended real arithmetic). Otherwise,
let α ∈ R be the lower bound of I . If α ∈ I (I is closed at the lower bound), then α is of
the form−c/b, (−b+

√
d)/(2a), (−b−

√
d)/(2a) for some equation (ax2 + bx+ c = 0) ∈ F

or weak inequality (ax2 + bx+ c ≤ 0) ∈ F . Since the respective extra conditions on
a, b, c, d hold, the quantifier-free formula evaluates to true. If, otherwise, α 6∈ I (I is
open at the lower bound α), then α is of the form −c/b, (−b+

√
d)/(2a), (−b−

√
d)/(2a)

for some disequation (ax2 + bx+ c 6= 0) ∈ F or strict inequality (ax2 + bx+ c < 0) ∈ F
and the interval I cannot be a single point. Thus, one of the infinitesimal increments
−c/b+ε, (−b+

√
d)/(2a)+ε, (−b−

√
d)/(2a)+ε is in I ⊆ S(F ). Since the respective con-

ditions a, b, c, d hold, the quantifier-free formula is again true. Hence, in either case, the
quantifier-free formula is equivalent to ∃xF in state ν. Since the state ν giving concrete
real numbers to all free variables of ∃xF was arbitrary, the same equivalence holds for
all ν, which means that the quantifier-free formula (call it G) is equivalent to ∃xF . That
is G↔ ∃xF is valid, i.e. � G↔ ∃xF .

Optimizations are possible [Wei97] if there is only one quadratic occurrence of x,
and that occurrence is not in an equation. If that occurrence is an equation, Theorem 1
already showed what to do. If there is only one occurrence of a quadratic inequality,
the following variation works.
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Virtual Substitution & Real Arithmetic L19.9

Note 7 ([Wei97]). Let
(
Ax2 +Bx+ C

{
≤
<
6=

}
0

)
∈ F be the only quadratic occurrence

of x. In that case, ∃xF is equivalent over R to the following quantifier-free formula:

A = 0 ∧B 6= 0 ∧ F−C/B
x ∨A 6= 0 ∧ F−B/(2A)

x

∨ F∞x ∨ F−∞x

∨
∨

(
0x2+bx+c

{
=
≤

}
0
)
∈F

(
b 6= 0 ∧ F−c/bx

)
∨

∨
(0x2+bx+c{ 6=<}0)∈F

(
b 6= 0 ∧ (F−c/b+ε

x ∨ F−c/b−εx )
)

Further optimizations are possible if some signs of a, b are known, because several cases
in the quantifier-free expansion then become impossible and can be simplified to true
or false immediately. This helps simplify the formula in Theorem 4, because one of the
cases a = 0 versus a 6= 0 might drop. But it also reduces the number of disjuncts in
F−∞x , see Example 3, and in the virtual substitutions of square roots (Lecture 18) and of
infinitesimals (Sect. 4).

Theorem 4 also applies for polynomials of higher degrees in x if all those factor to
polynomials of at most quadratic degree in x [Wei97]. Degree reduction is also possible
by renaming based on the greatest common divisor of all powers of x that occur in
F . If a quantified variable x occurs only with degrees that are multiples of an odd
number d then virtual substitution can use ∃xF (xd) ≡ ∃y F (y). If x only occurs with
degrees that are multiples of an even number d then ∃xF (xd) ≡ ∃y (y ≥ 0 ∧ F (y)). The
cases with infinitesimals +ε are only needed if x occurs in strict inequalities. The cases

F
(−b+±

√
d)/(2a)

x are only needed if x occurs in equations or weak inequalities.

6 Summary

Virtual substitution is one technique for eliminating quantifiers in real arithmetic. It
works for linear and quadratic constraints and can be extended to some cubic cases
[Wei94]. Virtual substitution can be applied repeatedly from inside out to eliminate
quantifiers. In each case, however, virtual substitution requires the eliminated vari-
able to occur with small enough degrees only. Even if that was the case initially, it
may stop to be the case after eliminating the innermost quantifier, because the degrees
of the formulas resulting from virtual substitution may increase. In that case, degree
optimizations and simplifications may sometimes work. If not, then other quantifier
elimination techniques need to be used, which are based on semialgebraic geometry or
model theory. Virtual substitution alone always works for mixed quadratic-linear for-
mulas, i.e. those in which all quantified variables occur linearly except for one variable
that occurs quadratically. In practice, however, many other cases turn out to work well
with virtual substitution.
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L19.10 Virtual Substitution & Real Arithmetic

Exercises

Exercise 1. Consider
∃x (ax2 + bx+ c ≤ 0 ∧ F ) (12)

The virtual substitution of the roots of ax2 + bx+ c = 0 according to Sect. 2 as well as
of −∞ according to Sect. 3 will lead to

F−∞x ∨a = 0∧b 6= 0∧F−c/bx ∨a 6= 0∧b2−4ac ≥ 0∧
(
F (−b+

√
b2−4ac)/(2a)

x ∨F (−b−
√
b2−4ac)/(2a)

x

)
But when F is−ax2 + bx+ e < 0, then none of those cases necessarily works. Does that
mean the result of virtual substitution is not equivalent to (12)? Where is the catch in
this argument?
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