
ConstLog: Constructive Logic

Lecture Notes on
Prolog

Frank Pfenning André Platzer

Carnegie Mellon University ∥ Karlsruhe Institute of Technology
Lecture 15

1 Introduction

Prolog is the first and still standard backward-chaining logic programming language.
While it is somewhat dated, it contains many interesting ideas and is appropriate for
certain types of applications that involve symbolic representations, backtracking, or
unification. Unfortunately, Prolog has more than its typical share of pitfalls and prob-
lems, due to its dynamically typed nature, the prevalence of failure and backtracking,
and the interactions between logical and extralogical predicates.

In this lecture we give a somewhat nonstandard introduction to Prolog by introduc-
ing a number of critical features using two examples: (1) basic computation on binary
numbers in little endian representation, and (2) a proof checker based on certifying
theorem provers from Lecture 13 in synch with the logical goals of this course.

2 Binary Numbers

Unary numbers, such as used in the Peano’s axioms, are foundationally adequate, but
not useful for practical computation due to the size of their representation. Instead, we
use binary numbers. Representing them as terms in logic is straightforward, we just
have to decide on the particulars1. It turns out a so-called “little endian” representation
where the least significant bits is the outermost constructor is most convenient. This is
because when defining operations on two numbers, unlike the most significant bits, the
least significant bits of both numbers always line up correctly, and then we can recurse
on the remainder of the numbers representing the higher bits.

Binary numbers M ::= b0(M) | b1(M) | e
1Practical logic programming languages such as Prolog use machine arithmetic instead.

CONSTLOG LECTURE NOTES 24.6.2024 FRANK PFENNING , ANDRÉ PLATZER

http://lfcps.org/course/constlog.html
http://lfcps.org/course/constlog24/13-certifying.pdf

L15.2 Prolog

where the (mathematical) translations between (mathematical) values and their repre-
sentations are given by functions ⌜⌝ and ⌞⌟, respectively:

⌜0⌝ = e ⌞e⌟ = 0
⌜2n⌝ = b0(⌜n⌝) for n > 0 ⌞b0(M)⌟ = 2 ⌞M⌟
⌜2n+ 1⌝ = b1(⌜n⌝) ⌞b1(M)⌟ = 2 ⌞M⌟+ 1

Now we can specify the successor relation inc(M,N) such that N represents the succes-
sor of M by the following three rules:

inc(e, b1(e))
ince

inc(b0(M), b1(M))
inc0

inc(M,N)

inc(b1(M), b0(N))
inc1

In these rules, we use upper case variables for schematic variables in the rules, which
is consistent with the Prolog syntax. We use lower case identifiers for predicates (inc),
function symbols (b0 and b1), including arity 0 function symbols or constants (e). In
Prolog syntax, we write a rule

J1 . . . Jn
J

with :- as separator between the conclusion and its resulting premises:

J :- J1, . . . , Jn.

which we read as “J if J1 through Jn”. We call the rule a clause, J the head of the clause and
J1, . . . , Jn the body of the clause. If there are zero premises, the rules is simply written
as ‘J.’. Transcribing the rules then yields the following Prolog program. We call the
predicate inc_ (with a trailing underscore) to distinguish it from the later predicate inc
which fixes some of its problems.

inc_(e,b1(e)).

inc_(b0(M),b1(M)).

inc_(b1(M),b0(N)) :- inc_(M,N).

As we will see, there are some problems with this program. But first, let’s fire up the
Gnu Prolog interpreter to run this program on some inputs. The first line after the
prompt | ?- is Prolog’s notation for loading a program from a file, here bin.pl.

% gprolog

GNU Prolog 1.4.4 (64 bits)

Compiled Apr 23 2013, 17:26:17 with /opt/local/bin/gcc-apple-4.2

By Daniel Diaz

Copyright (C) 1999-2013 Daniel Diaz

| ?- [’bin.pl’].

...

(1 ms) yes

| ?-

CONSTLOG LECTURE NOTES FRANK PFENNING , ANDRÉ PLATZER

Prolog L15.3

At the prompt we can now type queries and have the interpreter simultaneously
search for a proof and an instantiation of the free variables in the query. Once a so-
lution has been found, the interpreter may give you the opportunity to search for other
solutions, or simply return to the prompt if it can see no further solutions are possible.
For example, we can increment 5 to get 6.

| ?- inc_(b1(b0(b1(e))),N).

N = b0(b1(b1(e)))

yes

| ?-

We can also give several goals conjunctively, and they will be solved in sequence.
The following increments 5 three times to obtain 8.

| ?- inc_(b1(b0(b1(e))),N1), inc_(N1,N2), inc_(N2,N3).

N1 = b0(b1(b1(e)))

N2 = b1(b1(b1(e)))

N3 = b0(b0(b0(b1(e))))

yes

| ?-

The fact that Prolog is dynamically typed, leads to some unexpected and meaningless
answers:

| ?- inc_(b0(some_random_junk), N).

N = b1(some_random_junk)

This comes under the heading of “garbage-in, garbage-out”, but it is still disconcerting
that this would be claimed as true in Prolog rather than meaningless! Contrariwise, the
following similar meaningless prompt fails:

| ?- inc_(b1(some_random_junk), N).

no

Now let’s try to run the predicate “in reverse” to calculate the predecessor of a binary
number, in this case 6.

| ?- inc_(M,b0(b1(b1(e)))).

M = b1(b0(b1(e))) ? ;

no

| ?-

CONSTLOG LECTURE NOTES FRANK PFENNING , ANDRÉ PLATZER

L15.4 Prolog

Indeed, we obtain 5! Prolog asks if we would like to search for another solution, we
type the semicolon verb’;’ and it confirms there are no further solutions. So far, things
look good. Let’t try the predecessor of 0, which should not exist.

| ?- inc_(M,e).

no

| ?-

Once again correct. Let’s try the predecessor of 1:

| ?- inc_(M,b1(e)).

M = e ? ;

M = b0(e) ? ;

no

| ?-

Here we have a surprise: we get two answers! The second one also morally repre-
sents the number 2 · 0 = 0, but it is not in standard form since it has a leading bit b0.
The problem is that both the first and second rules apply to this query

inc_(e,b1(e)).

inc_(b0(M),b1(M)).

inc_(b1(M),b0(N)) :- inc_(M,N).

Returning an answer not in standard form is a problem only if we want to always
maintain standard form (which seems like a good idea). But even if we do not, the fact
that this innocuous looking predicate returns a second answer upon backtracking will
almost certainly lead to unintended consequences wherever this predicate is used.

If we want to run this predicate with the mode inc(-N, +M) then we need to prevent
the second solution by distinguishing the cases for M in the middle clause.

inc(e,b1(e)).

inc(b0(b0(M)),b1(b0(M))).

inc(b0(b1(M)),b1(b1(M))).

inc(b1(M),b0(N)) :- inc(M,N).

Now b0(e) is ruled out, and the problem disappears:

| ?- inc(M,b1(e)).

M = e ? ;

no

| ?-

CONSTLOG LECTURE NOTES FRANK PFENNING , ANDRÉ PLATZER

Prolog L15.5

Here is one way to define what it means for a binary to be in standard form

std(e).

% no case for std(b0(e))

std(b0(b0(N))) :- std(b0(N)).

std(b0(b1(N))) :- std(b1(N)).

std(b1(N)) :- std(N).

Next lecture shows another way. Now inc(+std,-std) and inc(-std,+std).

3 Checking Proof Terms

We now move on to another example, which introduces a number of other features of
Prolog: proof checking. The rules for normal proof term checking were introduced in
Lecture 13 and we only summarize the fragment with implication and conjunction:

Checkable terms M,N ::= ⟨M,N⟩ | (fn u ⇒ M) | R
Synthesizing terms R ::= u | fstR | sndR | RM

Ordered contexts Ω ::= . | (u : A ↓) · Ω

We use the (list) ordered context so we can check terms such as

⊢ (fn x ⇒ fn x ⇒ x) : a⊃ (b⊃ b)

where x refers to the innermost binding of x, but does not refer to any other ones:

̸⊢ (fn x ⇒ fn x ⇒ x) : a⊃ (b⊃ a)

We have the following rules.

Ω ⊢ M : A ↑ Ω ⊢ N : B ↑
Ω ⊢ ⟨M,N⟩ : A ∧B ↑ ∧I

(u : A ↓) · Ω ⊢ M : B ↑
Ω ⊢ (fn u ⇒ M) : A⊃B ↑ ⊃Iu

Ω ⊢ R : A ↓
Ω ⊢ R : A ↑ ↓↑

(u : A ↓) · Ω ⊢ u : A ↓
var=

w ̸= u Ω ⊢ u : A ↓
(w : B ↓) · Ω ⊢ u : A ↓

var ̸=

Ω ⊢ R : A ∧B ↓
Ω ⊢ fstR : A ↓ ∧E1

Ω ⊢ R : A ∧B ↓
Ω ⊢ sndR : B ↓ ∧E2

Ω ⊢ R : A⊃B ↓ Ω ⊢ M : A ↑
Ω ⊢ RM : B ↓ ⊃E

We had the intuition that these rules describe an algorithm, but now they (almost) really
do describe a program, in Prolog! We have two predicates, one (check/3, which means
check with 3 arguments) in which Ω, M , and A must all be given and it succeeds or
fails, and synth/3 in which Ω and R are given and it synthesizes A or fails (where Ω is
rendered as O).

CONSTLOG LECTURE NOTES FRANK PFENNING , ANDRÉ PLATZER

http://lfcps.org/course/constlog24/13-certifying.pdf

L15.6 Prolog

check(+O, +M, +A)

synth(+O, +R, -A)

The first rule is easy to translate, using the constructors pair(M,N) for ⟨M,N⟩ and
and(A,B) for A ∧B:

check(O, pair(M,N), and(A,B)) :-

check(O, M, A),

check(O, N, B).

In the second rule, ⊃I , we have to add a variable and its type to the front of the list
Ω. The syntax for lists in Prolog allows several different notations. We have the empty
list [], and we have a constructor which takes an element X and adds it to the front
of the list Xs with ’.’(X,Xs) Here, use of “dot” requires single quotes so it is not con-
fused with the end-of-clause period. An alternative notation for ’.’(X,Xs) is [X | Xs],
which is commonly used. Finally we can also write out lists as with [1,2,3,4]. All of
the following denote the same list:

[1,2,3,4] [1|[2,3,4]] [1,2|[3,4]]

’.’(1,[2,3,4]) ’.’(1,’.’(2,’.’(3,’.’(4,[]))))

[1|[2|[3|[4|[]]]]]

We use the most common syntax to add the term tp(X,A) to the front of the context O,
where tp/2 is a new Prolog term constructor by which we mean to indicate the second
argument is the type of the first argument.

check(O, fun(X,M), imp(A,B)) :-

check([tp(X,A)|O], M, B).

If neither of these two clauses match, we could be looking at a synthesizable term R, so
we should try to synthesize a type for it and compare it to the given one.

check(O, R, A) :- synth(O, R, B), A = B.

Here we use the built-in equality predicate = to unify A and B. In this case, for a mode-
correct query, A is given and input to check and B will be returned by synth, so the
comparison is just an equality test, not full unification.

The synthesis judgment is again straightforward for pairs.

synth(O, fst(R), A) :- synth(O, R, and(A,B)).

synth(O, snd(R), B) :- synth(O, R, and(A,B)).

We can see this is mode-correct for synth(+, +, -). In the head of the clause, we know
O and fst(R) and therefor R. Now we can appeal to the hypothesis that and(A,B) will
be known if the subgoal succeeds, which means A is known, which is what we needed
to show.

In the case of application app(R,M) we just need to be careful to solve the two sub-
goals in the right order.

CONSTLOG LECTURE NOTES FRANK PFENNING , ANDRÉ PLATZER

Prolog L15.7

synth(O, app(R,M), B) :-

synth(O, R, imp(A,B)),

check(O, M, A).

If we had switched them, as in

synth(O, app(R,M), B) :-

check(O, M, A), % bug here!

synth(O, R, imp(A,B)).

then it would not be mode correct: when we call check(O, M, A) we do not yet know
A, which is required for the mode of check/3. Either way, note that the output term for
synth/3 is restricted to be a function type of the form imp(A,B) by unification.

Finally we have two rules for variables, where we either find X at the head of the list,
or look for it in the tail.

% warning: these have a bug!

synth([tp(X,A)|O], X, A).

synth([tp(Y,B)|O], X, A) :- synth(O, X, A).

Let’s run some examples with this code to test it. The first one checks the identity
function, then the first and second projections. All succeed and fail as expected.

| ?- check([], fun(x,x), imp(a,a)).

true ? ;

no

| ?- check([], fun(x,fun(y,x)), imp(a,imp(b,a))).

true ? ;

no

| ?- check([], fun(x,fun(y,y)), imp(a,imp(b,b))).

true ? ;

no

| ?- check([], fun(x,fun(y,y)), imp(a,imp(b,a))).

no

| ?-

However, there is a bug in the program. Consider

| ?- check([], fun(x,fun(x,x)), imp(a,imp(b,b))).

true ? ;

CONSTLOG LECTURE NOTES FRANK PFENNING , ANDRÉ PLATZER

L15.8 Prolog

no

| ?- check([], fun(x,fun(x,x)), imp(a,imp(b,a))).

true ? ;

no

| ?-

The first query succeeds as expected, because x should refer to its innermost enclosing
binder. The second query shows that we incorrectly allow x to also refer to the outer
binder, violating all scoping principles and giving two different types to the same term!

% warning: these have a bug!

synth([tp(X,A)|O], X, A).

synth([tp(Y,B)|O], X, A) :- synth(O, X, A).

If we trace the execution using Prolog’s trace command we can see the problem

| ?- trace.

The debugger will first creep -- showing everything (trace)

yes

{trace}

| ?- check([], fun(x,fun(x,x)), imp(a,imp(b,a))).

1 1 Call: check([],fun(x,fun(x,x)),imp(a,imp(b,a))) ?

2 2 Call: check([tp(x,a)],fun(x,x),imp(b,a)) ?

3 3 Call: check([tp(x,b),tp(x,a)],x,a) ?

4 4 Call: synth([tp(x,b),tp(x,a)],x,_416) ?

4 4 Exit: synth([tp(x,b),tp(x,a)],x,b) ?

4 4 Redo: synth([tp(x,b),tp(x,a)],x,b) ?

5 5 Call: synth([tp(x,a)],x,_441) ?

5 5 Exit: synth([tp(x,a)],x,a) ?

4 4 Exit: synth([tp(x,b),tp(x,a)],x,a) ?

3 3 Exit: check([tp(x,b),tp(x,a)],x,a) ?

2 2 Exit: check([tp(x,a)],fun(x,x),imp(b,a)) ?

1 1 Exit: check([],fun(x,fun(x,x)),imp(a,imp(b,a))) ?

true ?

Trace line 5 exits the query synth([tp(x,b),tp(x,a)],x,_416) ?with _416 = b. How-
ever, this fails to unify with the a we are supposed to check against in line 3! So Prolog
backtracks (see Redo) and synthesizes another type from the remainder of the context
O, namely a. This now works and the query incorrectly succeeds.

The fix requires that we only continue to look through the context Ω if the variable x
we are trying to find is different from the variable at the head of the list:

synth([tp(X,A)|O], X, A).

synth([tp(Y,B)|O], X, A) :- Y \= X, synth(O, X, A).

CONSTLOG LECTURE NOTES FRANK PFENNING , ANDRÉ PLATZER

Prolog L15.9

The new goal Y \= X stands for “Y and X are not unifiable”, although here both Y and X

will be known and it just comes down to checking equality between two terms. The
above rules ensure that only the first applicable type for X will be chosen.

Here is the summary of the repaired program

% check(+O, +M, +A)

% synth(+O, +R, -A)

check(O, pair(M,N), and(A,B)) :-

check(O, M, A),

check(O, N, B).

check(O, fun(X,M), imp(A,B)) :-

check([tp(X,A)|O], M, B).

check(O, R, A) :- synth(O, R, B), A = B.

synth(O, fst(M), A) :- synth(O, M, and(A,B)).

synth(O, snd(M), B) :- synth(O, M, and(A,B)).

synth(O, app(R,M), B) :-

synth(O, R, imp(A,B)),

check(O, M, A).

synth([tp(X,A)|O], X, A).

synth([tp(Y,B)|O], X, A) :- Y \= X, synth(O, X, A).

Let’s run a few more queries. First the uncurrying function, which proves (A⊃ (B ⊃
C))⊃ ((A ∧B)⊃ C) and then currying, which goes in the opposite direction.

| ?- check([], fun(f,fun(p,app(app(f,fst(p)),snd(p)))),

imp(imp(a,imp(b,c)),imp(and(a,b),c))).

true ? ;

no

| ?- check([], fun(f,fun(x,fun(y,app(f,pair(x,y))))),

imp(imp(and(a,b),c),imp(a,imp(b,c)))).

true ? ;

(1 ms) no

4 Unification

This has worked out extremely well so far, so now we are getting greedy. What about
running check/3 in a mode such as check(+O, +M, -A) that it was not intended for,
which amounts to type inference? Let’s try!

| ?- check([], fun(x,x), A).

A = imp(B,B) ? ;

CONSTLOG LECTURE NOTES FRANK PFENNING , ANDRÉ PLATZER

L15.10 Prolog

no

The interpreter finds one solution, namely B ⊃ B for any B. In type inference we can
see this is the most general type since any other type of fn x ⇒ x is an instance of it. Let’s
try something more complicated, such as fn f ⇒ fn x ⇒ fn y ⇒ f (x, y):

| ?- check([], fun(f,fun(x,fun(y,app(f,pair(x,y))))), A).

A = imp(imp(and(B,C),D),imp(B,imp(C,D))) ? ;

no

Again, the interpreter finds a single most general solution, namely ((B∧C)⊃D)⊃(B⊃
(C ⊃D)) for any propositions (types) B, C, and D. During the search for a proof of the
goal, the interpreter accumulates constraints on A. These are then solved by a process
called unification, which fails if there are no solutions or simplifies the constraints to a
minimal form where it is easy to read off the solution in the form of a substitution.

Unfortunately, Prolog’s algorithm for unification is unsound for reasons of efficiency.
This is really inexcusable, especially since the overhead together with other optimiza-
tions is not high, but we now have to live with that bad decision. To see the problem
consider the term fn x ⇒ xx. There should not be a type for this term, because after a
couple of steps we are in the situation (writing unknown types as greek letters):

(x : α ↓) ⊢ x : α ↓
x

x : α ↓ ⊢ x : α ↓ x
α = β

x : α ↓ ⊢ x : β↑ ↓↑
α = (β ⊃ γ)

x : α ↓ ⊢ xx : γ ↓ ⊃E

The reason that type inference fails is that there is no solution to the equations α =
β, α = (β ⊃ γ) because β = (β ⊃ γ) has no solution.

Surprisingly, Prolog fails to notice that! Or, more precisely, it builds a cyclic term to
seemingly “solve” this equation.

check([], fun(x, app(x,x)), A).

cannot display cyclic term for A ? ;

no

Essentially, when it processes the equation β = B for some type B it just sets β to
be equal to B without checking if this would introduce an impossible cyclic term. In
Prolog terminology we say that it omits the the occurs check which would verify that B
does not contain the β that is chosen as the value for β. In fact, this grotesque mistake
of Prolog is only even spotted during printing when it realizes that it is impossible to
print a circular term. When renaming the output variable A to A Prolog does not try
to print the answer, merely find it, and then just (incorrectly) claims the existence of a
proof:

CONSTLOG LECTURE NOTES FRANK PFENNING , ANDRÉ PLATZER

Prolog L15.11

check([], fun(x, app(x,x)), _A).

true ? ;

no

Because of this shortcoming, Prolog has an explicit predicate
unify_with_occurs_check/2 that makes sure the two arguments are unified properly,
so that the problem β = (β ⊃ γ) fails. Wherever in the program a variable is repeated
in the head of a clause, or we call on unification, we should call on unification with the
occurs check instead. Fortunately, we only have to consider three lines. First

check(O, R, A) :- synth(O, R, B), A = B.

Now that we have a more general mode (allowing the third argument to be partially
instantiated, but contain free variables), we can rewrite it directly as

check(O, R, A) :- synth(O, R, A).

Second, we look at the two lines where variables are considered

synth([tp(X,A)|O], X, A).

synth([tp(Y,B)|O], X, A) :- Y \= X, synth(O, X, A).

In the first line, the two occurrences of A are unified, which could be unsound so we
need to appeal to unify_with_occurs_check/2 instead. There is no such problem in
the second line, because B and A are unrelated. Here is the complete revised program:

check(O, pair(M,N), and(A,B)) :-

check(O, M, A),

check(O, N, B).

check(O, fun(X,M), imp(A,B)) :-

check([tp(X,A)|O], M, B).

check(O, R, A) :- synth(O, R, A).

synth(O, fst(M), A) :- synth(O, M, and(A,B)).

synth(O, snd(M), B) :- synth(O, M, and(A,B)).

synth(O, app(R,M), B) :-

synth(O, R, imp(A,B)),

check(O, M, A2),

unify_with_occurs_check(A,A2).

synth([tp(X,B)|O], X, A) :- unify_with_occurs_check(B, A).

synth([tp(Y,B)|O], X, A) :- Y \= X, synth(O, X, A).

Now we find that self-application is not typable, as expected.

| ?- check([], fun(x, app(x,x)), A).

no

CONSTLOG LECTURE NOTES FRANK PFENNING , ANDRÉ PLATZER

L15.12 Prolog

while the other, positive examples continue to work as expected.
In a future lecture we will show the specifics about how unification in Prolog as well

as sound unification works.
This particular example is a remarkably compact implementation of full type infer-

ence for a small language. Intrinsic pattern matching is critical, as it the built-in notion
of logic variable and unification. Backtracking does not particularly come into play
here, but it will if you implement the G4ip decision procedure based on Dyckhoff’s
contraction-free sequent calculus.

An attempt to use this proof checker as a theorem prover in the mode check(+O, -M, +A)

predictably fails:

| ?- check([], M, imp(a,a)).

Fatal Error: local stack overflow ...

CONSTLOG LECTURE NOTES FRANK PFENNING , ANDRÉ PLATZER

	Introduction
	Binary Numbers
	Checking Proof Terms
	Unification

