
15-424: Foundations of Cyber-Physical Systems

Lecture Notes on
Control Loops & Invariants

André Platzer

Carnegie Mellon University
Lecture 7

1 Introduction

Lecture 3 on Choice & Control demonstrated how important control is in CPS and that
control loops are a very important feature for making this control happen. Without
loops, CPS controllers are limited to short finite sequences of control actions, which
are rarely sufficient. With loops, CPS controllers shine, because they can inspect the
current state of the system, take action to control the system, let the physics evolve,
and then repeat these steps in a loop over and over again to slowly get the state where
the controller wants the system to be. Think of programming a robot to drive on a
highway. Would you be able to do that without some means of repetition or iteration?
Probably not, because you’ll need to write a CPS program that monitors the traffic
situation frequently and reacts in response to what the other cars do on the highway.

Hybrid programs’ way of exercising repetitive control actions is the repetition oper-
ator ∗ that can be applied to any hybrid program α. The resulting hybrid program α∗

repeats α any number of times, nondeterministically.
More information can be found in [Pla12b, Pla12a] as well as [Pla10, Chapter 2.5.2,2.5.4].

2 Control Loops

Recall the little acrophobic bouncing ball from Lecture 4 on Safety & Contracts.

@requires(0 ≤ h ∧ h = H ∧ v = 0)

@requires(g > 0 ∧ 1 ≥ c ≥ 0)

@ensures(0 ≤ h ∧ h ≤ H)(
h′ = v, v′ = −g&h ≥ 0;

if(h = 0) v :=−cv
)∗

(1)

15-424 LECTURE NOTES September 18, 2013 ANDRÉ PLATZER

http://symbolaris.com/course/fcps13.html
http://symbolaris.com/andre.html
http://symbolaris.com/course/fcps13/03-choicecontrol.pdf
http://symbolaris.com/course/fcps13/04-contracts.pdf


L7.2 Control Loops & Invariants

The contracts above have been augmented with the ones that we have identified in
Lecture 4 by converting the initial contract specification into a logical formula in differ-
ential dynamic logic and then identifying the required assumptions to make it true in
all states:

0 ≤ h ∧ h = H ∧ v = 0 ∧ g > 0 ∧ 1 ≥ c ≥ 0→[(
h′ = v, v′ = −g&h ≥ 0; if(h = 0) v :=−cv

)∗]
(0 ≤ h ∧ h ≤ H) (2)

Because we did not want to be bothered by the presence of the additional if-then-else
operator, which is not officially part of the minimal set of operators of dL, we simplified
(2) to:

0 ≤ h ∧ h = H ∧ v = 0 ∧ g > 0 ∧ 1 ≥ c ≥ 0→[(
h′ = v, v′ = −g&h ≥ 0; (?h = 0; v :=−cv ∪ ?h 6= 0)

)∗]
(0 ≤ h ∧ h ≤ H) (3)

In Lecture 4, we had an informal understanding why (3) is valid (true in all states),
but no formal proof, albeit we proved a much simplified version of (3) in which we
simply threw away the loop. Ignorance is clearly not a correct way of understanding
loops. Let’s make up for that now by properly proving (3) in the dL calculus.

Yet, before going for a proof, let us take a step back and understand the role of loops
in more general terms. Their semantics has been explored in Lecture 3 on Choice &
Control and more formally in Lecture 5 on Dynamical Systems & Dynamic Axioms.

The little bouncing ball had a loop in which physics and its bounce control alternated.
The bouncing ball desperately needs a loop for it wouldn’t know ahead of time how
often it would bounce. When falling from great heights, it bounces quite a bit. The
bouncing ball also has a controller, albeit a rather impoverished one. All it could do is
inspect the current height, compare it to the ground floor (at height 0) and, if h = 0,
flip its velocity vector around after a little damping by factor c. That is not a whole lot
of flexibility for control choices, but the bouncing ball was still rather proud to serve
such an important role in controlling the bouncing ball’s behavior. Indeed, without the
control action, the ball would never bounce back from the ground but would keep on
falling forever—what a frightful thought for the acrophobic bouncing ball. On second
thought, the ball would not fall for very long without its controller, because of the
evolution domain h ≥ 0 for physics h′′ = −g&h ≥ 0, which would only allow physics
to evolve for time zero if the ball is already at height 0, because gravity would otherwise
try to pull it further down, except that h ≥ 0 won’t have it. So, in summary, without the
bouncing ball’s control statement, it would simply fall and then lie flat on the ground
without time being allowed to proceed. That would not sound very reassuring and
certainly not as much fun as bouncing back up, so the bouncing ball is really quite
proud of its control.

This principle is not specific to the bouncing ball, but, rather, quite common in CPS.
The controller performs a crucial task, without which physics would not evolve in the
way that we want it to. After all, if physics did already always do what we want it
to without any input from our side, we would not need a controller in the first place.

15-424 LECTURE NOTES ANDRÉ PLATZER

http://symbolaris.com/course/fcps13/04-contracts.pdf
http://symbolaris.com/course/fcps13/04-contracts.pdf
http://symbolaris.com/course/fcps13/03-choicecontrol.pdf
http://symbolaris.com/course/fcps13/03-choicecontrol.pdf
http://symbolaris.com/course/fcps13/05-dynax.pdf


Control Loops & Invariants L7.3

Hence, control is crucial and understanding and analyzing its effect on physics one of
the primary responsibilities in CPS.

Before proving (3), we apply one more simplification that we have also done in Lec-
ture 5, just to save space on the page. We boldly drop the evolution domain constraint
and make up for it by modifying the condition in the second test (Exercise 1):

0 ≤ h ∧ h = H ∧ v = 0 ∧ g > 0 ∧ 1 ≥ c ≥ 0→[(
h′ = v, v′ = −g; (?h = 0; v :=−cv ∪ ?h ≥ 0)

)∗]
(0 ≤ h ∧ h ≤ H) (4)

Hold on, why is that okay? Doesn’t our previous investigation say that the ball could
suddenly fall through the cracks in the floor if physics insists on evolving for hours
before giving the poor bouncing ball controller a chance to react? To make sure the
bouncing ball does not panic in light of this threat, solve Exercise 1 to investigate this.

3 Proofs of Loops

There is a loop in (4). As we have seen, its behavior is crucial to the bouncing ball. So
let’s prove to understand what it does and to see whether we have to be just as nervous
as the bouncing ball about losing it to the earth (if postcondition 0 ≤ h is not ensured)
or to the sky (if h ≤ H is not ensured).

Abbreviations have served us well in trying to keep proofs onto one page.

Ah,v
def≡ 0 ≤ h ∧ h = H ∧ v = 0 ∧ g > 0 ∧ 1 ≥ c ≥ 0

Bh,v
def≡ 0 ≤ h ∧ h ≤ H

(h′′ = −g)
def≡ (h′ = v, v′ = −g)

With these abbreviations, the bouncing ball formula (4) turns into:

Ah,v → [(h′′ = −g; (?h = 0; v :=−cv ∪ ?h ≥ 0))
∗
]Bh,v (4)

This formula is swiftly turned into the sequent at the top using proof rule→r:

Ah,v ` [(h′′ = −g; (?h = 0; v :=−cv ∪ ?h ≥ 0))∗]Bh,v
→r ` Ah,v → [(h′′ = −g; (?h = 0; v :=−cv ∪ ?h ≥ 0))∗]Bh,v

This leaves a loop to be worried about. Inspecting our dL proof rules from Lecture 6 on
Truth there is exactly one that addresses loops:

([∗n])
φ ∧ [α][α∗]φ

[α∗]φ

Using this one to continue the sequent derivation proceeds as follows:

15-424 LECTURE NOTES ANDRÉ PLATZER

http://symbolaris.com/course/fcps13/05-dynax.pdf
http://symbolaris.com/course/fcps13/05-dynax.pdf
http://symbolaris.com/course/fcps13/06-truth.pdf
http://symbolaris.com/course/fcps13/06-truth.pdf


L7.4 Control Loops & Invariants

∗
Ah,v ` Bh,v

Ah,v ` [h′′ = −g][?h = 0; v :=−cv ∪ ?h ≥ 0][(h′′ = −g; (?h = 0; v :=−cv ∪ ?h ≥ 0))∗]Bh,v
[;]rAh,v ` [h′′ = −g; (?h = 0; v :=−cv ∪ ?h ≥ 0)][(h′′ = −g; (?h = 0; v :=−cv ∪ ?h ≥ 0))∗]Bh,v

∧r Ah,v ` Bh,v ∧ [h′′ = −g; (?h = 0; v :=−cv ∪ ?h ≥ 0)][(h′′ = −g; (?h = 0; v :=−cv ∪ ?h ≥ 0))∗]Bh,v
[∗n]r Ah,v ` [(h′′ = −g; (?h = 0; v :=−cv ∪ ?h ≥ 0))∗]Bh,v

The left subgoal that results from using ∧r closes by very simple arithmetic. The
right subgoal is more of a challenge to prove. We can solve the differential equation
and proceed using [′]r, which will produce a quantifier that ∀r can handle and leaves us
with a sequent that we need to consider further to prove.

4 Loops of Proofs

After a lot of proof effort, the above sequent prove continues so that the modalities

. . . [h′′ = −g][?h = 0; v :=−cv ∪ ?h ≥ 0]ψ

can be handled. But there is still a loop in the postcondition ψ. How can we prove that
postcondition, then? Investigating our proof rules, there is exactly one that addresses
loops: [∗n]r again. If we use [∗n]r again, what will happen?

Recall from Lecture 5

ρ(α∗) =
⋃
n∈N

ρ(αn) with αn+1 ≡ αn;α and α0 ≡ ?true

ν ω

ρ(α∗)

φ ∧ [α][α∗]φ

φ

ρ(α)

[α∗]φ

ρ(α) ρ(α)

φ

ρ(α∗)

Lemma 1 ([∗] soundness). The iteration axiom is sound:

([∗]) [α∗]φ↔ φ ∧ [α][α∗]φ

Using proof rule [∗n]r on the succedent of a sequent has the same effect as using axiom
[∗] from left-hand side to right-hand side. Axiom [∗] can be used to turn a formula

A→ [α∗]B (5)

into
A→ B ∧ [α][α∗]B

What happens if we use that axiom [∗] again?

15-424 LECTURE NOTES ANDRÉ PLATZER

http://symbolaris.com/course/fcps13/05-dynax.pdf


Control Loops & Invariants L7.5

Recall that, unlike sequent proof rules such as [∗n]r, axioms do not say where they can
be used, so we might as well use them anywhere in the middle of the formula. Hence
using axiom [∗] on the inner loop yields:

A→ B ∧ [α](B ∧ [α][α∗]B)

Let’s do that again and use [∗] to obtain

A→ B ∧ [α](B ∧ [α](B ∧ [α][α∗]B)) (6)

This is all very interesting but won’t exactly get us any closer to a proof, because we
could keep expanding the ∗ star forever that way. How do we ever break out of this
loop of never-ending proofs?

Before we get too disillusioned about our progress with [∗] so far, notice that (6) still
allows us to learn something about α and whether it always satisfies B when repeating
α. Since [∗] is an equivalence axiom, formula (6) still expresses the same thing as (5),
i.e. that B always holds after repeating α when A was true in the beginning. Yet, (6)
explicitly singles out the first 3 runs of α. Let’s make this more apparent by recalling

([]∧) [α](B ∧ ψ)↔ [α]B ∧ [α]ψ

Using this valid equivalence turns (6) into

A→ B ∧ [α]B ∧ [α][α](B ∧ [α][α∗]B)

Using []∧ again gives us

A→ B ∧ [α]B ∧ [α]([α]B ∧ [α][α][α∗]B)

Using []∧ once more gives

A→ B ∧ [α]B ∧ [α][α]B ∧ [α][α][α][α∗]B (7)

Looking at it this way, (7) could be more useful than the original (5), because, even
though both are equivalent, (7) explicitly singles out the fact that B has to hold initially,
after doing α once, after doing α twice, and that [α∗]B has to hold after doing α three
times. Even if we are not quite sure what to make of the latter [α][α][α][α∗]B, because it
still involves a loop, we are quite certain how to understand and handle the first three:

A→ B ∧ [α]B ∧ [α][α]B (8)

If this formula is not valid, then, certainly, neither is (7) and, thus, neither is the original
(5). Hence, if we find a counterexample to (8), we disproved (7) and (5). That can
actually be rather useful.

Yet, if (8) is still valid, we do not know whether (7) and (5) are, since they involve
stronger requirements (B holds after any number of repetitions of α). What can we do
then? Simply unroll the loop once more by using [∗] on (6) to obtain

A→ B ∧ [α](B ∧ [α](B ∧ [α](B ∧ [α][α∗]B))) (9)

15-424 LECTURE NOTES ANDRÉ PLATZER



L7.6 Control Loops & Invariants

Or, equivalently, use axiom [∗] on (7) to obtain the equivalent

A→ B ∧ [α]B ∧ [α][α]B ∧ [α][α][α](B ∧ [α][α∗]B) (10)

By sufficiently many uses of axiom []∧, (9) and (10) are both equivalent to

A→ B ∧ [α]B ∧ [α][α]B ∧ [α][α][α]B ∧ [α][α][α∗]B (11)

which we can again examine to see if we can find a counterexample to the first part

A→ B ∧ [α]B ∧ [α][α]B ∧ [α][α][α]B

If yes, we disproved (5), otherwise we use [∗] once more.
This process of iteratively unrolling a loop with either axiom [∗] or rule [∗n]r is called

Bounded Model Checking and has been used very successfully, e.g., in the context of finite-
state systems [CBRZ01]. The same principle can be useful to disprove properties of
loops in differential dynamic logic by unwinding the loop.

5 Breaking Loops for Proofs

Proving properties of loops by unwinding them forever with [∗n]r is not a promising
strategy, unless we find that the conjecture is not valid after a number of unwindings.
One way or another, we will have to find a way to break the loop apart to complete our
reasoning.

Consider the formula (11) again that we got from (5) by unwinding the loop with
axiom [∗] a number of times and then flattening the formula with the help of []∧:

A→ B ∧ [α]B ∧ [α][α]B ∧ [α][α][α]B ∧ [α][α][α∗]B (11)

Using→r and ∧r on (11) leads to

∧r

A ` B ∧r

A ` [α]B ∧r

A ` [α][α]B ∧r
A ` [α][α][α]B A ` [α][α][α∗]B

A ` [α][α][α]B ∧ [α][α][α∗]B

A ` [α][α]B ∧ [α][α][α]B ∧ [α][α][α∗]B

A ` [α]B ∧ [α][α]B ∧ [α][α][α]B ∧ [α][α][α∗]B

→r
A ` B ∧ [α]B ∧ [α][α]B ∧ [α][α][α]B ∧ [α][α][α∗]B

` A→ B ∧ [α]B ∧ [α][α]B ∧ [α][α][α]B ∧ [α][α][α∗]B

Let us summarize this notationally by the following

→r,∧r,∧r,∧r,∧r
A ` B A ` [α]B A ` [α][α]B A ` [α][α][α]B A ` [α][α][α∗]B

` A→ B ∧ [α]B ∧ [α][α]B ∧ [α][α][α]B ∧ [α][α][α∗]B

to recall that there was a derivation involving one use of→r and 4 uses of ∧r from the
four premises to the single conclusion without saying which derivation it was exactly.
Mentioning ∧r 4 times seems a bit repetitive, so simply abbreviate this as:

→r,∧r
A ` B A ` [α]B A ` [α][α]B A ` [α][α][α]B A ` [α][α][α∗]B

` A→ B ∧ [α]B ∧ [α][α]B ∧ [α][α][α]B ∧ [α][α][α∗]B

15-424 LECTURE NOTES ANDRÉ PLATZER



Control Loops & Invariants L7.7

How could we prove the premises? Sect. 4 investigated one way, which essentially
amounts to Bounded Model Checking. Can we be more clever and prove the same
premises in a different way? Preferably one that is more efficient?

There is to much we can do to improve the way we prove the first premise. We simply
have to bite the bullet and do it, armed with all our knowledge of arithmetic. But it’s
actually very easy at least for the bouncing ball. Besides, no dynamics has actually
happened yet in the first premise, so if we despair in proving this one, the rest cannot
become any easier either. For the second premise, there is not much that we can do,
because we will have to analyze the effect of the loop body α running once at least in
order to be able to understand what happens if we run α repeatedly.

Yet, what’s with the third premise A ` [α][α]B? We could just approach it as is and
try to prove it directly using the dL proof rules. Alternatively, however, we could try
to take advantage of the fact that it is the same hybrid program α that is running in the
first and the second modality. Maybe they should have something in common that we
can exploit as part of our proof?

How could that work? Can we possibly find something that the is true after the
first run of α and is all we need to know about the state for [α]B to hold? Can we
characterize the intermediate state after the first α and before the second α? Suppose
we manage to do that and identify a formulaE that characterizes the intermediate state
in this way. How do we use intermediate condition E to simplify our proof?

Recall the intermediate condition contract version of the sequential composition proof
rule from Lecture 4 and Lecture 5.

(R4)
A→ [α]E E → [β]B

A→ [α;β]B

Lecture 5 ended up dismissing the intermediate contract rule R4 in favor of the more
general axiom

([;]) [α;β]φ↔ [α][β]φ

But, let us revisit R4 and see if we can learn something from its way of using interme-
diate condition E. The first obstacle is that the conclusion of R4 does not match the
form we need for A ` [α][α]B. That’s not a problem in principle, because we could use
axiom [;] backwards from right-hand side to left-hand side in order to turn A ` [α][α]B
into

A ` [α;α]B

and then use rule R4. However, this is what we wanted to stay away from, because us-
ing the axioms both forwards and backwards can get our proof search into trouble be-
cause we might loop around trying to find a proof forever without making any progress
by simply using [;] forwards and then backwards and then forwards again and so on
until the end of time. That does not strike us as useful. Instead, we’ll adopt a proof rule
that has some of the thoughts of R4 but is more general. It is called generalization:

([]gen′)
Γ ` [α]φ,∆ φ ` ψ

Γ ` [α]ψ,∆

15-424 LECTURE NOTES ANDRÉ PLATZER

http://symbolaris.com/course/fcps13/04-contracts.pdf
http://symbolaris.com/course/fcps13/05-dynax.pdf
http://symbolaris.com/course/fcps13/05-dynax.pdf


L7.8 Control Loops & Invariants

Rule []gen′ on the third premise A ` [α][α]B with the intermediate condition E for φ
that we assume to have identified

A ` [α]E E ` [α]B
[]gen′ A ` [α][α]B

Let us try to use this principle to see if we can find a way to prove

A→ B ∧ [α](B ∧ [α](B ∧ [α](B ∧ [α][α∗]B))) (9)

Using∧r and []gen′ a number of times for a sequence of intermediate conditionsE1, E2, E3

derives:

∧r

A ` B []gen′

A ` [α]E1 ∧r

E1 ` B []gen′

E1 ` [α]E2 ∧r

E2 ` B []gen′

E2 ` [α]E3 ∧r
E3 ` B E3 ` [α][α∗]B

E3 ` B ∧ [α][α∗]B

E2 ` [α](B ∧ [α][α∗]B)

E2 ` B ∧ [α](B ∧ [α][α∗]B)

E1 ` [α](B ∧ [α](B ∧ [α][α∗]B))

E1 ` B ∧ [α](B ∧ [α](B ∧ [α][α∗]B))

A ` [α](B ∧ [α](B ∧ [α](B ∧ [α][α∗]B)))

→r
A ` B ∧ [α](B ∧ [α](B ∧ [α](B ∧ [α][α∗]B)))

` A→ B ∧ [α](B ∧ [α](B ∧ [α](B ∧ [α][α∗]B)))
This particular derivation is still not very useful because it still has a loop in one of

the premises, which is what we had originally started out with in (5) in the first place.
But the derivation hints at a useful way how we could possibly shortcut proofs. To lead
to a proof of the conclusion, the above derivation requires us to prove the premises

A ` [α]E1

E1 ` [α]E2

E2 ` [α]E3

as well as some other premises. What if all the intermediate conditions Ei were the
same? Let’s assume they are all the same condition E, that is, E1 ≡ E2 ≡ E3 ≡ E. Then
most of the premises turn out to be the same:

E ` B
E ` [α]E

except for the two left-most and the right-most premise. Let us leverage this observa-
tion and develop a proof rule for which the same intermediate condition is used for all
iterates of the loop. Furthermore, we would even know the first premise

A ` [α]E

if we could prove that the precondition A implies E:

A ` E

because, we already have E ` [α]E.

15-424 LECTURE NOTES ANDRÉ PLATZER



Control Loops & Invariants L7.9

6 Invariant Proofs of Loops

The condition E ` [α]E identified in the previous section seems particularly useful,
because it basically says that whenever the system α starts in a state satisfying E, it will
stay in E. It sounds like the system α∗ couldn’t get out of E either if it starts in E since
all that α∗ can do is to repeat α some number of times. But every time we repeat α, the
sequent E ` [α]E expresses that we cannot leave E that way.

The other condition that the previous section identified as crucial is E ` B. And,
indeed, if E does not imply the postcondition B that we have been interested in in the
first place, then E is not necessarily very useful to prove B.

Recall from Lecture 3

ρ(α∗) =
⋃
n∈N

ρ(αn) with αn+1 ≡ αn;α and α0 ≡ ?true

ν ω

ρ(α∗)

ϕ

ρ(α)

ϕ→ [α]ϕ

ρ(α) ρ(α)

ϕ

Lemma 2 (Induction). The induction rule is sound:

(ind′)
Γ ` ϕ,∆ ϕ ` [α]ϕ ϕ ` ψ

Γ ` [α∗]ψ,∆

First observe that the inductive invariant ϕ (which we calledE in the previous examples)
occurs in all premises but not in the conclusion of ind′. The first premise of ind′ says
that the initial state, about which we assume Γ (and that ∆ does not hold), satisfies the
invariant ϕ. The second premise of ind′ shows that the invariant ϕ is inductive. That
is, whenever ϕ was true before running the loop body α, then ϕ is always true again
after running α. The third premise of ind′ shows that the invariant ϕ is strong enough
to imply the postcondition ψ that the conclusion was interested in.

Rule ind′ says that ψ holds after any number of repetitions of α if an invariant ϕ holds
initially (left premise) and invariant ϕ remains true after one iteration of α (middle
premise), and invariant ϕ finally implies the desired postcondition ψ (right premise).
If ϕ is true after executing α whenever ϕ has been true before (middle premise), then,
if ϕ holds in the beginning (left premise), ϕ will continue to hold, no matter how often
we repeat α in [α∗]ψ, which is enough to imply [α∗]ψ if ϕ implies ψ.

Taking a step back, these three premises correspond exactly to the proof steps that 15-
122 Principles of Imperative Computation used to show that the contract of a function
with a @requires contract Γ (and not ∆), @ensures contract ψ, and a loop invariant ϕ
is correct. Now, we have this reasoning in a more general and formally more precisely
defined context.

15-424 LECTURE NOTES ANDRÉ PLATZER

http://symbolaris.com/course/fcps13/03-choicecontrol.pdf
http://c0.typesafety.net/courses/15122/
http://c0.typesafety.net/courses/15122/


L7.10 Control Loops & Invariants

7 A Proof of a Repetitive Bouncing Ball

@requires(0 ≤ h ∧ h = H ∧ v = 0)

@requires(g > 0 ∧ 1 ≥ c ≥ 0)

@ensures(0 ≤ h ∧ h ≤ H)(
h′ = v, v′ = −g&h ≥ 0;

(?h = 0; v :=−cv ∪ ?h ≥ 0))
)∗
@invariant(2gh = 2gH − v2 ∧ h ≥ 0)

(12)

Let us again use abbreviations:

Ah,v
def≡ 0 ≤ h ∧ h = H ∧ v = 0 ∧ g > 0 ∧ 1 ≥ c ≥ 0

Bh,v
def≡ 0 ≤ h ∧ h ≤ H

(h′′ = . . . )
def≡ (h′ = v, v′ = −g&h ≥ 0)

Eh,v
def≡ 2gh = 2gH − v2 ∧ h ≥ 0

Note the somewhat odd abbreviation for the differential equation just to simplify no-
tation. Also note the invariant Eh,v that we identified as an intermediate condition for
the single-hop bouncing ball in Lecture 4 on Safety & Contracts. After the considera-
tions in Sect. 5, it should no longer be a big surprise why we try to use an intermediate
condition as an invariant. We are not sure whether this will work but it seems worth
trying.

Ah,v → [(h′ = . . .; (?h = 0; v :=−cv ∪ ?h ≥ 0)
∗
]Bh,v

Let there be proof.

ind′

Ah,v ` Eh,v []gen′

Eh,v ` [h′ = . . .]Eh,v [∪]r

∧r

[;]r

[?]r

[:=]r
Eh,v, h = 0 ` Eh,−cv

Eh,v, h = 0 ` [v :=−cv]Eh,v

Eh,v ` [?h = 0][v :=−cv]Eh,v

Eh,v ` [?h = 0; v :=−cv]Eh,v
[?]r

Eh,v, h ≥ 0 ` Eh,v

Eh,v ` [?h ≥ 0]Eh,v

Eh,v ` [?h = 0; v :=−cv]Eh,v ∧ [?h ≥ 0]Eh,v

Eh,v ` [?h = 0; v :=−cv ∪ ?h ≥ 0]Eh,v

[;]r
Eh,v ` [h′ = . . .][?h = 0; v :=−cv ∪ ?h ≥ 0]Eh,v

Eh,v ` [h′ = . . .; (?h = 0; v :=−cv ∪ ?h ≥ 0]Eh,v

Eh,v ` Bh,v

→r
Ah,v ` [(h′ = . . .; (?h = 0; v :=−cv ∪ ?h ≥ 0)∗]Bh,v

` Ah,v → [(h′ = . . .; (?h = 0; v :=−cv ∪ ?h ≥ 0)∗]Bh,v

The remaining 5 premises are prove easily. The first premiseAh,v ` Eh,v proves easily
using h = H and v = 0:

0 ≤ h ∧ h = H ∧ v = 0 ∧ g > 0 ∧ 1 ≥ c ≥ 0 ` 2gh = 2gH − v2 ∧ h ≥ 0

Recalling the unusual abbreviations, the second premise Eh,v ` [h′ = . . .]Eh,v is

2gh = 2gH − v2 ∧ h ≥ 0 ` [h′ = v, v′ = −g&h ≥ 0](2gh = 2gH − v2 ∧ h ≥ 0)

15-424 LECTURE NOTES ANDRÉ PLATZER

http://symbolaris.com/course/fcps13/04-contracts.pdf


Control Loops & Invariants L7.11

a proof whose pieces we have seen in previous lectures (Exercise 2). The third premise
Eh,v, h = 0 ` Eh,−cv is

2gh = 2gH − v2 ∧ h ≥ 0, h = 0 ` 2gh = 2gH − (−cv)2 ∧ h ≥ 0

which would prove easily if we knew c = 1. Do we know c = 1? No we do not know
c = 1, because we only assumed 1 ≥ c ≥ 0 in Ah,v. But we could prove this third
premise easily if we would change the definition of Ah,v around to include c = 1. Note
that even then, however, we still need to augmentEh,v to include c = 1 as well, since we
otherwise would have lost this knowledge before we need it in the third premise. The
fourth premise, Eh,v, h ≥ 0 ` Eh,v proves whatever the abbreviations stand for simply
using the axiom rule ax. Finally, the fifth premise Eh,v ` Bh,v, which is

2gh = 2gH − v2 ∧ h ≥ 0 ` 0 ≤ h ∧ h ≤ H

proves easily with arithmetic as long as we know g > 0. This condition is already in-
cluded in Ah,v. But we still managed to forget about that in our intermediate condition.
So, again, g > 0 should have been included in the invariant Eh,v, which should have
been defined as

Eh,v
def≡ 2gh = 2gH − v2 ∧ h ≥ 0 ∧ c = 1 ∧ g > 0

Yet, only the last two conjuncts are trivial, because neither c nor g changes while the
little bouncing ball falls. We, unfortunately, still have to include it in the invariant. This
is one of the downsides of working with intermediate condition style proofs such as
what we get with rule []gen′. Later lectures investigate significant simplifications for
this nuisance.

For the record, we now have a sequent proof of the undamped bouncing ball with
repetitions:

0 ≤ h ∧ h = H ∧ v = 0 ∧ g > 0 ∧ 1 = c→
[
(
h′ = v, v′ = −g&h ≥ 0; (?h = 0; v :=−cv ∪ ?h ≥ 0)

)∗
](0 ≤ h ∧ h ≤ H) (13)

Looking back, the contract in (12) has almost reflected this, but not quite, because the
@invariant contract forgot to capture the constant invariants c = 1 ∧ g > 0. And the
@requires contract forgot to require c = 1. Let’s capture this contract, which we have
now verified by way of proving the corresponding dL formula (13):

@requires(0 ≤ h ∧ h = H ∧ v = 0)

@requires(g > 0 ∧ c = 1)

@ensures(0 ≤ h ∧ h ≤ H)(
h′ = v, v′ = −g&h ≥ 0;

(?h = 0; v :=−cv ∪ ?h ≥ 0))
)∗
@invariant(2gh = 2gH − v2 ∧ h ≥ 0 ∧ c = 1 ∧ g > 0)

(14)

15-424 LECTURE NOTES ANDRÉ PLATZER



L7.12 Control Loops & Invariants

8 Essentials of Induction & Cuts

The induction rule ind′ is very useful in practice. But there is a more elegant and more
essential way of stating the induction principle.

Lemma 3 (Induction). The induction rule is sound:

(ind)
ϕ ` [α]ϕ

ϕ ` [α∗]ϕ

ind is clearly a special case of ind′, obtained by specializing Γ
def≡ ψ ∆ = ., and ϕ

def≡ ψ,
in which case the left and right premises of ind′ are provable directly by ax so that only
the middle premise remains. If ind is a special case of ind′, why should we still prefer
ind from a perspective of essentials? Obviously, ind is more fundamental and easier.
But if this came at the cost of being less powerful, ind′ should still be preferred. It turns
out that ind′ is actually a special case of ind with a little extra work. This extra work
needs a bit of attention but is insightful.

Let’s adopt the following variation of the generalization rule:

([]gen)
φ ` ψ

[α]φ ` [α]ψ

For example, using a cut with ϕ→ [α∗]ϕ, rule ind′ can be derived from ind and []gen
as follows (using weakening Wl,Wr without notice):

ϕ ` [α]ϕ
indϕ ` [α∗]ϕ
→rΓ ` ϕ→ [α∗]ϕ,∆

Γ ` ϕ,∆
ϕ ` ψ

[]gen[α∗]ϕ ` [α∗]ψ
→lΓ, ϕ→ [α∗]ϕ ` [α∗]ψ,∆

cut Γ ` [α∗]ψ,∆

Hence ind′ is a derived rule, because it can be derived using ind and some other rules.
Thus, ind′ is not necessary in theory, but still useful in practice.

Yet, now, in order to derive rule ind′ out of the more fundamental ind, we had to add
the revised generalization rule []gen. Is that any easier? Well it is, because []gen actu-
ally makes []gen′ unnecessary by another smart argument using a cut with the desired
formula [α]φ.

Γ ` [α]φ,∆
WrΓ ` [α]φ, [α]ψ,∆

φ ` ψ
[]gen [α]φ ` [α]ψ

Wl,WrΓ, [α]φ ` [α]ψ,∆
cut Γ ` [α]ψ,∆

This leaves exactly the premises of rule []gen′, making []gen′ a derived rule. Whenever
we need []gen′, we could simply expand the proof out in the above form to reduce it
just a proof involving []gen and cut and weakening.

These are two illustrations how creative uses of cuts can suddenly make proves and
concepts easier. A phenomenon that we will see in action much more often in this
course.

15-424 LECTURE NOTES ANDRÉ PLATZER



Control Loops & Invariants L7.13

Before you despair that you would have to derive ind′ and []gen′ every time you
need them: that is not the case. The theorem prover KeYmaera is very well aware of
how useful both versions of the proof rules are and has them at your disposal. For
theoretical investigations, however, as well as for understanding the truly fundamental
reasoning steps, it is instructive to see that ind and []gen are fundamental, while the
others are mere consequences.

Exercises

Exercise 1 (Give bouncing ball back its evolution domain). Explain why the transforma-
tion from (3) to (4) was okay in this case.

Exercise 2. Give a sequent proof for

2gh = 2gH − v2 ∧ h ≥ 0→ [h′ = v, v′ = −g&h ≥ 0](2gh = 2gH − v2 ∧ h ≥ 0)

Does this property also hold if we remove the evolution domain constraint h ≥ 0? That
is, is the following formula valid?

2gh = 2gH − v2 ∧ h ≥ 0→ [h′ = v, v′ = −g](2gh = 2gH − v2 ∧ h ≥ 0)

Exercise 3. To develop an inductive proof rule, we have started systematic unwinding
considerations from formula (9) in Sect. 5. In lecture, we started from the form (11)
instead and have seen that that takes us to the same inductive principle. Which of
the two ways of proceeding is more efficient? Which one produces less premises that
are distractions in the argument? Which one has less choices of different intermediate
conditions Ei in the first place?

References

[CBRZ01] Edmund M. Clarke, Armin Biere, Richard Raimi, and Yunshan Zhu.
Bounded model checking using satisfiability solving. Form. Methods Syst.
Des., 19(1):7–34, 2001.

[Pla10] André Platzer. Logical Analysis of Hybrid Systems: Proving Theorems
for Complex Dynamics. Springer, Heidelberg, 2010. doi:10.1007/

978-3-642-14509-4.

[Pla12a] André Platzer. Dynamic logics of dynamical systems. CoRR, abs/1205.4788,
2012. arXiv:1205.4788.

[Pla12b] André Platzer. Logics of dynamical systems. In LICS, pages 13–24. IEEE,
2012. doi:10.1109/LICS.2012.13.

15-424 LECTURE NOTES ANDRÉ PLATZER

http://dx.doi.org/10.1007/978-3-642-14509-4
http://dx.doi.org/10.1007/978-3-642-14509-4
http://arxiv.org/abs/1205.4788
http://dx.doi.org/10.1109/LICS.2012.13

	Introduction
	Control Loops
	Proofs of Loops
	Loops of Proofs
	Breaking Loops for Proofs
	Invariant Proofs of Loops
	A Proof of a Repetitive Bouncing Ball
	Essentials of Induction & Cuts

